SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Prytherch John) "

Sökning: WFRF:(Prytherch John)

  • Resultat 1-19 av 19
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Blomquist, B. W., et al. (författare)
  • Wind Speed and Sea State Dependencies of Air-Sea Gas Transfer : Results From the High Wind Speed Gas Exchange Study (HiWinGS)
  • 2017
  • Ingår i: Journal of Geophysical Research - Oceans. - 2169-9275 .- 2169-9291. ; 122:10, s. 8034-8062
  • Tidskriftsartikel (refereegranskat)abstract
    • A variety of physical mechanisms are jointly responsible for facilitating air-sea gas transfer through turbulent processes at the atmosphere-ocean interface. The nature and relative importance of these mechanisms evolves with increasing wind speed. Theoretical and modeling approaches are advancing, but the limited quantity of observational data at high wind speeds hinders the assessment of these efforts. The HiWinGS project successfully measured gas transfer coefficients (k(660)) with coincident wave statistics under conditions with hourly mean wind speeds up to 24 m s(-1) and significant wave heights to 8 m. Measurements of k(660) for carbon dioxide (CO2) and dimethylsulfide (DMS) show an increasing trend with respect to 10 m neutral wind speed (U-10N), following a power law relationship of the form: k660CO2 approximate to U10N1.68 and k660dms approximate to U10N1.33. Among seven high wind speed events, CO2 transfer responded to the intensity of wave breaking, which depended on both wind speed and sea state in a complex manner, with k660CO2 increasing as the wind sea approaches full development. A similar response is not observed for DMS. These results confirm the importance of breaking waves and bubble injection mechanisms in facilitating CO2 transfer. A modified version of the Coupled Ocean-Atmosphere Response Experiment Gas transfer algorithm (COAREG ver. 3.5), incorporating a sea state-dependent calculation of bubble-mediated transfer, successfully reproduces the mean trend in observed k(660) with wind speed for both gases. Significant suppression of gas transfer by large waves was not observed during HiWinGS, in contrast to results from two prior field programs.
  •  
3.
  • Cummins, Donald P., et al. (författare)
  • Reducing Parametrization Errors for Polar Surface Turbulent Fluxes Using Machine Learning
  • 2024
  • Ingår i: Boundary-layer Meteorology. - : Springer. - 0006-8314 .- 1573-1472. ; 190:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Turbulent exchanges between sea ice and the atmosphere are known to influence the melting rate of sea ice, the development of atmospheric circulation anomalies and, potentially, teleconnections between polar and non-polar regions. Large model errors remain in the parametrization of turbulent heat fluxes over sea ice in climate models, resulting in significant uncertainties in projections of future climate. Fluxes are typically calculated using bulk formulae, based on Monin-Obukhov similarity theory, which have shown particular limitations in polar regions. Parametrizations developed specifically for polar conditions (e.g. representing form drag from ridges or melt ponds on sea ice) rely on sparse observations and thus may not be universally applicable. In this study, new data-driven parametrizations have been developed for surface turbulent fluxes of momentum, sensible heat and latent heat in the Arctic. Machine learning has already been used outside the polar regions to provide accurate and computationally inexpensive estimates of surface turbulent fluxes. To investigate the feasibility of this approach in the Arctic, we have fitted neural-network models to a reference dataset (SHEBA). Predictive performance has been tested using data from other observational campaigns. For momentum and sensible heat, performance of the neural networks is found to be comparable to, and in some cases substantially better than, that of a state-of-the-art bulk formulation. These results offer an efficient alternative to the traditional bulk approach in cases where the latter fails, and can serve to inform further physically based developments.
  •  
4.
  • Elvidge, A. D., et al. (författare)
  • Surface Heat and Moisture Exchange in the Marginal Ice Zone : Observations and a New Parameterization Scheme for Weather and Climate Models
  • 2021
  • Ingår i: Journal of Geophysical Research - Atmospheres. - 2169-897X .- 2169-8996. ; 126:17
  • Tidskriftsartikel (refereegranskat)abstract
    • Aircraft observations from two Arctic field campaigns are used to characterize and model surface heat and moisture exchange over the marginal ice zone (MIZ). We show that the surface roughness lengths for heat and moisture over uninterrupted sea ice vary with roughness Reynolds number (R*; itself a function of the roughness length for momentum, z0, and surface wind stress), with a peak at the transition between aerodynamically smooth (R*<0.135) and aerodynamically rough (R*>2.5) regimes. A pre-existing theoretical model based on surface-renewal theory accurately reproduces this peak, in contrast to the simple parameterizations currently employed in two state-of-the-art numerical weather prediction models, which are insensitive to R*. We propose a new, simple parameterization for surface exchange over the MIZ that blends this theoretical model for sea ice with surface exchange over water as a function of sea ice concentration. In offline tests, this new scheme performs much better than the existing schemes for the rough conditions observed during the 'Iceland Greenland Seas Project' field campaign. The bias in total turbulent heat flux across the MIZ is reduced to only 13 W m(-2) for the new scheme, from 48 and 80 W m(-2) for the Met Office Unified Model and ECMWF Integrated Forecast System schemes, respectively. It also performs marginally better for the comparatively smooth conditions observed during the 'Aerosol-Cloud Coupling and Climate Interactions in the Arctic' field campaign. The new surface exchange scheme has the benefit of being physically-motivated, comparatively accurate and straightforward to implement, although to reap the full benefits an improvement to the representation of sea ice topography via z0 is required.
  •  
5.
  • Gutiérrez-Loza, Lucía (författare)
  • Mechanisms controlling air-sea gas exchange in the Baltic Sea
  • 2020
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Carbon plays a major role in physical and biogeochemical processes in the atmosphere, the biosphere, and the ocean. CO2 and CH4 are two of the most common carbon-containing compounds in the atmosphere, also recognized as major greenhouse gases. The exchange of CO2 and CH4 between the ocean and the atmosphere is an essential part of the global carbon cycle. The exchange is controlled by the air–sea concentration gradient and by the efficiency of the transfer processes. The lack of knowledge about the forcing mechanisms affecting the exchange of these climate-relevant gases is a major source of uncertainty in the estimation of the global oceanic contributions. Quantifying and understanding the air–sea exchange processes is essential to constrain the estimates and to improve our knowledge about the current and future climate. In this thesis, the mechanisms controlling the air–sea gas exchange in the Baltic Sea are investigated.The viability of micrometeorological techniques for CH4 monitoring in a coastal environment is evaluated. One year of semi-continuous measurements of air–sea CH4 fluxes using eddy covariance measurements suggests that the method is useful for CH4 flux estimations in marine environments. The measurements allow long-term monitoring at high frequency rates, thus, capturing the temporal variability of the flux. The region off Gotland is a net source of CH4, with both the air–sea concentration gradient and the wind as controlling mechanisms.A sensitivity analysis of the gas transfer velocity is performed to evaluate the effect of the forcing mechanisms controlling the air–sea CO2 exchange in the Baltic Sea. This analysis shows that the spatio-temporal variability of CO2 fluxes is strongly modulated by water-side convection, precipitation, and surfactants. The effect of these factors is relevant both at regional and global scales, as they are not included in the current budget estimates.
  •  
6.
  • McCusker, Gillian Young, et al. (författare)
  • Evaluating Arctic clouds modelled with the Unified Model and Integrated Forecasting System
  • 2023
  • Ingår i: Atmospheric Chemistry And Physics. - 1680-7316 .- 1680-7324. ; 23:8, s. 4819-4847
  • Tidskriftsartikel (refereegranskat)abstract
    • By synthesising remote-sensing measurements made in the central Arctic into a model-gridded Cloudnet cloud product, we evaluate how well the Met Office Unified Model (UM) and the European Centre for Medium-Range Weather Forecasting (ECMWF) Integrated Forecasting System (IFS) capture Arctic clouds and their associated interactions with the surface energy balance and the thermodynamic structure of the lower troposphere. This evaluation was conducted using a 4-week observation period from the Arctic Ocean 2018 expedition, where the transition from sea ice melting to freezing conditions was measured. Three different cloud schemes were tested within a nested limited-area model (LAM) configuration of the UM – two regionally operational single-moment schemes (UM_RA2M and UM_RA2T) and one novel double-moment scheme (UM_CASIM-100) – while one global simulation was conducted with the IFS, utilising its default cloud scheme (ECMWF_IFS).Consistent weaknesses were identified across both models, with both the UM and IFS overestimating cloud occurrence below 3 km. This overestimation was also consistent across the three cloud configurations used within the UM framework, with >90 % mean cloud occurrence simulated between 0.15 and 1 km in all the model simulations. However, the cloud microphysical structure, on average, was modelled reasonably well in each simulation, with the cloud liquid water content (LWC) and ice water content (IWC) comparing well with observations over much of the vertical profile. The key microphysical discrepancy between the models and observations was in the LWC between 1 and 3 km, where most simulations (all except UM_RA2T) overestimated the observed LWC.Despite this reasonable performance in cloud physical structure, both models failed to adequately capture cloud-free episodes: this consistency in cloud cover likely contributes to the ever-present near-surface temperature bias in every simulation. Both models also consistently exhibited temperature and moisture biases below 3 km, with particularly strong cold biases coinciding with the overabundant modelled cloud layers. These biases are likely due to too much cloud-top radiative cooling from these persistent modelled cloud layers and were consistent across the three UM configurations tested, despite differences in their parameterisations of cloud on a sub-grid scale. Alarmingly, our findings suggest that these biases in the regional model were inherited from the global model, driving a cause–effect relationship between the excessive low-altitude cloudiness and the coincident cold bias. Using representative cloud condensation nuclei concentrations in our double-moment UM configuration while improving cloud microphysical structure does little to alleviate these biases; therefore, no matter how comprehensive we make the cloud physics in the nested LAM configuration used here, its cloud and thermodynamic structure will continue to be overwhelmingly biased by the meteorological conditions of its driving model.
  •  
7.
  • Prytherch, John, et al. (författare)
  • Air-sea CO2 and CH4 gas transfer velocity in Arctic sea-ice regions from eddy covariance flux measurements onboard Icebreaker Oden
  • 2017
  • Ingår i: Geophysical Research Abstracts. - 1029-7006 .- 1607-7962. ; 19
  • Tidskriftsartikel (refereegranskat)abstract
    • The Arctic Ocean is an important sink for atmospheric CO2, and there is ongoing debate on whether seafloor seeps in the Arctic are a large source of CH4 to the atmosphere. The impact of warming waters, decreasing sea-ice extent and expanding marginal ice zones on Arctic air-sea gas exchange depends on the rate of gas transfer in the presence of sea ice. Sea ice acts as a near-impermeable lid to air-sea gas exchange, but is also hypothesised to enhance gas transfer rates through physical processes such as increased surface-ocean turbulence from ice-water shear and ice-edge form drag. The dependence of the gas transfer rate on sea-ice concentration remains uncertain due to a lack of in situ measurements. Here we present the first direct estimates of gas transfer rate in a wide range of Arctic sea-ice conditions. The estimates were derived from eddy covariance CO2 and CH4 fluxes, measured from the Swedish Icebreaker Oden during two expeditions: the 3-month duration Arctic Clouds in Summer Experiment (ACSE) in 2014, a component of the Swedish-Russian-US Arctic Ocean Investigation on Climate-Cryosphere-Carbon Interactions (SWERUS-C3) in the eastern Arctic Ocean shelf region; and the Arctic Ocean 2016 expedition to the high latitude Arctic Ocean. Initial CO2 results from ACSE showed that the gas transfer rate has a near-linear dependence on sea-ice concentration, and that some previous indirect measurements and modelling estimates overestimate gas transfer rates in sea-ice regions. This supports a linear sea-ice scaling approach for assessments of polar ocean carbon fluxes. Air-sea gas transfer model assumptions (e.g. Schmidt number dependence) will be examined using simultaneous CO2 and CH4 measurements, and observations in different ice conditions (e.g. summer melt, autumn freeze up, central Arctic and marginal ice zones) will be compared.
  •  
8.
  • Prytherch, John, 1980-, et al. (författare)
  • Central Arctic Ocean surface-atmosphere exchange of CO2 and CH4 constrained by direct measurements
  • 2024
  • Ingår i: Biogeosciences. - : Copernicus Publications. - 1726-4170 .- 1726-4189. ; 21:2, s. 671-688
  • Tidskriftsartikel (refereegranskat)abstract
    • The central Arctic Ocean (CAO) plays an important role in the global carbon cycle, but the current and future exchange of the climate-forcing trace gases methane (CH4) and carbon dioxide (CO2) between the CAO and the atmosphere is highly uncertain. In particular, there are very few observations of near-surface gas concentrations or direct air-sea CO2 flux estimates and no previously reported direct air-sea CH4 flux estimates from the CAO. Furthermore, the effect of sea ice on the exchange is not well understood. We present direct measurements of the air-sea flux of CH4 and CO2, as well as air-snow fluxes of CO2 in the summertime CAO north of 82.5 N from the Synoptic Arctic Survey (SAS) expedition carried out on the Swedish icebreaker Oden in 2021. Measurements of air-sea CH4 and CO2 flux were made using floating chambers deployed in leads accessed from sea ice and from the side of Oden, and air-snow fluxes were determined from chambers deployed on sea ice. Gas transfer velocities determined from fluxes and surface-water-dissolved gas concentrations exhibited a weaker wind speed dependence than existing parameterisations, with a median sea-ice lead gas transfer rate of 2.5cmh-1 applicable over the observed 10m wind speed range (1-11ms-1). The average observed air-sea CO2 flux was -7.6mmolm-2d-1, and the average air-snow CO2 flux was -1.1mmolm-2d-1. Extrapolating these fluxes and the corresponding sea-ice concentrations gives an August and September flux for the CAO of -1.75mmolm-2d-1, within the range of previous indirect estimates. The average observed air-sea CH4 flux of 3.5μmolm-2d-1, accounting for sea-ice concentration, equates to an August and September CAO flux of 0.35μmolm-2d-1, lower than previous estimates and implying that the CAO is a very small (‰ 1%) contributor to the Arctic flux of CH4 to the atmosphere.
  •  
9.
  • Prytherch, John, et al. (författare)
  • Direct determination of the air-sea CO2 gas transfer velocity in Arctic sea ice regions
  • 2017
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 44:8, s. 3770-3778
  • Tidskriftsartikel (refereegranskat)abstract
    • The Arctic Ocean is an important sink for atmospheric CO2. The impact of decreasing sea ice extent and expanding marginal ice zones on Arctic air-sea CO2 exchange depends on the rate of gas transfer in the presence of sea ice. Sea ice acts to limit air-sea gas exchange by reducing contact between air and water but is also hypothesized to enhance gas transfer rates across surrounding open-water surfaces through physical processes such as increased surface-ocean turbulence from ice-water shear and ice-edge form drag. Here we present the first direct determination of the CO2 air-sea gas transfer velocity in a wide range of Arctic sea ice conditions. We show that the gas transfer velocity increases near linearly with decreasing sea ice concentration. We also show that previous modeling approaches overestimate gas transfer rates in sea ice regions.
  •  
10.
  • Prytherch, John, et al. (författare)
  • Wind, Convection and Fetch Dependence of Gas Transfer Velocity in an Arctic Sea‐Ice Lead Determined From Eddy Covariance CO2 Flux Measurements
  • 2021
  • Ingår i: Global Biogeochemical Cycles. - 0886-6236 .- 1944-9224. ; 35:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The air‐water exchange of trace gases such as CO2 is usually parameterized in terms of a gas transfer velocity, which can be derived from direct measurements of the air‐sea gas flux. The transfer velocity of poorly soluble gases is driven by near‐surface ocean turbulence, which may be enhanced or suppressed by the presence of sea ice. A lack of measurements means that air‐sea fluxes in polar regions, where the oceanic sink of CO2 is poorly known, are generally estimated using open‐ocean transfer velocities scaled by ice fraction. Here, we describe direct determinations of CO2 gas transfer velocity from eddy covariance flux measurements from a mast fixed to ice adjacent to a sea‐ice lead during the summer‐autumn transition in the central Arctic Ocean. Lead water CO2 uptake is determined using flux footprint analysis of water‐atmosphere and ice‐atmosphere flux measurements made under conditions (low humidity and high CO2 signal) that minimize errors due to humidity cross‐talk. The mean gas transfer velocity is found to have a quadratic dependence on wind speed: k660 = 0.179 U102, which is 30% lower than commonly used open‐ocean parameterizations. As such, current estimates of polar ocean carbon uptake likely overestimate gas exchange rates in typical summertime conditions of weak convective turbulence. Depending on the footprint model chosen, the gas transfer velocities also exhibit a dependence on the dimension of the lead, via its impact on fetch length and hence sea state. Scaling transfer velocity parameterizations for regional gas exchange estimates may therefore require incorporating lead width data.
  •  
11.
  • Roth, Florian, et al. (författare)
  • High spatiotemporal variability of methane concentrations challenges estimates of emissions across vegetated coastal ecosystems.
  • 2022
  • Ingår i: Global change biology. - : Wiley. - 1365-2486 .- 1354-1013. ; 28:14, s. 4308-4322
  • Tidskriftsartikel (refereegranskat)abstract
    • Coastal methane (CH4 ) emissions dominate the global ocean CH4 budget and can offset the "blue carbon" storage capacity of vegetated coastal ecosystems. However, current estimates lack systematic, high-resolution, and long-term data from these intrinsically heterogeneous environments, making coastal budgets sensitive to statistical assumptions and uncertainties. Using continuous CH4 concentrations, δ13 C-CH4 values, and CH4 sea-air fluxes across four seasons in three globally pervasive coastal habitats, we show that the CH4 distribution is spatially patchy over meter-scales and highly variable in time. Areas with mixed vegetation, macroalgae, and their surrounding sediments exhibited a spatiotemporal variability of surface water CH4 concentrations ranging two orders of magnitude (i.e., 6-460nM CH4 ) with habitat-specific seasonal and diurnal patterns. We observed (1) δ13 C-CH4 signatures that revealed habitat-specific CH4 production and consumption pathways, (2) daily peak concentration events that could change >100% within hours across all habitats, and (3) a high thermal sensitivity of the CH4 distribution signified by apparent activation energies of ~1eV that drove seasonal changes. Bootstrapping simulations show that scaling the CH4 distribution from few samples involves large errors, and that ~50 concentration samples per day are needed to resolve the scale and drivers of the natural variability and improve the certainty of flux calculations by up to 70%. Finally, we identify northern temperate coastal habitats with mixed vegetation and macroalgae as understudied but seasonally relevant atmospheric CH4 sources (i.e., releasing≥100μmol CH4 m-2 day-1 in summer). Due to the large spatial and temporal heterogeneity of coastal environments, high-resolution measurements will improve the reliability of CH4 estimates and confine the habitat-specific contribution to regional and global CH4 budgets.
  •  
12.
  • Roth, Florian, et al. (författare)
  • Methane emissions offset atmospheric carbon dioxide uptake in coastal macroalgae, mixed vegetation and sediment ecosystems
  • 2023
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 14
  • Tidskriftsartikel (refereegranskat)abstract
    • Coastal ecosystems can efficiently remove carbon dioxide (CO2) from the atmosphere and are thus promoted for nature-based climate change mitigation. Natural methane (CH4) emissions from these ecosystems may counterbalance atmospheric CO2 uptake. Still, knowledge of mechanisms sustaining suchCH4 emissions and their contribution to net radiative forcing remains scarce for globally prevalent macroalgae, mixed vegetation, and surrounding depositional sediment habitats. Here we show that these habitats emit CH4 in the range of 0.1 – 2.9 mg CH4 m−2 d−1 to the atmosphere, revealing in situ CH4 emissions from macroalgae that weresustained by divergent methanogenic archaea in anoxic microsites. Over an annual cycle, CO2-equivalent CH4 emissions offset 28 and 35% of the carbon sink capacity attributed to atmospheric CO2 uptake in the macroalgae and mixed vegetation habitats, respectively, and augment net CO2 release of unvegetated sediments by 57%. Accounting for CH4 alongside CO2 sea-air fluxes and identifying the mechanisms controlling these emissions is crucial to constrain the potential of coastal ecosystems as net atmospheric carbon sinks and develop informed climate mitigation strategies.
  •  
13.
  • Sotiropoulou, Georgia, et al. (författare)
  • Atmospheric conditions during the Arctic Clouds in Summer Experiment (ACSE) : Contrasting open-water and sea-ice surfaces during melt and freeze-up seasons
  • 2016
  • Ingår i: Journal of Climate. - 0894-8755 .- 1520-0442. ; 29:24, s. 8721-8744
  • Tidskriftsartikel (refereegranskat)abstract
    • The Arctic Clouds in Summer Experiment (ACSE) was conducted during summer and early autumn 2014, providing a detailed view of the seasonal transition from ice melt into freeze-up. Measurements were taken over both ice-free and ice-covered surfaces, near the ice edge, offering insight to the role of the surface state in shaping the atmospheric conditions. The initiation of the autumn freeze-up was related to a change in air mass, rather than to changes in solar radiation alone; the lower atmosphere cooled abruptly leading to a surface heat loss. During melt season, strong surface inversions persisted over the ice, while elevated inversions were more frequent over open water. These differences disappeared during autumn freeze-up, when elevated inversions persisted over both ice-free and ice-covered conditions. These results are in contrast to previous studies that found a well-mixed boundary layer persisting in summer and an increased frequency of surface-based inversions in autumn, suggesting that our knowledge derived from measurements taken within the pan-Arctic area and on the central ice-pack does not necessarily apply closer to the ice-edge. This study offers an insight to the atmospheric processes that occur during a crucial period of the year; understanding and accurately modeling these processes is essential for the improvement of ice-extent predictions and future Arctic climate projections.
  •  
14.
  • Srivastava, Piyush, et al. (författare)
  • Ship-based estimates of momentum transfer coefficient over sea ice and recommendations for its parameterization
  • 2022
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 22:7, s. 4763-4778
  • Tidskriftsartikel (refereegranskat)abstract
    • A major source of uncertainty in both climate projections and seasonal forecasting of sea ice is inadequate representation of surface–atmosphere exchange processes. The observations needed to improve understanding and reduce uncertainty in surface exchange parameterizations are challenging to make and rare. Here we present a large dataset of ship-based measurements of surface momentum exchange (surface drag) in the vicinity of sea ice from the Arctic Clouds in Summer Experiment (ACSE) in July–October 2014, and the Arctic Ocean 2016 experiment (AO2016) in August–September 2016. The combined dataset provides an extensive record of momentum flux over a wide range of surface conditions spanning the late summer melt and early autumn freeze-up periods, and a wide range of atmospheric stabilities. Surface exchange coefficients are estimated from in situ eddy covariance measurements. The local sea-ice fraction is determined via automated processing of imagery from ship-mounted cameras. The surface drag coefficient, CD10n, peaks at local ice fractions of 0.6–0.8, consistent with both recent aircraft-based observations and theory. Two state-of-the-art parameterizations have been tuned to our observations, with both providing excellent fits to the measurements.
  •  
15.
  • Thornton, Brett F., et al. (författare)
  • Shipborne eddy covariance observations of methane fluxes constrain Arctic sea emissions
  • 2020
  • Ingår i: Science Advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 6:5
  • Tidskriftsartikel (refereegranskat)abstract
    • We demonstrate direct eddy covariance (EC) observations of methane (CH4) fluxes between the sea and atmosphere from an icebreaker in the eastern Arctic Ocean. EC-derived CH4 emissions averaged 4.58, 1.74, and 0.14 mg m(-2) day(-1) in the Laptev, East Siberian, and Chukchi seas, respectively, corresponding to annual sea-wide fluxes of 0.83, 0.62, and 0.03 Tg year(-1) . These EC results answer concerns that previous diffusive emission estimates, which excluded bubbling, may underestimate total emissions. We assert that bubbling dominates sea-air CH4 fluxes in only small constrained areas: A similar to 100-m(2) area of the East Siberian Sea showed sea-air CH4 fluxes exceeding 600 mg m(-2) day(-1); in a similarly sized area of the Laptev Sea, peak CH4 fluxes were similar to 170 mg m(-2) day(-1). Calculating additional emissions below the noise level of our EC system suggests total ESAS CH4 emissions of 3.02 Tg year(-1) closely matching an earlier diffusive emission estimate of 2.9 Tg year(-1).
  •  
16.
  • Tjernström, Michael, et al. (författare)
  • Arctic Summer Airmass Transformation, Surface Inversions, and the Surface Energy Budget
  • 2019
  • Ingår i: Journal of Climate. - 0894-8755 .- 1520-0442. ; 32:3, s. 769-789
  • Tidskriftsartikel (refereegranskat)abstract
    • During the Arctic Clouds in Summer Experiment (ACSE) in summer 2014 a weeklong period of warm-air advection over melting sea ice, with the formation of a strong surface temperature inversion and dense fog, was observed. Based on an analysis of the surface energy budget, we formulated the hypothesis that, because of the airmass transformation, additional surface heating occurs during warm-air intrusions in a zone near the ice edge. To test this hypothesis, we explore all cases with surface inversions occurring during ACSE and then characterize the inversions in detail. We find that they always occur with advection from the south and are associated with subsidence. Analyzing only inversion cases over sea ice, we find two categories: one with increasing moisture in the inversion and one with constant or decreasing moisture with height. During surface inversions with increasing moisture with height, an extra 10-25 W m(-2) of surface heating was observed, compared to cases without surface inversions; the surface turbulent heat flux was the largest single term. Cases with less moisture in the inversion were often cloud free and the extra solar radiation plus the turbulent surface heat flux caused by the inversion was roughly balanced by the loss of net longwave radiation.
  •  
17.
  • Tjernström, Michael, et al. (författare)
  • Warm-air advection, air mass transformation and fog causes rapid ice melt
  • 2015
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 42:13, s. 5594-5602
  • Tidskriftsartikel (refereegranskat)abstract
    • Direct observations during intense warm-air advection over the East Siberian Sea reveal a period of rapid sea-ice melt. A semistationary, high-pressure system north of the Bering Strait forced northward advection of warm, moist air from the continent. Air-mass transformation over melting sea ice formed a strong, surface-based temperature inversion in which dense fog formed. This induced a positive net longwave radiation at the surface while reducing net solar radiation only marginally; the inversion also resulted in downward turbulent heat flux. The sum of these processes enhanced the surface energy flux by an average of similar to 15Wm(-2) for a week. Satellite images before and after the episode show sea-ice concentrations decreasing from > 90% to similar to 50% over a large area affected by the air-mass transformation. We argue that this rapid melt was triggered by the increased heat flux from the atmosphere due to the warm-air advection.
  •  
18.
  • Vüllers, Jutta, et al. (författare)
  • Meteorological and cloud conditions during the Arctic Ocean 2018 expedition
  • 2021
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 21:1, s. 289-314
  • Tidskriftsartikel (refereegranskat)abstract
    • The Arctic Ocean 2018 (AO2018) took place in the central Arctic Ocean in August and September 2018 on the Swedish icebreaker Oden. An extensive suite of instrumentation provided detailed measurements of surface water chemistry and biology, sea ice and ocean physical and biogeochemical properties, surface exchange processes, aerosols, clouds, and the state of the atmosphere. The measurements provide important information on the coupling of the ocean and ice surface to the atmosphere and in particular to clouds. This paper provides (i) an overview of the synoptic-scale atmospheric conditions and their climatological anomaly to help interpret the process studies and put the detailed observations from AO2018 into a larger context, both spatially and temporally; (ii) a statistical analysis of the thermodynamic and near-surface meteorological conditions, boundary layer, cloud, and fog characteristics; and (iii) a comparison of the results to observations from earlier Arctic Ocean expeditions – in particular AOE1996 (Arctic Ocean Expedition 1996), SHEBA (Surface Heat Budget of the Arctic Ocean), AOE2001 (Arctic Ocean Experiment 2001), ASCOS (Arctic Summer Cloud Ocean Study), ACSE (Arctic Clouds in Summer Experiment), and AO2016 (Arctic Ocean 2016) – to provide an assessment of the representativeness of the measurements. The results show that near-surface conditions were broadly comparable to earlier experiments; however the thermodynamic vertical structure was quite different. An unusually high frequency of well-mixed boundary layers up to about 1 km depth occurred, and only a few cases of the “prototypical” Arctic summer single-layer stratocumulus deck were observed. Instead, an unexpectedly high amount of multiple cloud layers and mid-level clouds were present throughout the campaign. These differences from previous studies are related to the high frequency of cyclonic activity in the central Arctic in 2018.
  •  
19.
  • Willis, Megan D., et al. (författare)
  • Polar oceans and sea ice in a changing climate
  • 2023
  • Ingår i: Elementa. - 2325-1026. ; 11:1
  • Forskningsöversikt (refereegranskat)abstract
    • Polar oceans and sea ice cover 15% of the Earth's ocean surface, and the environment is changing rapidly at both poles. Improving knowledge on the interactions between the atmospheric and oceanic realms in the polar regions, a Surface Ocean-Lower Atmosphere Study (SOLAS) project key focus, is essential to understanding the Earth system in the context of climate change. However, our ability to monitor the pace and magnitude of changes in the polar regions and evaluate their impacts for the rest of the globe is limited by both remoteness and sea-ice coverage. Sea ice not only supports biological activity and mediates gas and aerosol exchange but can also hinder some in-situ and remote sensing observations. While satellite remote sensing provides the baseline climate record for sea-ice properties and extent, these techniques cannot provide key variables within and below sea ice. Recent robotics, modeling, and in-situ measurement advances have opened new possibilities for understanding the ocean-sea ice-atmosphere system, but critical knowledge gaps remain. Seasonal and long-term observations are clearly lacking across all variables and phases. Observational and modeling efforts across the sea-ice, ocean, and atmospheric domains must be better linked to achieve a system-level understanding of polar ocean and sea-ice environments. As polar oceans are warming and sea ice is becoming thinner and more ephemeral than before, dramatic changes over a suite of physicochemical and biogeochemical processes are expected, if not already underway. These changes in sea-ice and ocean conditions will affect atmospheric processes by modifying the production of aerosols, aerosol precursors, reactive halogens and oxidants, and the exchange of greenhouse gases. Quantifying which processes will be enhanced or reduced by climate change calls for tailored monitoring programs for high-latitude ocean environments. Open questions in this coupled system will be best resolved by leveraging ongoing international and multidisciplinary programs, such as efforts led by SOLAS, to link research across the ocean-sea ice-atmosphere interface.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-19 av 19

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy