SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Qadri Sami) "

Sökning: WFRF:(Qadri Sami)

  • Resultat 1-13 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Qadri, Sami, et al. (författare)
  • Heterogeneity of phosphatidylcholine metabolism in nonalcoholic fatty liver disease
  • 2022
  • Ingår i: Journal of Hepatology. - : Elsevier. - 0168-8278 .- 1600-0641. ; 77:Suppl. 1, s. S111-S111
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Background and aims: In murine models of non-alcoholic fatty liver disease (NAFLD), liver damage associates with a deficiency of phosphatidylcholines (PCs), particularly polyunsaturated PCs (PUFA-PCs). We studied whether human PC metabolism is altered by NAFLD or by the protective genetic variant in HSD17B13 (rs72613567 T > TA).Method: In 143 obese patients with a liver biopsy and genotyping for HSD17B13 rs72613567, we analysed the hepatic lipidome (UPLC-MS). As the hepatic parenchymal fat fraction (HPFF) affects apparent concentrations of amphiphilic lipids, we normalised hepatic phospholipid concentrations to fat-free liver mass. To this end, we employed a state-of-the-art deep learning image analysis method (Aiforia Technologies) to accurately quantify HPFF in liver biopsies.Results: Total unadjusted hepatic PCs correlated negatively with HPFF (rs = −0.26, P < 0.01), but this association disappeared after normalising to fat-free liver mass (rs = 0.02, P = 0.81). With increasing HPFF, concentrations of especially saturated and monounsaturated PCs significantly increased, whereas concentrations of PUFA-PCs decreased. Accordingly, the hepatic triacylglycerol composition significantly correlated with that of hepatic PCs. In carriers of the protective variant in HSD17B13, as compared to non-carriers, the hepatic lipidome was enriched in especially PUFA-PCs.Conclusion: Patients with NAFLD have a deficiency of PUFA-PCs. The protective HSD17B13 rs72613567 variant opposes these changes, increasing intrahepatic PC concentrations.
  •  
2.
  • Lahelma, Mari, et al. (författare)
  • Assessment of lifestyle factors helps to identify liver fibrosis due to non-alcoholic fatty liver disease in obesity
  • 2021
  • Ingår i: Nutrients. - : MDPI AG. - 2072-6643. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Only some individuals with obesity develop liver fibrosis due to non-alcoholic fatty liver disease (NAFLD-fibrosis). We determined whether detailed assessment of lifestyle factors in addition to physical, biochemical and genetic factors helps in identification of these patients. A total of 100 patients with obesity (mean BMI 40.0 ± 0.6 kg/m2 ) referred for bariatric surgery at the Helsinki University Hospital underwent a liver biopsy to evaluate liver histology. Physical activity was determined by accelerometer recordings and by the Modifiable Activity Questionnaire, diet by the FINRISK Food Frequency Questionnaire, and other lifestyle factors, such as sleep patterns and smoking, by face-to-face interviews. Physical and biochemical parameters and genetic risk score (GRS based on variants in PNPLA3, TM6SF2, MBOAT7 and HSD17B13) were measured. Of all participants 49% had NAFLD-fibrosis. Independent predictors of NAFLD-fibrosis were low moderate-to-vigorous physical activity, high red meat intake, low carbohydrate intake, smoking, HbA1c, triglycerides and GRS. A model including these factors (areas under the receiver operating characteristics curve (AUROC) 0.90 (95% CI 0.84–0.96)) identified NAFLD-fibrosis significantly more accurately than a model including all but lifestyle factors (AUROC 0.82 (95% CI 0.73–0.91)) or models including lifestyle, physical and biochemical, or genetic factors alone. Assessment of lifestyle parameters in addition to physical, biochemical and genetic factors helps to identify obese patients with NAFLD-fibrosis.
  •  
3.
  • Lahelma, Mari, et al. (författare)
  • The human liver lipidome is significantly related to the lipid composition and aggregation susceptibility of low-density lipoprotein (LDL) particles
  • 2022
  • Ingår i: Atherosclerosis. - : Elsevier. - 0021-9150 .- 1879-1484. ; 363, s. 22-29
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND AND AIMS: The susceptibility of low-density lipoprotein (LDL) to aggregation predicts atherosclerotic cardiovascular disease. However, causes of interindividual variation in LDL lipid composition and aggregation susceptibility remain unclear. We examined whether the lipid composition and aggregation susceptibility of LDL reflect the lipid composition of the human liver.METHODS: Liver biopsies and blood samples for isolation of LDL particles were obtained from 40 obese subjects (BMI 45.9 ± 6.1 kg/m2, age 43 ± 8 years). LDL was isolated using sequential ultracentrifugation and lipidomic analyses of liver and LDL samples were determined using ultra-high performance liquid chromatography-mass spectrometry. LDL aggregation susceptibility ex vivo was analyzed by inducing aggregation by human recombinant secretory sphingomyelinase and following aggregate formation.RESULTS: The composition (acyl carbon number and double bond count) of hepatic triglycerides, phosphatidylcholines, and sphingomyelins (SMs) was closely associated with that of LDL particles. Hepatic dihydroceramides and ceramides were positively correlated with concentrations of the corresponding SM species in LDL as well with LDL aggregation. These relationships remained statistically significant after adjustment for age, sex, and body mass index.CONCLUSIONS: Lipid composition of LDL reflects that of the human liver in obese patients. Changes in hepatic sphingolipid metabolism may contribute to interindividual variation of LDL lipid composition and susceptibility to aggregation.
  •  
4.
  • Luukkonen, Panu K., et al. (författare)
  • Distinct contributions of metabolic dysfunction and genetic risk factors in the pathogenesis of non-alcoholic fatty liver disease
  • 2022
  • Ingår i: Journal of Hepatology. - : Elsevier BV. - 0168-8278. ; 76:3, s. 526-535
  • Tidskriftsartikel (refereegranskat)abstract
    • Background & Aims: There is substantial inter-individual variability in the risk of non-alcoholic fatty liver disease (NAFLD). Part of which is explained by insulin resistance (IR) (‘MetComp’) and part by common modifiers of genetic risk (‘GenComp’). We examined how IR on the one hand and genetic risk on the other contribute to the pathogenesis of NAFLD. Methods: We studied 846 individuals: 492 were obese patients with liver histology and 354 were individuals who underwent intrahepatic triglyceride measurement by proton magnetic resonance spectroscopy. A genetic risk score was calculated using the number of risk alleles in PNPLA3, TM6SF2, MBOAT7, HSD17B13 and MARC1. Substrate concentrations were assessed by serum NMR metabolomics. In subsets of participants, non-esterified fatty acids (NEFAs) and their flux were assessed by D5-glycerol and hyperinsulinemic-euglycemic clamp (n = 41), and hepatic de novo lipogenesis (DNL) was measured by D2O (n = 61). Results: We found that substrate surplus (increased concentrations of 28 serum metabolites including glucose, glycolytic intermediates, and amino acids; increased NEFAs and their flux; increased DNL) characterized the ‘MetComp’. In contrast, the ‘GenComp’ was not accompanied by any substrate excess but was characterized by an increased hepatic mitochondrial redox state, as determined by serum β-hydroxybutyrate/acetoacetate ratio, and inhibition of hepatic pathways dependent on tricarboxylic acid cycle activity, such as DNL. Serum β-hydroxybutyrate/acetoacetate ratio correlated strongly with all histological features of NAFLD. IR and hepatic mitochondrial redox state conferred additive increases in histological features of NAFLD. Conclusions: These data show that the mechanisms underlying ‘Metabolic’ and ‘Genetic’ components of NAFLD are fundamentally different. These findings may have implications with respect to the diagnosis and treatment of NAFLD. Lay summary: The pathogenesis of non-alcoholic fatty liver disease can be explained in part by a metabolic component, including obesity, and in part by a genetic component. Herein, we demonstrate that the mechanisms underlying these components are fundamentally different: the metabolic component is characterized by hepatic oversupply of substrates, such as sugars, lipids and amino acids. In contrast, the genetic component is characterized by impaired hepatic mitochondrial function, making the liver less able to metabolize these substrates.
  •  
5.
  • Luukkonen, Panu K., et al. (författare)
  • The PNPLA3-I148M Variant Confers an Antiatherogenic Lipid Profile in Insulin-resistant Patients
  • 2021
  • Ingår i: The Journal of clinical endocrinology and metabolism. - : The Endocrine Society. - 1945-7197 .- 0021-972X. ; 106:1, s. 300-315
  • Tidskriftsartikel (refereegranskat)abstract
    • CONTEXT: The I148M (rs738409-G) variant in PNPLA3 increases liver fat content but may be protective against cardiovascular disease. Insulin resistance (IR) amplifies the effect of PNPLA3-I148M on liver fat. OBJECTIVE: To study whether PNPLA3-I148M confers an antihyperlipidemic effect in insulin-resistant patients. DESIGN: Cross-sectional study comparing the impact of PNPLA3-I148M on plasma lipids and lipoproteins in 2 cohorts, both divided into groups based on rs738409-G allele carrier status and median HOMA-IR. SETTING: Tertiary referral center. PATIENTS: A total of 298 obese patients who underwent a liver biopsy during bariatric surgery (bariatric cohort: age 49 ± 9 years, body mass index [BMI] 43.2 ± 6.8 kg/m2), and 345 less obese volunteers in whom liver fat was measured by proton magnetic resonance spectroscopy (nonbariatric cohort: age 45 ± 14 years, BMI 29.7 ± 5.7 kg/m2). MAIN OUTCOME MEASURES: Nuclear magnetic resonance profiling of plasma lipids, lipoprotein particle subclasses and their composition. RESULTS: In both cohorts, individuals carrying the PNPLA3-I148M variant had significantly higher liver fat content than noncarriers. In insulin-resistant and homozygous carriers, PNPLA3-I148M exerted a distinct antihyperlipidemic effect with decreased very-low-density lipoprotein (VLDL) and low-density lipoprotein (LDL) particles and their constituents, and increased high-density lipoprotein particles and their constituents, compared with noncarriers. VLDL particles were smaller and LDL particles larger in PNPLA3-I148M carriers. These changes were geometrically opposite to those due to IR. PNPLA3-I148M did not have a measurable effect in patients with lower IR, and its effect was smaller albeit still significant in the less obese than in the obese cohort. CONCLUSIONS: PNPLA3-I148M confers an antiatherogenic plasma lipid profile particularly in insulin-resistant individuals.
  •  
6.
  • Pipitone, Rosaria M., et al. (författare)
  • Programmed cell death 1 genetic variant and liver damage in nonalcoholic fatty liver disease
  • 2023
  • Ingår i: Liver International. - 1478-3223 .- 1478-3231. ; 43:8, s. 1761-71
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and Aims: Programmed cell death 1/programmed cell death-ligand 1 (PD-1/PDL-1) axis has been reported to modulate liver inflammation and progression to hepatocellular carcinoma (HCC) in patients with nonalcoholic fatty liver disease (NAFLD). Here, we examined whether the PDCD1 variation is associated with NAFLD severity in individuals with liver biopsy. Methods: We examined the impact of PDCD1 gene variants on HCC, as robust severe liver disease phenotype in UK Biobank participants. The strongest genetic association with the rs13023138 G>C variation was subsequently tested for association with liver damage in 2889 individuals who underwent liver biopsy for suspected nonalcoholic steatohepatitis (NASH). Hepatic transcriptome was examined by RNA-Seq in a subset of NAFLD individuals (n = 121). Transcriptomic and deconvolution analyses were performed to identify biological pathways modulated by the risk allele. Results: The rs13023138 C>G showed the most robust association with HCC in UK Biobank (p = 5.28E-4, OR = 1.32, 95% CI [1.1, 1.5]). In the liver biopsy cohort, rs13023138 G allele was independently associated with severe steatosis (OR 1.17, 95% CI 1.02-1.34; p =.01), NASH (OR 1.22, 95% CI 1.09-1.37; p <.001) and advanced fibrosis (OR 1.26, 95% CI 1.06-1.50; p =.007). At deconvolution analysis, rs13023138 G>C allele was linked to higher hepatic representation of M1 macrophages, paralleled by upregulation of pathways related to inflammation and higher expression of CXCR6. Conclusions: The PDCD1 rs13023138 G allele was associated with HCC development in the general population and with liver disease severity in patients at high risk of NASH.
  •  
7.
  • Qadri, Sami, et al. (författare)
  • Hepatic insulin resistance is the basis of bile acid dysmetabolism in non-alcoholic fatty liver disease
  • 2022
  • Ingår i: Journal of Hepatology. - : Elsevier. - 0168-8278 .- 1600-0641. ; 77:Suppl. 1, s. S694-S695
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Background and aims: Non-alcoholic fatty liver disease (NAFLD) is associated with increased circulating bile acids (BAs). It is unknown whether this reflects altered intrahepatic BA metabolism due to NAFLD or the associated insulin resistance (IR). To dissociate steatosis from IR, we compared BA metabolism in NAFLD associated with either IR or high genetic risk.Method: In 106 patients undergoing a liver biopsy, we analysed serum/liver BAs, the hepatic transcriptome (RNA-seq), and concentrations of plasma FGF-19 (marker of intestinal BA metabolism). Using HOMA-IR and a validated weighted Polygenic Risk Score (PRS) for NAFLD, we divided the patients into matched groups to compare the effects of NAFLD associated with IR (‘High HOMA-IR’ vs. ‘LowHOMA-IR’) or with high genetic risk (‘High PRS’ vs. ‘Low PRS’) on BA metabolism.Results: An untargeted analysis identified distinct clusters of patients with simultaneously increased BAs, HOMA-IR, and liver fat content. Compared to ‘Low HOMA-IR’, patients with ‘High HOMA-IR’ had significantly higher total (+57%, P = 0.011) and especially conjugated (+82%, P = 0.002) serum BAs, but unchanged hepatic BAs. Expression of the primary hepatic BA uptake transporter NTCP was down-regulated, while plasma FGF-19 was unchanged. Despite having the same degree of steatosis and NASH compared to the ‘High HOMA-IR’ group, patients with ‘High PRS’ had similar serum/liver BAs compared to those with ‘Low PRS’. Stage F3-F4 liver fibrosis independently predicted higher serum BAs.Conclusion: In NAFLD without advanced fibrosis, serum BAs are increased due to IR, which may impair hepatocellular BA uptake. Intrahepatic BAs are unchanged in NAFLD.
  •  
8.
  • Qadri, Sami, et al. (författare)
  • Obesity Modifies the Performance of Fibrosis Biomarkers in Nonalcoholic Fatty Liver Disease
  • 2022
  • Ingår i: Journal of Clinical Endocrinology and Metabolism. - : Oxford University Press. - 0021-972X .- 1945-7197. ; 107:5, s. e2008-e2020
  • Tidskriftsartikel (refereegranskat)abstract
    • Context: Guidelines recommend blood-based fibrosis biomarkers to identify advanced nonalcoholic fatty liver disease (NAFLD), which is particularly prevalent in patients with obesity. Objective: To study whether the degree of obesity affects the performance of liver fibrosis biomarkers in NAFLD. Design: Cross-sectional cohort study comparing simple fibrosis scores [Fibrosis-4 Index (FIB-4); NAFLD Fibrosis Score (NFS); aspartate aminotransferase to platelet ratio index; BARD (body mass index, aspartate-to-alanine aminotransferase ratio, diabetes); Hepamet Fibrosis Score (HFS)] and newer scores incorporating neo-epitope biomarkers PRO-C3 (ADAPT, FIBC3) or cytokeratin 18 (MACK-3). Setting: Tertiary referral center. Patients: We recruited overweight/obese patients from endocrinology (n = 307) and hepatology (n = 71) clinics undergoing a liver biopsy [median body mass index (BMI) 40.3 (interquartile range 36.0-44.7) kg/m(2)]. Additionally, we studied 859 less obese patients with biopsy-proven NAFLD to derive BMI-adjusted cutoffs for NFS. Main Outcome Measures: Biomarker area under the receiver operating characteristic (AUROC), sensitivity, specificity, and predictive values to identify histological stage >= F3 fibrosis or nonalcoholic steatohepatitis with >= F2 fibrosis [fibrotic nonalcoholic steatohepatitis (NASH)]. Results: The scores with an AUROC >= 0.85 to identify >= F3 fibrosis were ADAPT, FIB-4, FIBC3, and HFS. For fibrotic NASH, the best predictors were MACK-3 and ADAPT. The specificities of NFS, BARD, and FIBC3 deteriorated as a function of BMI. We derived and validated new cutoffs for NFS to rule in/out >= F3 fibrosis in groups with BM Is <30.0, 30.0 to 39.9, and >= 40.0 kg/m(2). This optimized its performance at all levels of BMI. Sequentially combining FIB-4 with ADAPT or FIBC3 increased specificity to diagnose >= F3 fibrosis. Conclusions: In obese patients, the best-performing fibrosis biomarkers are ADAPT and the inexpensive FIB-4, which are unaffected by BMI. The widely used NFS loses specificity in obese individuals, which may be corrected with BMI-adjusted cutoffs.
  •  
9.
  • Qadri, Sami, et al. (författare)
  • The PNPLA3-I148M variant increases polyunsaturated triglycerides in human adipose tissue
  • 2020
  • Ingår i: Liver international (Print). - : Wiley-Blackwell Publishing Inc.. - 1478-3223 .- 1478-3231. ; 40:9, s. 2128-2138
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND & AIMS: The I148M variant in PNPLA3 is the major genetic risk factor for non-alcoholic fatty liver disease (NAFLD). The liver is enriched with polyunsaturated triglycerides (PUFA-TGs) in PNPLA3-I148M carriers. Gene expression data indicate that PNPLA3 is liver-specific in humans, but whether it functions in adipose tissue (AT) is unknown. We investigated whether PNPLA3-I148M modifies AT metabolism in human NAFLD.METHODS: Profiling of the AT lipidome and fasting serum non-esterified fatty acid (NEFA) composition were conducted in 125 volunteers (PNPLA3148MM/MI , n=63; PNPLA3148II , n=62). AT fatty acid composition was determined in 50 volunteers homozygous for the variant (PNPLA3148MM , n=25) or lacking the variant (PNPLA3148II , n=25). Whole-body insulin sensitivity of lipolysis was determined using [2 H5 ]glycerol, and PNPLA3 mRNA and protein levels were measured in subcutaneous AT and liver biopsies in a subset of the volunteers.RESULTS: PUFA-TGs were significantly increased in AT in carriers versus non-carriers of PNPLA3-I148M. The variant did not alter the rate of lipolysis or the composition of fasting serum NEFAs. PNPLA3 mRNA was 33-fold higher in the liver than in AT (p<0.0001). In contrast, PNPLA3 protein levels per tissue protein were 3-fold higher in AT than the liver (p<0.0001) and 9-fold higher when related to whole-body AT and liver tissue masses (p<0.0001).CONCLUSIONS: Contrary to previous assumptions, PNPLA3 is highly abundant in AT. PNPLA3-I148M locally remodels AT TGs to become polyunsaturated as it does in the liver, without affecting lipolysis or composition of serum NEFAs. Changes in AT metabolism do not contribute to NAFLD in PNPLA3-I148M carriers.
  •  
10.
  • Ruuth, Maija, et al. (författare)
  • Overfeeding Saturated Fat Increases LDL (Low-Density Lipoprotein) Aggregation Susceptibility While Overfeeding Unsaturated Fat Decreases Proteoglycan-Binding of Lipoproteins
  • 2021
  • Ingår i: Arteriosclerosis, Thrombosis and Vascular Biology. - : Lippincott Williams & Wilkins. - 1079-5642 .- 1524-4636. ; 41:11, s. 2823-2836
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: We recently showed that measurement of the susceptibility of LDL (low-density lipoprotein) to aggregation is an independent predictor of cardiovascular events. We now wished to compare effects of overfeeding different dietary macronutrients on LDL aggregation, proteoglycan-binding of plasma lipoproteins, and on the concentration of oxidized LDL in plasma, 3 in vitro parameters consistent with increased atherogenicity.Approach and Results: The participants (36 subjects; age, 48±10 years; body mass index, 30.9±6.2 kg/m2) were randomized to consume an extra 1000 kcal/day of either unsaturated fat, saturated fat, or simple sugars (CARB) for 3 weeks. We measured plasma proatherogenic properties (susceptibility of LDL to aggregation, proteoglycan-binding, oxidized LDL) and concentrations and composition of plasma lipoproteins using nuclear magnetic resonance spectroscopy, and in LDL using liquid chromatography mass spectrometry, before and after the overfeeding diets. LDL aggregation increased in the saturated fat but not the other groups. This change was associated with increased sphingolipid and saturated triacylglycerols in LDL and in plasma and reduction of clusterin on LDL particles. Proteoglycan binding of plasma lipoproteins decreased in the unsaturated fat group relative to the baseline diet. Lipoprotein properties remained unchanged in the CARB group.CONCLUSIONS: The type of fat during 3 weeks of overfeeding is an important determinant of the characteristics and functional properties of plasma lipoproteins in humans.REGISTRATION: URL: http://www.clinicaltrials.gov; Unique identifier NCT02133144.
  •  
11.
  • Sasidharan, Kavitha, et al. (författare)
  • IL32 downregulation lowers triglycerides and type I collagen in di-lineage human primary liver organoids.
  • 2024
  • Ingår i: Cell reports. Medicine. - 2666-3791. ; 5:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Steatotic liver disease (SLD) prevails as the most common chronic liver disease yet lack approved treatments due to incomplete understanding of pathogenesis. Recently, elevated hepatic and circulating interleukin 32 (IL-32) levels were found in individuals with severe SLD. However, the mechanistic link between IL-32 and intracellular triglyceride metabolism remains to be elucidated. We demonstrate invitro that incubation with IL-32β protein leads to an increase in intracellular triglyceride synthesis, while downregulation of IL32 by small interfering RNA leads to lower triglyceride synthesis and secretion in organoids from human primary hepatocytes. This reduction requires the upregulation of Phospholipase A2 group IIA (PLA2G2A). Furthermore, downregulation of IL32 results in lower intracellular type I collagen levels in di-lineage human primary hepatic organoids. Finally, we identify a genetic variant of IL32 (rs76580947) associated with lower circulating IL-32 and protection against SLD measured by non-invasive tests. These data suggest that IL32 downregulation may be beneficial against SLD.
  •  
12.
  • Sen, Partho, 1983-, et al. (författare)
  • Exposure to environmental contaminants is associated with altered hepatic lipid metabolism in non-alcoholic fatty liver disease
  • 2022
  • Ingår i: Journal of Hepatology. - : Elsevier. - 0168-8278 .- 1600-0641. ; 76:2, s. 283-293
  • Tidskriftsartikel (refereegranskat)abstract
    • Background & aims: Recent experimental models and epidemiological studies suggest that specific environmental contaminants (ECs) contribute to the initiation and pathology of non-alcoholic fatty liver disease (NAFLD). However, the underlying mechanisms linking EC exposure with NAFLD remain poorly understood and there is no data on their impact on the human liver metabolome. Herein, we hypothesized that exposure to ECs, particularly perfluorinated alkyl substances (PFAS), impacts liver metabolism, specifically bile acid metabolism.Methods: In a well-characterized human NAFLD cohort of 105 individuals, we investigated the effects of EC exposure on liver metabolism. We characterized the liver (via biopsy) and circulating metabolomes using 4 mass spectrometry-based analytical platforms, and measured PFAS and other ECs in serum. We subsequently compared these results with an exposure study in a PPARa-humanized mouse model.Results: PFAS exposure appears associated with perturbation of key hepatic metabolic pathways previously found altered in NAFLD, particularly those related to bile acid and lipid metabolism. We identified stronger associations between the liver metabolome, chemical exposure and NAFLD-associated clinical variables (liver fat content, HOMA-IR), in females than males. Specifically, we observed PFAS-associated upregulation of bile acids, triacylglycerols and ceramides, and association between chemical exposure and dysregulated glucose metabolism in females. The murine exposure study further corroborated our findings, vis-à-vis a sex-specific association between PFAS exposure and NAFLD-associated lipid changes.Conclusions: Females may be more sensitive to the harmful impacts of PFAS. Lipid-related changes subsequent to PFAS exposure may be secondary to the interplay between PFAS and bile acid metabolism.Lay summary: There is increasing evidence that specific environmental contaminants, such as perfluorinated alkyl substances (PFAS), contribute to the progression of non-alcoholic fatty liver disease (NAFLD). However, it is poorly understood how these chemicals impact human liver metabolism. Here we show that human exposure to PFAS impacts metabolic processes associated with NAFLD, and that the effect is different in females and males.
  •  
13.
  • Tavaglione, Federica, et al. (författare)
  • Development and Validation of a Score for Fibrotic Non-Alcoholic Steatohepatitis.
  • 2023
  • Ingår i: Clinical gastroenterology and hepatology : the official clinical practice journal of the American Gastroenterological Association. - : Elsevier BV. - 1542-7714. ; 21:6, s. 1523-1532
  • Tidskriftsartikel (refereegranskat)abstract
    • Non-invasive assessment of histological features of non-alcoholic fatty liver disease (NAFLD) has been an intensive research area over the last decade. Herein, we aimed to develop a simple non-invasive score using routine laboratory tests to identify, among individuals at high risk for NAFLD, those with fibrotic non-alcoholic steatohepatitis (NASH) defined as NASH, NAFLD activity score (NAS) ≥4, and fibrosis stage ≥2.The derivation cohort included 264 morbidly obese individuals undergoing intraoperative liver biopsy in Rome, Italy. The best predictive model was developed and internally validated using a bootstrapping stepwise logistic regression analysis (2000 bootstrap samples). Performance was estimated by the area under the receiver operating characteristic curve (AUROC). External validation was assessed in three independent European cohorts (Finland, n=370; Italy n=947; England n=5,368) of individuals at high risk for NAFLD.The final predictive model, designated as Fibrotic NASH Index (FNI), combined aspartate aminotransferase (AST), high-density lipoprotein (HDL) cholesterol, and hemoglobin A1c (HbA1c). The performance of FNI for fibrotic NASH was satisfactory in both derivation and external validation cohorts (AUROCs 0.78 and 0.80-0.95, respectively). In the derivation cohort, rule-out and rule-in cut-offs were 0.10 for sensitivity ≥0.89 (negative predictive value [NPV] 0.93) and 0.33 for specificity ≥0.90 (positive predictive value [PPV] 0.57), respectively. In the external validation cohorts, sensitivity ranged from 0.87 to 1 (NPV 0.99-1) and specificity from 0.73 to 0.94 (PPV 0.12-0.49) for rule-out and rule-in cut-off, respectively.FNI is an accurate, simple, and affordable non-invasive score which can be used in primary healthcare to screen for fibrotic NASH individuals with dysmetabolism.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-13 av 13
Typ av publikation
tidskriftsartikel (13)
Typ av innehåll
refereegranskat (11)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Yki-Järvinen, Hannel ... (13)
Arola, Johanna (7)
Sammalkorpi, Henna (7)
Hyötyläinen, Tuulia, ... (6)
Orešič, Matej, 1967- (5)
Orho-Melander, Marju (4)
visa fler...
Valenti, Luca (4)
Pihlajamäki, Jussi (3)
Romeo, Stefano, 1976 (3)
Bianco, Cristiana (3)
Tavaglione, Federica (3)
Vespasiani-Gentilucc ... (3)
Hakkarainen, Antti (3)
Männistö, Ville (3)
Mancina, Rosellina M ... (2)
Gastaldelli, Amalia (2)
Petta, Salvatore (2)
Oveis, Jamialahmadi (2)
Ciociola, Ester (2)
Malvestiti, Francesc ... (2)
Zhou, You (1)
Olkkonen, Vesa M (1)
Ala-Korpela, Mika (1)
Jäntti, Sirkku (1)
Ekstedt, Mattias, 19 ... (1)
Hagström, Hannes (1)
McGlinchey, Aidan J, ... (1)
Sen, Partho, 1983- (1)
Gaggini, Melania (1)
Meroni, Marica (1)
Prati, Daniele (1)
Pennisi, Grazia (1)
Kechagias, Stergios, ... (1)
Kovanen, Petri T. (1)
Pelusi, Serena (1)
Cherubini, Alessandr ... (1)
Dongiovanni, Paola (1)
Fracanzani, Anna L (1)
Soardo, Giorgio (1)
Webster, Thomas F. (1)
D´Ambrosio, Roberta (1)
Jamialahmadi, Oveis (1)
Tomasi, Melissa (1)
Lorey, Martina B. (1)
Pozzilli, Paolo (1)
Caddeo, Andrea (1)
Maurotti, Samantha (1)
Sasidharan, Kavitha (1)
De Vincentis, Antoni ... (1)
Picardi, Antonio (1)
visa färre...
Lärosäte
Örebro universitet (6)
Lunds universitet (4)
Göteborgs universitet (3)
Linköpings universitet (1)
Karolinska Institutet (1)
Språk
Engelska (13)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (13)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy