SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Pun C. S. J.) "

Search: WFRF:(Pun C. S. J.)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Larsson, Josefin, et al. (author)
  • X-ray illumination of the ejecta of supernova 1987A
  • 2011
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 474:7352, s. 484-486
  • Journal article (peer-reviewed)abstract
    • When a massive star explodes as a supernova, substantial amounts of radioactive elements-primarily (56)Ni, (57)Ni and (44)Ti-are produced(1). After the initial flash of light from shock heating, the fading light emitted by the supernova is due to the decay of these elements(2). However, after decades, the energy powering a supernova remnant comes from the shock interaction between the ejecta and the surrounding medium(3). The transition to this phase has hitherto not been observed: supernovae occur too infrequently in the Milky Way to provide a young example, and extragalactic supernovae are generally too faint and too small. Here we report observations that show this transition in the supernova SN 1987A in the Large Magellanic Cloud. From 1994 to 2001, the ejecta faded owing to radioactive decay of (44)Ti as predicted. Then the flux started to increase, more than doubling by the end of 2009. We show that this increase is the result of heat deposited by X-rays produced as the ejecta interacts with the surrounding material. In time, the X-rays will penetrate farther into the ejecta, enabling us to analyse the structure and chemistry of the vanished star.
  •  
2.
  • Fransson, Claes, et al. (author)
  • Hubble Space Telescope and Ground-based Observations of SN 1993J and SN 1998S : CNO Processing in the Progenitors
  • 2005
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 622, s. 991-1007
  • Journal article (peer-reviewed)abstract
    • Ground-based and Hubble Space Telescope observations are presented for SN 1993J and SN 1998S. SN 1998S shows strong, relatively narrow circumstellar emission lines of N III-V and C III-IV, as well as broad lines from the ejecta. Both the broad ultraviolet and optical lines in SN 1998S indicate an expansion velocity of ~7000 km s-1. The broad emission components of Lyα and Mg II are strongly asymmetrical after day 72 past the explosion and differ in shape from Hα. Different models based on dust extinction from dust in the ejecta or shock region, in combination with Hα from a circumstellar torus, are discussed. It is concluded, however, that the double-peaked line profiles are more likely to arise as a result of optical depth effects in the narrow, cool, dense shell behind the reverse shock than in a torus-like region. The ultraviolet lines of SN 1993J are broad, with a boxlike shape, coming from the ejecta and a cool, dense shell. The shapes of the lines are well fitted by a shell with inner velocity ~7000 km s-1 and outer velocity ~10,000 km s-1. For both SN 1993J and SN 1998S a strong nitrogen enrichment is found, with N/C~12.4 in SN 1993J and N/C~6.0 in SN 1998S. From a compilation of all supernovae with determined CNO ratios, we discuss the implications of these observations for the structure of the progenitors of Type II supernovae. Based in part on observations obtained with the Hubble Space Telescope, which is operated by AURA, Inc., under NASA contract NAS 5-26555.
  •  
3.
  • Heng, Kevin, et al. (author)
  • Evolution of the Reverse Shock Emission from SNR 1987A
  • 2006
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 644, s. 959-970
  • Journal article (peer-reviewed)abstract
    • We present new (2004 July) G750L and G140L Space Telescope Imaging Spectrograph (STIS) data of the Hα and Lyα emission from supernova remnant (SNR) 1987A. With the aid of earlier data, from 1997 October to 2002 October, we track the local evolution of Lyα emission and both the local and global evolution of Hα emission. The most recent observations allow us to directly compare the Hα and Lyα emission from the same slit position and at the same epoch. Consequently, we find clear evidence that, unlike Hα, Lyα is reflected from the debris by resonant scattering. In addition to emission that we can clearly attribute to the surface of the reverse shock, we also measure comparable emission, in both Hα and Lyα, that appears to emerge from supernova debris interior to the surface. New observations taken through slits positioned slightly eastward and westward of a central slit show a departure from cylindrical symmetry in the Hα surface emission. Using a combination of old and new observations, we construct a light curve of the total Hα flux, F, from the reverse shock, which has increased by a factor of ~4 over about 8 yr. However, due to large systematic uncertainties, we are unable to discern between the two limiting behaviors of the flux: F~t (self-similar expansion) and F~t5 (halting of the reverse shock). Such a determination is important for constraining the rate of hydrogen atoms crossing the shock, which is relevant to the question of whether the reverse shock emission will vanish in <~7 yr. Future deep, low- or moderate-resolution spectra are essential for accomplishing this task.
  •  
4.
  • Michael, Eli, et al. (author)
  • Hubble Space Telescope Observations of High-Velocity Lyα and Hα Emission from Supernova Remnant 1987A : The Structure and Development of the Reverse Shock
  • 2003
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 593, s. 809-830
  • Journal article (peer-reviewed)abstract
    • We present two-dimensional line profiles of high-velocity (~+/-12,000 km s-1) Lyα and Hα emission from supernova remnant 1987A obtained with the Space Telescope Imaging Spectrograph between 1997 September and 2001 September (days 3869-5327 after the explosion). This emission comes from hydrogen in the debris that is excited and ionized as it passes through the remnant's reverse shock. We use these profiles to measure the geometry and development of the reverse-shock surface. The observed emission is confined within ~+/-30° about the remnant's equatorial plane. At the equator, the reverse shock has a radius of ~75% of the distance to the equatorial ring. We detect marginal differences (6%+/-3%) between the location of the reverse-shock front in the northeast and southwest parts of the remnant. The radius of the reverse shock surface increases for latitudes above the equator, a geometry consistent with a model in which the supernova debris expands into a bipolar nebula. Assuming that the outer supernova debris has a power-law density distribution, we can infer from the reverse-shock emission light curve an expansion rate (in the northeast part of the remnant) of 3700+/-900kms-1, consistent with the expansion velocities determined from observations in radio (Manchester et al.) and X-ray (Park et al.; Michael et al.) wavelengths. However, our most recent observation (at day 5327) suggests that the rate of increase of mass flux across the northeast sector of the reverse shock has accelerated, perhaps because of deceleration of the reverse shock caused by the arrival of a reflected shock created when the blast wave struck the inner ring. Resonant scattering within the supernova debris causes Lyα photons created at the reverse shock to be directed preferentially outward, resulting in a factor of ~5 difference in the observed brightness of the reverse shock in Lyα between the near and far sides of the remnant. Accounting for this effect, we compare the observed reverse-shock Lyα and Hα fluxes to infer the amount of interstellar extinction by dust as E(B-V)=0.17+/-0.01 mag. We also notice extinction by dust in the equatorial ring with E(B-V)~0.02-0.08 mag, which implies dust-to-gas ratios similar to that of the LMC. Since Hα photons are optically thin to scattering, the observed asymmetry in brightness of Hα from the near and far sides of the remnant represents a real asymmetry in the mass flux through the reverse shock of ~30%. We discuss future observational strategies that will permit us to further investigate the reverse-shock dynamics and resonant scattering of the Lyα line and to constrain better the extinction by dust within and in front of the remnant.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view