SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Primas F.) "

Sökning: WFRF:(Primas F.)

  • Resultat 1-25 av 26
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Sivarani, T., et al. (författare)
  • First stars X. The nature of three unevolved carbon-enhanced metal-poor stars
  • 2006
  • Ingår i: Astronomy & Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 459:1, s. 125-135
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. On the order of 20% of the very metal-poor stars in the Galaxy exhibit large carbon enhancements. It is important to establish which astrophysical sites and processes are responsible for the elemental abundance patterns of this early Galactic population. Aims. We seek to understand the nature of the progenitors of three main-sequence turnoff Carbon-Enhanced Metal-Poor (CEMP) stars, CS 31080-095, CS 22958-042, and CS 29528-041, based on a detailed abundance analysis. Methods. From high-resolution VLT/UVES spectra (R similar to 43 000), we determine abundances or upper limits for Li, C, N, O, and other important elements, as well as C-12/C-13 isotopic ratios. Results. All three stars have -3.30 <= [Fe/H]<= -2.85 and moderate to high CNO abundances. CS 22958-042 is one of the most carbon-rich CEMP stars known ([C/Fe] = +3.2), while CS 29528-041 (one of the few N-enhanced metal-poor stars known) is one of the most nitrogen rich ([N/Fe] = +3.0). Oxygen is very high in CS 31080-095 ([O/Fe] = +2.35) and in CS 22958-042 ([O/Fe] = +1.35). All three stars exhibit [Sr/Fe] < 0; Ba is not detected in CS 22958-042 ([Ba/Fe] < -0.53),but it is moderately enhanced ([Ba/Fe] similar to 1) in the other two stars. CS 22958-042 displays one of the largest sodium overabundances yet found in CEMP stars ([Na/Fe] = +2.8). CS 22958-042 has C-12/C-13 = 9, similar to most other CEMP stars without enhanced neutron-capture elements, while C-12/C-13 = 40 in CS 31080-095. CS 31080-095 and CS 29528-041 have A(Li) similar to 1.7, below the Spite Plateau, while Li is not detected in CS 22958-042. Conclusions. CS 22958-042 is a CEMP-no star, but the other two stars are in no known class of CEMP star and thus either constitute a new class or are a link between the CEMP-no and CEMP-s classes, adding complexity to the abundance patterns for CEMP stars. We interpret the abundance patterns in our stars to imply that current models for the presumed AGB binary progenitors lack an extra-mixing process, similar to those apparently operating in RGB stars.
  •  
2.
  • Bonifacio, P., et al. (författare)
  • First stars XII. Abundances in extremely metal-poor turnoff stars, and comparison with the giants
  • 2009
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 501:2, s. 519-530
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The detailed chemical abundances of extremely metal-poor (EMP) stars are key guides to understanding the early chemical evolution of the Galaxy. Most existing data, however, treat giant stars that may have experienced internal mixing later. Aims. We aim to compare the results for giants with new, accurate abundances for all observable elements in 18 EMP turno. stars. Methods. VLT/UVES spectra at R similar to 45 000 and S/N similar to 130 per pixel (lambda lambda 330-1000 nm) are analysed with OSMARCS model atmospheres and the TURBOSPECTRUM code to derive abundances for C, Mg, Si, Ca, Sc, Ti, Cr, Mn, Co, Ni, Zn, Sr, and Ba. Results. For Ca, Ni, Sr, and Ba, we find excellent consistency with our earlier sample of EMP giants, at all metallicities. However, our abundances of C, Sc, Ti, Cr, Mn and Co are similar to 0.2 dex larger than in giants of similar metallicity. Mg and Si abundances are similar to 0.2 dex lower (the giant [Mg/Fe] values are slightly revised), while Zn is again similar to 0.4 dex higher than in giants of similar [Fe/H] (6 stars only). Conclusions. For C, the dwarf/giant discrepancy could possibly have an astrophysical cause, but for the other elements it must arise from shortcomings in the analysis. Approximate computations of granulation (3D) effects yield smaller corrections for giants than for dwarfs, but suggest that this is an unlikely explanation, except perhaps for C, Cr, and Mn. NLTE computations for Na and Al provide consistent abundances between dwarfs and giants, unlike the LTE results, and would be highly desirable for the other discrepant elements as well. Meanwhile, we recommend using the giant abundances as reference data for Galactic chemical evolution models.
  •  
3.
  • Cayrel, R., et al. (författare)
  • Determination of [O/Fe] in BD +23 3130 from ESO VLT-UVES observations
  • 2001
  • Ingår i: New Astronomy Reviews. - 1872-9630. ; 45:8, s. 533-535
  • Tidskriftsartikel (refereegranskat)abstract
    • We report a new determination of [O/Fe, the relative logarithmicabundance of O/Fe with respect to the Sun, for the very metal-poor starBD+23 3130 ([Fe/H=-2.6). The value was derived from the forbidden line[O I at 630 nm and from six weak Fe II lines, with a S/N ratiosubstantially larger than those obtained before, thanks to theefficiency of the VLT-UVES instrument at Paranal. We obtain[O/Fe=0.71+/-0.25, a value 0.36 dex higher than the value obtained fromthe same lines by Fulbright and Kraft [AJ 118 (1999) 527, but 0.46lower than the one derived by Israelian et al. [ApJ 507 (1998) 805 fromthe UV OH bands.
  •  
4.
  •  
5.
  • Cayrel, R., et al. (författare)
  • First stars V - Abundance patterns from C to Zn and supernova yields in the early Galaxy
  • 2004
  • Ingår i: Astronomy & Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 416:3, s. 1117-1138
  • Tidskriftsartikel (refereegranskat)abstract
    • In the framework of the ESO Large Programme ``First Stars'', veryhigh-quality spectra of some 70 very metal-poor dwarfs and giants wereobtained with the ESO VLT and UVES spectrograph. These stars are likelyto have descended from the first generation(s) of stars formed after theBig Bang, and their detailed composition provides constraints on issuessuch as the nature of the first supernovae, the efficiency of mixingprocesses in the early Galaxy, the formation and evolution of the haloof the Galaxy, and the possible sources of reionization of the Universe.This paper presents the abundance analysis of an homogeneous sample of35 giants selected from the HK survey of Beers et al. (cite{BPS92},cite{Be99}), emphasizing stars of extremely low metallicity: 30 of our35 stars are in the range -4.1 <[Fe/H]< -2.7, and 22 stars have[Fe/H] < -3.0. Our new VLT/UVES spectra, at a resolving power ofR∼45 000 and with signal-to-noise ratios of 100-200 per pixel overthe wavelength range 330-1000 nm, are greatly superior to those of theclassic studies of McWilliam et al. (cite{MPS95}) and Ryan et al.(cite{RNB96}).The immediate objective of the work is to determine precise,comprehensive, and homogeneous element abundances for this large sampleof the most metal-poor giants presently known. In the analysis wecombine the spectral line modeling code ``Turbospectrum'' with OSMARCSmodel atmospheres, which treat continuum scattering correctly and thusallow proper interpretation of the blue regions of the spectra, wherescattering becomes important relative to continuous absorption (λ< 400 nm). We obtain detailed information on the trends of elementalabundance ratios and the star-to-star scatter around those trends,enabling us to separate the relative contributions of cosmic scatter andobservational/analysis errors.Abundances of 17 elements from C to Zn have been measured in all stars,including K and Zn, which have not previously been detected in starswith [Fe/H] < -3.0. Among the key results, we discuss the oxygenabundance (from the forbidden [OI] line), the different and sometimescomplex trends of the abundance ratios with metallicity, the very tightrelationship between the abundances of certain elements (e.g., Fe andCr), and the high [Zn/Fe] ratio in the most metal-poor stars. Within theerror bars, the trends of the abundance ratios with metallicity areconsistent with those found in earlier literature, but in many cases thescatter around the average trends is much smaller than found in earlierstudies, which were limited to lower-quality spectra. We find that thecosmic scatter in several element ratios may be as low as 0.05 dex.The evolution of the abundance trends and scatter with decliningmetallicity provides strong constraints on the yields of the firstsupernovae and their mixing into the early ISM. The abundance ratiosfound in our sample do not match the predicted yields frompair-instability hypernovae, but are consistent with element productionby supernovae with progenitor masses up to 100 M⊙.Moreover, the composition of the ejecta that have enriched the matterBased on observations obtained in the frame of the ESO programme ID165.N-0276(A).Full Tables 3 and 8 are available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/416/1117 This work hasmade use of the SIMBAD database.
  •  
6.
  • Cayrel, R., et al. (författare)
  • Measurement of stellar age from uranium decay
  • 2001
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 409:6821, s. 691-692
  • Tidskriftsartikel (refereegranskat)abstract
    • The ages of the oldest stars in the Galaxy indicate when star formationbegan, and provide a minimum age for the Universe. Radioactive dating ofmeteoritic material and stars relies on comparing the present abundanceratios of radioactive and stable nuclear species to the theoreticallypredicted ratios of their production. The radioisotope 232Th(half-life 14Gyr) has been used to date Galactic stars, but it decays byonly a factor of two over the lifetime of the Universe. 238U(half-life 4.5Gyr) is in principle a more precise age indicator, buteven its strongest spectral line, from singly ionized uranium at awavelength of 385.957nm, has previously not been detected in stars. Herewe report a measurement of this line in the very metal-poor starCS31082-0018, a star which is strongly overabundant in itsheavy elements. The derived uranium abundance, log(U/H) = -13.7 +/- 0.14+/- 0.12 yields an age of 12.5 +/- 3Gyr, though this is still modeldependent. The observation of this cosmochronometer gives the mostdirect age determination of the Galaxy. Also, with improved theoreticaland laboratory data, it will provide a highly precise lower limit to theage of the Universe.
  •  
7.
  • Depagne, E., et al. (författare)
  • First Stars. II. Elemental abundances in the extremely metal-poor star CS 22949--037. A diagnostic of early massive supernovae
  • 2002
  • Ingår i: Astronomy & Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 390:1, s. 187-198
  • Tidskriftsartikel (refereegranskat)abstract
    • CS 22949-037 is one of the most metal-poor giants known ([Fe/H]~-4.0),and it exhibits large overabundances of carbon and nitrogen (Norris etal.). Using VLT-UVES spectra of unprecedented quality, regardingresolution and S/N ratio, covering a wide wavelength range (from lambda= 350 to 900 nm), we have determined abundances for 21 elements in thisstar over a wide range of atomic mass. The major new discovery is anexceptionally large oxygen enhancement, [O/Fe] = 1.97+/-0.1, as measuredfrom the [O I] line at 630.0 nm. We find an enhancement of [N/Fe] of2.56+/- 0.2, and a milder one of [C/Fe] = 1.17+/-0.1, similar to thosealready reported in the literature. This implies Zstar =0.01Zsun. We also find carbon isotopic ratios12C/13C =4+/-2.0 and 13C/14N=0.03 +0.035-0.015, close to the equilibrium valueof the CN cycle. Lithium is not detected. Na is strongly enhanced([Na/Fe] = +2.1 +/- 0.2), while S and K are not detected. Thesilicon-burning elements Cr and Mn are underabundant, while Co and Znare overabundant ([Zn/Fe]=+0.7). Zn is measured for the first time insuch an extremely metal-poor star. The abundances of the neutron-captureelements Sr, Y, and Ba are strongly decreasing with the atomic number ofthe element: [Sr/Fe] ~ +0.3, [Y/Fe] ~ -0.1, and [Ba/Fe] ~ -0.6. Amongpossible progenitors of CS 22949-037, we discuss the pair-instabilitysupernovae. Such very massive objects indeed produce large amounts ofoxygen, and have been found to be possible sources of primary nitrogen.However, the predicted odd/even effect is too large, and the predictedZn abundance much too low. Other scenarios are also discussed. Inparticular, the yields of a recent model (Z35Z) from Heger and Woosleyare shown to be in fair agreement with the observations. The onlydiscrepant prediction is the very low abundance of nitrogen, possiblycurable by taking into account other effects such as rotationallyinduced mixing. Alternatively, the absence of lithium in our star, andthe values of the isotopic ratios 12C/13C and13C/14N close to the equilibrium value of the CNcycle, suggest that the CNO abundances now observed might have beenaltered by nuclear processing in the star itself. A 30-40Msun supernova, with fallback, seems the most likelyprogenitor for CS 22949-037. Based on observations made with the ESOVery Large Telescope at Paranal Observatory, Chile (programme ID165.N-0276(A)).
  •  
8.
  • François, P., et al. (författare)
  • First Stars. III. A detailed elemental abundance study of four extremely metal-poor giant stars
  • 2003
  • Ingår i: Astronomy & Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 403:3, s. 1105-1114
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper reports detailed abundance analyses for four extremelymetal-poor (XMP) giant stars with [Fe/H]<-3.8, based onhigh-resolution, high-S/N spectra from the ESO VLT (Kueyen/UVES) and LTEmodel atmosphere calculations. The derived [alpha /Fe] ratios in oursample exhibit a small dispersion, confirming previous findings in theliterature, i.e. a constant overabundance of the alpha -elements with avery small (if any) dependence on [Fe/H]. In particular, the very smallscatter we determine for [Si/Fe] suggests that this element shows aconstant overabundance at very low metallicity, a conclusion which couldnot have been derived from the widely scattered [Si/Fe] values reportedin the literature for less metal-poor stars. For the iron-peak elements,our precise abundances for the four XMP stars in our sample confirm thedecreasing trend of Cr and Mn with decreasing [Fe/H], as well as theincreasing trend for Co and the absence of any trend for Sc and Ni. Incontrast to the significant spread of the ratios [Sr/Fe] and [Ba/Fe], wefind [Sr/Ba] in our sample to be roughly solar, with a much lowerdispersion than previously found for stars in the range -3.5 < [Fe/H]< -2.5.Based on observations made with the ESO Very Large Telescope at ParanalObservatory, Chile (Large Programme ID 165.N-0276(A)).The complete version of Table 5 is only available in electronic form atthe CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.125.5) or viahttp:/ /cdsweb.u-strasbg.fr/cgi-bin/qcat?J /A+A/403/1105
  •  
9.
  • Hill, V., et al. (författare)
  • First stars. I. The extreme r-element rich, iron-poor halo giant CS31082-001. Implications for the r--process site(s) and radioactive cosmochronology
  • 2002
  • Ingår i: Astronomy & Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 387:2, s. 560-579
  • Forskningsöversikt (refereegranskat)abstract
    • We present a high-resolution ( R= 75 000, S/ N ) spectroscopic analysis of the bright ( V= 11.7), extreme halo giant CS 31082-001([Fe/H] = -2.9), obtained in an ESO-VLT Large Programme dedicated to very metal-poor stars. We find CS 31082-001 to be extremely rich in r-process elements, comparable in this respect only to the similarly metal-poor, but carbon-enriched, giant CS 22892-052. As a result of the extreme overabundance of the heaviest r-process elements, and negligible blending from CH and CN molecular lines, a reliable measurement is obtained of the U II line at 386 nm, for the first time in a halo star, along with numerous lines of Th II, as well as lines of 25 other r-process elements. Abundance estimates for a total of 43 elements (44 counting Hydrogen) are reported in CS 31082-001, almost half of the entire periodic table. The main atmospheric parameters of CS 31082-001 are as follows: K, (cgs), [Fe/H] = -2.9 (in LTE), and microturbulence 1.8 0.2 km s -1. Carbon and nitrogen are not significantly enhanced relative to iron. As usual in giant stars, Li is depleted by dilution ( (Li/H) = 0.85). The -elements show the usual enhancements with respect to iron, with [O/Fe] (from [O I] 6300 Å), [Mg/Fe] , [Si/Fe] , and [Ca/Fe] , while [Al/Fe] is near -0.5. The r-process elements show unusual patterns: among the lightest elements ( 40), Sr and Zr follow the Solar r-element distribution, but Ag is down by 0.8 dex. All elements with 56 Z 72 follow the Solar r-element pattern, reduced by about 1.25 dex. Accordingly, the [ r/Fe] enhancement is about +1.7 dex (a factor of 50), very similar to that of CS 22892-052. Pb, in contrast, seems to be below the shifted Solar r-process distribution, possibly indicating an error in the latter, while thorium is more enhanced than the lighter nuclides. In CS 31082-001, log(Th/Eu) is , higher than in the Solar System (-0.46) or in CS 22892-052 (-0.66). If CS 31082-001 and CS 22892-052 have similar ages, as expected for two extreme halo stars, this implies that the production ratios were different by about 0.4 dex for the two objects. Conversely, if the Th/Eu production ratio were universal, an age of 15 Gyr for CS 22892-052 would imply a negative age for CS 31082-001. Thus, while a universal production ratio for the r-process elements seems to hold in the interval 56 Z 72, it breaks down in the actinide region. When available, the U/Th is thus preferable to Th/Eu for radioactive dating, for two reasons: (i) because of its faster decay rate and smaller sensitivity to observational errors, and (ii) because the inital production ratio of the neighboring nuclides 238U and 232Th is more robustly predicted than the 151Eu/ 232Th ratio. Our current best estimate for the age of CS 31082-001 is Gyr. However, the computed actinide production ratios should be verified by observations of daughter elements such as Pb and Bi in the same star, which are independent of the subsequent history of star formation and nucelosynthesis in the Galaxy.
  •  
10.
  • Sivarani, T., et al. (författare)
  • First stars IV. CS 29497-030: Evidence for operation of the s-process at very low metallicity
  • 2004
  • Ingår i: Astronomy & Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 413:3, s. 65-1073
  • Forskningsöversikt (refereegranskat)abstract
    • We present an abundance analysis of the very metal-poor, carbon-enhancedstar CS 29497-030. Our results indicate that this unusually hot turnoffstar (Teff = 6650 K, log g = 3.5) has a metallicity [Fe/H] =-2.8, and exhibits large overabundances of carbon ([C/Fe] = +2.38),nitrogen ([N/Fe] = +1.88), and oxygen ([O/Fe] = +1.67). This star alsoexhibits a large enhancement in its neutron-capture elements; thepattern follows that expected to arise from the s-process. Inparticular, the Pb abundance is found to be very high with respect toiron ([Pb/Fe] = +3.5), and also with respect to the second peaks-process elements (e.g., Ba, La, Ce, Nd), which fits into the newlyintroduced classification of lead (Pb) stars. The known spectroscopicbinary status of this star, along with the observed s-process abundancepattern, suggest that it has accreted matter from a companion, whichformerly was an Asymptotic Giant-Branch (AGB) star. In a preliminaryanalysis, we have also identified broad absorption lines of metallicspecies that suggest a large axial rotational velocity for this star,which may be the result of spin-up associated with the accretion ofmaterial from its previous AGB companion. In addition, this star isclearly depleted in the light element Li. When considered along with itsrather high inferred temperature, these observations are consistent withthe expected properties of a very low metallicity halo blue straggler.Based on observations made with the ESO Very Large Telescope at ParanalObservatory, Chile (program ID 165.N-0276(A)).Table ef{tab6} is only available in electronic form athttp://www.edpsciences.org
  •  
11.
  • Spite, M., et al. (författare)
  • First stars IX - Mixing in extremely metal-poor giants. Variation of the C-12/C-13, [Na/Mg] and [Al/Mg] ratios
  • 2006
  • Ingår i: Astronomy & Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 455:1, s. 291-301
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Extremely metal-poor (EMP) stars preserve a fossil record of the composition of the ISM when the Galaxy formed. It is crucial, however, to verify whether internal mixing has modified their surface composition, especially in the giants where most elements can be studied. Aims. We aim to understand the CNO abundance variations found in some, but not all EMP field giants analysed earlier. Mixing beyond the first dredge-up of standard models is required, and its origin needs clarification. Methods. The C-12/C-13 ratio is the most robust diagnostic of deep mixing, because it is insensitive to the adopted stellar parameters and should be uniformly high in near-primordial gas. We have measured C-12 and C-13 abundances in 35 EMP giants (including 22 with [Fe/H] < -3.0) from high-quality VLT/UVES spectra analysed with LTE model atmospheres. Correlations with other abundance data are used to study the depth of mixing. Results. The C-12/C-13 ratio is found to correlate with [C/Fe] (and Li/H), and clearly anti-correlate with [N/Fe], as expected if the surface abundances are modified by CNO processed material from the interior. Evidence for such deep mixing is observed in giants above log L/L-circle dot = 2.6, brighter than in less metal-poor stars, but matching the bump in the luminosity function in both cases. Three of the mixed stars are also Na- and Al-rich, another signature of deep mixing, but signatures of the ON cycle are not clearly seen in these stars. Conclusions. Extra mixing processes clearly occur in luminous RGB stars. They cannot be explained by standard convection, nor in a simple way by rotating models. The Na- and Al-rich giants could be AGB stars themselves, but an inhomogeneous early ISM or pollution from a binary companion remain possible alternatives.
  •  
12.
  • Spite, M, et al. (författare)
  • First stars VI - Abundances of C, N, O, Li, and mixing in extremely metal-poor giants. Galactic evolution of the light elements
  • 2005
  • Ingår i: Astronomy & Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 430:2, s. 655-668
  • Tidskriftsartikel (refereegranskat)abstract
    • We have investigated the poorly-understood origin of nitrogen in the early Galaxy by determining N abundances from the NH band at 336 nm in 35 extremely metal-poor halo giants, with carbon and oxygen abundances from Cayrel et al. (2004, A&A, 416, 1117), using high-quality ESO VLT/UVES spectra (30 of our 35 stars are in the range -4.1 <[Fe/H] < -2.7 and 22 stars have [Fe/H] < -3.0). N abundances derived both from the NH band and from the CN band at 389 nm for 10 stars correlate well, but show a systematic difference of 0.4 dex, which we attribute to uncertainties in the physical parameters of the NH band (line positions, gf values, dissociation energy, etc.). Because any dredge-up of CNO processed material to the surface may complicate the interpretation of CNO abundances in giants, we have also measured the surface abundance of lithium in our stars as a diagnostic of such mixing. Our sample shows a clear dichotomy between two groups of stars. The first group shows evidence of C to N conversion through CN cycling and strong Li dilution, a signature of mixing; these stars are generally more evolved and located on the upper Red Giant Branch (RGB) or Horizontal Branch (HB). The second group has [N/Fe] < 0.5, shows no evidence for C to N conversion, and Li is only moderately diluted; these stars belong to the lower RGB and we conclude that their C and N abundances are very close to those of the gas from which they formed in the early Galaxy, they are called "unmixed stars". The [O/Fe] and [(C+N)/Fe] ratios are the same in the two groups, confirming that the differences between them are caused by dredge-up of CN-processed material in the first group, with negligible contributions from the O-N cycle. The "unmixed" stars reflect the abundances in the early Galaxy: the [C/Fe] ratio is constant (about + 0.2 dex) and the [C/Mg] ratio is close to solar at low metallicity, favouring a high C production by massive zero-metal supernovae. The [N/Fe] and [N/Mg] ratios scatter widely. Their mean values in each metallicity bin decrease with increasing metallicity, but this trend could be a statistical effect. The larger values of these ratios define a flat upper plateau ([N/Mg] = 0.0, [N/Fe] = + 0.1), which could reflect higher values within a wide range of yields of zero-metal SNe II. Alternatively, by analogy with the DLAs, the lower abundances ([N/Mg] = -1.1, [N/Fe] = -0.7) could reflect generally low yields from the first SNe II, the other stars being N enhanced by winds of massive Asymptotic Giant Branch (AGB) stars. Since all the stars show clear [alpha/Fe] enhancements, they were formed before any significant enrichment of the Galactic gas by SNe Ia, and their composition should reflect the yields of the first SNe II. However, if massive AGB stars or AGB supernovae evolved more rapidly than SNe Ia and contaminated the ISM, our stars would also reflect the yields of these AGB stars. At present it cannot be decided whether primary N is produced primarily in SNe II or in massive AGB stars, or in both. The stellar N abundances and [N/O] ratios are compatible with those found in Damped Lyman-alpha (DLA) systems. They extend the well-known DLA "plateau" at [N/O] approximate to -0.8 to lower metallicities, albeit with more scatter; no star is found below the putative "low [N/alpha] plateau" at [N/O] approximate to -1.55 in DLAs.
  •  
13.
  •  
14.
  • Christlieb, Norbert, et al. (författare)
  • New Searches for R-Process Enhanced Stars
  • 2001
  • Ingår i: Proceedings of "Astrophysical Ages and Times Scales", ASP Conference Series. - : Astronomical Society of the Pacific, San Francisco, U.S.A.. - 1583810838 ; , s. 298-300
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • We discuss strategies for the detection of additional examples of highly r-process-enhanced, ultra-metal-poor stars, such as the two presently known examples of the class, CS~22892-052, and the newly discovered CS~31082-001. We expect that a quick, modera
  •  
15.
  • Feltzing, Sofia, et al. (författare)
  • Stellar abundances and ages for metal-rich Milky Way globular clusters. Stellar parameters and elemental abundances for 9 HB stars in NGC 6352
  • 2009
  • Ingår i: Astronomy & Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 493:3, s. 913-930
  • Forskningsöversikt (refereegranskat)abstract
    • Context. Metal-rich globular clusters provide important tracers of the formation of our Galaxy. Moreover, and not less important, they are very important calibrators for the derivation of properties of extra-galactic metal-rich stellar populations. Nonetheless, only a few of the metal-rich globular clusters in the Milky Way have been studied using high-resolution stellar spectra to derive elemental abundances. Additionally, Rosenberg et al. identified a small group of metal-rich globular clusters that appeared to be about 2 billion years younger than the bulk of the Milky Way globular clusters. However, it is unclear if like is compared with like in this dataset as we do not know the enhancement of alpha-elements in the clusters and the amount of alpha-elements is well known to influence the derivation of ages for globular clusters. Aims. We derive elemental abundances for the metal-rich globular cluster NGC 6352 and we present our methods to be used in up-coming studies of other metal-rich globular clusters. Methods. We present a study of elemental abundances for a-and iron-peak elements for nine HB stars in the metal-rich globular cluster NGC 6352. The elemental abundances are based on high-resolution, high signal-to-noise spectra obtained with the UVES spectrograph on VLT. The elemental abundances have been derived using standard LTE calculations and stellar parameters have been derived from the spectra themselves by requiring ionizational as well as excitational equilibrium. Results. We find that NGC 6352 has [Fe/H] = -0.55, is enhanced in the alpha-elements to about +0.2 dex for Ca, Si, and Ti relative to Fe. For the iron-peak elements we find solar values. Based on the spectroscopically derived stellar parameters we find that an E(B - V) = 0.24 and (m - M) similar or equal to 14.05 better fits the data than the nominal values. An investigation of log g f-values for suitable Fe I lines lead us to the conclusion that the commonly used correction to the May et al. (1974) data should not be employed.
  •  
16.
  • Feltzing, Sofia, et al. (författare)
  • Stellar Abundances in Giant Stars in the Metal-Rich Globular Cluster NGC 6528
  • 2003
  • Ingår i: New Horizons in Globular Cluster Astronomy (ASP Conference Proceedings ; 296). - 1583811435 ; 296, s. 377-378
  • Konferensbidrag (refereegranskat)abstract
    • We present the first results of a detailed abundance analysis, based on VLT observations, of giant stars in the very metal-rich globular cluster NGC 6528. We will be able to tie the horizontal branch abundances (see e.g. Carretta et al. 2001) to those of the more luminous giants (see CMDs). For the very similar cluster NGC 6553 studies of different types of stars have yielded very disparate results. Our first analysis of three of our stars seem to indicate that indeed the different sorts of stars do show similar abundances if one homogeneous set of models and parameters are being used.
  •  
17.
  •  
18.
  • Hansen, C. J., et al. (författare)
  • Silver and palladium help unveil the nature of a second r-process
  • 2012
  • Ingår i: Astronomy & Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 545
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The rapid neutron-capture process, which created about half of the heaviest elements in the solar system, is believed to have been unique. Many recent studies have shown that this uniqueness is not true for the formation of lighter elements, in particular those in the atomic number range 38 < Z < 48. Among these, palladium (Pd) and especially silver (Ag) are expected to be key indicators of a possible second r-process, but until recently they have been studied only in a few stars. We therefore target Pd and Ag in a large sample of stars and compare these abundances to those of Sr, Y, Zr, Ba, and Eu produced by the slow (s-) and rapid (r-) neutron-capture processes. Hereby we investigate the nature of the formation process of Ag and Pd. Aims. We study the abundances of seven elements (Sr, Y, Zr, Pd, Ag, Ba, and Eu) to gain insight into the formation process of the elements and explore in depth the nature of the second r-process. Methods. By adopting a homogeneous one-dimensional local thermodynamic equilibrium (1D LTE) analysis of 71 stars, we derive stellar abundances using the spectral synthesis code MOOG, and the MARCS model atmospheres. We calculate abundance ratio trends and compare the derived abundances to site-dependent yield predictions (low-mass O-Ne-Mg core-collapse supernovae and parametrised high-entropy winds), to extract characteristics of the second r-process. Results. The seven elements are tracers of different (neutron-capture) processes, which in turn allows us to constrain the formation process(es) of Pd and Ag. The abundance ratios of the heavy elements are found to be correlated and anti-correlated. These trends lead to clear indications that a second/weak r-process, is responsible for the formation of Pd and Ag. On the basis of the comparison to the model predictions, we find that the conditions under which this process takes place differ from those for the main r-process in needing lower neutron number densities, lower neutron-to-seed ratios, and lower entropies, and/or higher electron abundances. Conclusions. Our analysis confirms that Pd and Ag form via a rapid neutron-capture process that differs from the main r-process, the main and weak s- processes, and charged particle freeze-outs. We find that this process is efficiently working down to the lowest metallicity sampled by our analysis ([Fe/H] = -3.3). Our results may indicate that a combination of these explosive sites is needed to explain the variety in the observationally derived abundance patterns.
  •  
19.
  • Liu, C., et al. (författare)
  • Determination of robust metallicities for metal-rich red giant branch stars : An application to the globular cluster NGC 6528
  • 2017
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 601
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The study of the Milky Way relies on our ability to interpret the light from stars correctly. With the advent of the astrometric ESA mission Gaia we will enter a new era where the study of the Milky Way can be undertaken on much larger scales than currently possible. In particular we will be able to obtain full 3D space motions of red giant stars at large distances. This calls for a reinvestigation of how reliably we can determine, for example, iron abundances in such stars and how well they reproduce those of dwarf stars. Aims. Here we explore robust ways of determining the iron content of metal-rich giant stars. We aim to understand what biases and shortcomings the widely applied methods suffer from. Methods. In this study we were mainly concerned with standard methods of analysing stellar spectra. These include the analysis of individual lines to determine stellar parameters, and analysis of the broad wings of certain lines (e.g. Hα and calcium lines) to determine effective temperature and surface gravity for the stars. Results. For NGC 6528 we find that [Fe/H] = + 0.04 dex with a scatter of σ = 0.07 dex, which gives an error in the derived mean abundance of 0.02 dex. Conclusions. Our work has two important conclusions for analysis of metal-rich red giant branch stars. Firstly, for spectra with S/N of below about 35 per reduced pixel, [Fe/H] becomes too high. Secondly, determination of Teff using the wings of the Hα line results in [Fe/H] values about 0.1 dex higher than if excitational equilibrium is used. The last conclusion is perhaps unsurprising, as we expect the NLTE effect to become more prominent in cooler stars and we can not use the wings of the Hα line to determine Teff for the cool stars in our sample. We therefore recommend that in studies of metal-rich red giant stars care should be taken to obtain sufficient calibration data to enable use of the cooler stars.
  •  
20.
  • Masseron, T., et al. (författare)
  • A holistic approach to carbon-enhanced metal-poor stars
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 509, s. A93-
  • Forskningsöversikt (refereegranskat)abstract
    • Context. Carbon-enhanced metal-poor (CEMP) stars are known to have properties that reflect the nucleosynthesis of the first low- and intermediate-mass stars, because most have been polluted by a now-extinct AGB star. Aims. By considering abundances in the various CEMP subclasses separately, we try to derive parameters (such as metallicity, mass, temperature, and neutron source) characterising AGB nucleosynthesis from the specific signatures imprinted on the abundances, and separate them from the impact of thermohaline mixing, first dredge-up, and dilution associated with the mass transfer from the companion. Methods. To place CEMP stars in a broader context, we collect abundances for about 180 stars of various metallicities (from solar to [Fe/H] = -4), luminosity classes (dwarfs and giants), and abundance patterns (e. g. C-rich and poor, Ba-rich and poor), from both our own sample and the literature. Results. We first show that there are CEMP stars that share the properties of CEMP-s stars and CEMP-no stars (which we refer to as CEMP-low-s stars). We also show that there is a strong correlation between Ba and C abundances in the s-only CEMP stars. This represents a strong detection of the operation of the C-13 neutron source in low-mass AGB stars. For the CEMP-rs stars (seemingly enriched with elements from both the s-and r-processes), the correlation of the N abundances with abundances of heavy elements from the 2nd and 3rd s-process peaks bears instead the signature of the Ne-22 neutron source. Since CEMP-rs stars also exhibit O and Mg enhancements, we conclude that extremely hot conditions prevailed during the thermal pulses of the contaminating AGB stars. We also note that abundances are not affected by the evolution of the CEMP-rs star itself (especially by the first dredge-up). This implies that mixing must have occurred while the star was on the main sequence, and that a large amount of matter must have been accreted so as to trigger thermohaline mixing. Finally, we argue that most CEMP-no stars (with neutron-capture element abundances comparable to non-CEMP stars) are likely the extremely metal-poor counterparts of CEMP neutron-capture-rich stars. We also show that the C enhancement in CEMP-no stars declines with metallicity at extremely low metallicity ([Fe/H] < -3.2). This trend is not predicted by any of the current AGB models.
  •  
21.
  •  
22.
  • Plez, B., et al. (författare)
  • Lead abundance in the uranium star CS 31082-001
  • 2004
  • Ingår i: Astronomy & Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 428:1, s. 9-12
  • Tidskriftsartikel (refereegranskat)abstract
    • In a previous paper we were able to measure the abundance of uranium andthorium in the very-metal poor halo giant BPS CS31082-001, but only obtained an upper limit for the abundanceof lead (Pb). We have got from ESO 17 h of additional exposure on thisstar in order to secure a detection of the minimum amount of leadexpected to be present in CS 31082-001, the amountarising from the decay of the original content of Th and U in the star.We report here this successful detection. We find an LTE abundancelog(Pb/H)+12=-0.55 ± 0.15 dex, one dex below the upper limitsgiven by other authors for the similar stars CS22892-052 and BD +17°3248, alsoenhanced in r-process elements. From the observed present abundances ofTh and U in the star, the expected amount of Pb produced by the decay of232Th, and 238U alone, over 12-15 Gyr is-0.73± 0.17 dex. The decay of 235U is more difficultto estimate, but is probably slightly below the contribution of238U, making the contribution of the 3 actinides onlyslightly below, or even equal to, the measured abundance. Thecontribution from the decay of 234U has was not included, forlack of published data. In this sense our determination is a lower limitto the contribution of actinides to lead production. We comment thisresult, and we note that if a NLTE analysis, not yet possible, doublesour observed abundance, the decay of the 3 actinides will stillrepresent 50 per cent of the total lead, a proportion higher than thevalues considered so far in the literature.Based on observations obtained with the Very Large Telescope of theEuropean Southern Observatory at Paranal, Chile.
  •  
23.
  •  
24.
  • Primas, F., et al. (författare)
  • Shaping ESO2020+ Together: Feedback from the Community Poll
  • 2015
  • Ingår i: The Messenger. - 0722-6691. ; 161, s. 6-14
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • A thorough evaluation and prioritisation of the ESO science programme into the 2020+ timeframe took place under the auspices of a working group, comprising astronomers drawn from ESO’s advisory structure and from within ESO. This group reported to ESO’s Scientific Technical Committee, and to ESO Council, concluding the exercise with the publication of a report, “Science Priorities at ESO”. A community poll and a dedicated workshop, held in January 2015, formed part of the information gathering process. The community poll was designed to probe the demographics of the user community, its scientific interests, use of observing facilities and plans for use of future telescopes and instruments, its views on types of observing programmes and on the provision of data processing and archiving. A total of 1775 full responses to the poll were received and an analysis of the results is presented here. Foremost is the importance of regular observing programmes on all ESO observing facilities, in addition to Large Programmes and Public Surveys. There was also a strong community requirement for ESO to process and archive data obtained at ESO facilities. Other aspects, especially those related to future facilities, are more challenging to interpret because of biases related to the distribution of science expertise and favoured wavelength regime amongst the targeted audience. The results of the poll formed a fundamental component of the report and pro-vide useful data to guide the evolution of ESO’s science programme.
  •  
25.
  • Primas, F, et al. (författare)
  • The beryllium abundance in the very metal-poor halo star G 64-12 from VLT/UVES observations
  • 2000
  • Ingår i: ASTRONOMY AND ASTROPHYSICS. - : SPRINGER-VERLAG. - 0004-6361. ; 364:1, s. L42-L46
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on a new spectroscopic analysis of the very metal deficient star G 64-12 ([Fe/H] = -3.3), aimed at determining, for the first time, its beryllium content. The spectra were observed during the Science Verification of UVES, the ESO VLT Ultraviolet
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 26

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy