SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Qu Jing) "

Sökning: WFRF:(Qu Jing)

  • Resultat 1-25 av 44
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Schmit, Stephanie L, et al. (författare)
  • Novel Common Genetic Susceptibility Loci for Colorectal Cancer.
  • 2019
  • Ingår i: Journal of the National Cancer Institute. - : Oxford University Press (OUP). - 0027-8874 .- 1460-2105. ; 111:2, s. 146-157
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Previous genome-wide association studies (GWAS) have identified 42 loci (P < 5 × 10-8) associated with risk of colorectal cancer (CRC). Expanded consortium efforts facilitating the discovery of additional susceptibility loci may capture unexplained familial risk.Methods: We conducted a GWAS in European descent CRC cases and control subjects using a discovery-replication design, followed by examination of novel findings in a multiethnic sample (cumulative n = 163 315). In the discovery stage (36 948 case subjects/30 864 control subjects), we identified genetic variants with a minor allele frequency of 1% or greater associated with risk of CRC using logistic regression followed by a fixed-effects inverse variance weighted meta-analysis. All novel independent variants reaching genome-wide statistical significance (two-sided P < 5 × 10-8) were tested for replication in separate European ancestry samples (12 952 case subjects/48 383 control subjects). Next, we examined the generalizability of discovered variants in East Asians, African Americans, and Hispanics (12 085 case subjects/22 083 control subjects). Finally, we examined the contributions of novel risk variants to familial relative risk and examined the prediction capabilities of a polygenic risk score. All statistical tests were two-sided.Results: The discovery GWAS identified 11 variants associated with CRC at P < 5 × 10-8, of which nine (at 4q22.2/5p15.33/5p13.1/6p21.31/6p12.1/10q11.23/12q24.21/16q24.1/20q13.13) independently replicated at a P value of less than .05. Multiethnic follow-up supported the generalizability of discovery findings. These results demonstrated a 14.7% increase in familial relative risk explained by common risk alleles from 10.3% (95% confidence interval [CI] = 7.9% to 13.7%; known variants) to 11.9% (95% CI = 9.2% to 15.5%; known and novel variants). A polygenic risk score identified 4.3% of the population at an odds ratio for developing CRC of at least 2.0.Conclusions: This study provides insight into the architecture of common genetic variation contributing to CRC etiology and improves risk prediction for individualized screening.
  •  
6.
  • Amhare, Abebe Feyissa, et al. (författare)
  • Magnitude and associated factors of perceived stress and its consequence among undergraduate students of Salale University, Ethiopia : cross-sectional study
  • 2021
  • Ingår i: Psychology, Health & Medicine. - : Routledge. - 1354-8506 .- 1465-3966. ; 26:10, s. 1230-1240
  • Tidskriftsartikel (refereegranskat)abstract
    • Excessive stress may have a negative impact on students' performance and learning ability. The aim of this study is to assess the magnitude and associated factors of perceived stress and its consequences among undergraduate students at Salale University, Ethiopia. A self-administered cross-sectional study has been conducted among 421 students of Salale University from April 1(st) to May 30(th), 2018. Multiple linear regressions and Spearman's rank correlation were applied. The overall response rate is 95.49 %. The mean perceived stress score (PSS-14) was 29.97 (standard deviation =7.48). Spearman correlation test has shown that perceived stress is significantly but negatively correlated with grade point average [r(s) = -0.25 (-0.334 - -0.153)] and year of studies [r(s) = -0.13 (-0.232 - -0.032)]. Increased perceived stress indices are significantly associated with female gender (P < 0.001), grade point average (P < 0.01), academic stressors (P < 0.01), and psychosocial stressors (P < 0.01). Mean of PSS-14 was high among health science students (31.42 +/- 9.37) than agricultural (30.78 +/- 7.69) and business students (28.04 +/- 5.43), however, there were no statistically significant differences. These findings are sufficient to allow a large-scale study to further help better understanding the stress-vulnerability factors of undergraduate students.
  •  
7.
  • Deng, Huan, et al. (författare)
  • Altered Expression of the Hedgehog Pathway Proteins BMP2, BMP4, SHH, and IHH Involved in Knee Cartilage Damage of Patients With Osteoarthritis and Kashin-Beck Disease
  • 2022
  • Ingår i: Cartilage. - : Sage Publications. - 1947-6035 .- 1947-6043. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: To investigate the expression of Hedgehog (HH) signaling pathway proteins in knee articular cartilage from Kashin-Beck disease (KBD) and osteoarthritis (OA) patients.METHODS: Knee articular cartilage samples were collected from normal (N), OA, and KBD adults (aged 38-60 years) and divided into 3 groups with 6 subjects in each group. The localization of the HH pathway proteins bone morphogenetic protein 2 (BMP2), bone morphogenetic protein 4 (BMP4), Sonic hedgehog (SHH), and Indian hedgehog (IHH) was observed with the microscope after immunohistochemical (IHC) staining. Positive staining cell rates of each proteins were compared.RESULTS: The strongest stainings of all proteins were observed in the middle zones of all 3 groups. The positive staining rates of BMP4 and IHH were significantly lower in the OA and KBD groups than those in the N group in all 3 zones. The positive staining rates of BMP2 and SHH tend to be lower in the OA and KBD groups than those in the N group in the deep zone, while higher in the OA and KBD groups than those in the N group in superficial and middle zones.CONCLUSIONS: Altered expression of the HH pathway proteins BMP2, BMP4, SHH, and IHH was found in OA and KBD articular cartilage. There seemed to be a compensatory effect between SHH and IHH in cartilage damage. Further studies on the pathogenesis of OA and KBD may be carried out from these aspects in the future.
  •  
8.
  • Deng, Huan, et al. (författare)
  • Progress of selenium deficiency in the pathogenesis of arthropathies and selenium supplement for their treatment
  • 2022
  • Ingår i: Biological Trace Element Research. - : Springer Nature. - 0163-4984 .- 1559-0720. ; 200, s. 4238-4249
  • Forskningsöversikt (refereegranskat)abstract
    • Selenium, an essential trace element for human health, exerts an indispensable effect in maintaining physiological homeostasis and functions in the body. Selenium deficiency is associated with arthropathies, such as Kashin-Beck disease, rheumatoid arthritis, osteoarthritis, and osteoporosis. Selenium deficiency mainly affects the normal physiological state of bone and cartilage through oxidative stress reaction and immune reaction. This review aims to explore the role of selenium deficiency and its mechanisms existed in the pathogenesis of arthropathies. Meanwhile, this review also summarized various experiments to highlight the crucial functions of selenium in maintaining the homeostasis of bone and cartilage.
  •  
9.
  • Donahue, Mary, et al. (författare)
  • Tailoring PEDOT properties for applications in bioelectronics
  • 2020
  • Ingår i: Materials science & engineering. R, Reports. - : Elsevier. - 0927-796X .- 1879-212X. ; 140
  • Tidskriftsartikel (refereegranskat)abstract
    • Resulting from its wide range of beneficial properties, the conjugated conducting polymer poly(3,4‐ethylenedioxythiophene) (PEDOT) is a promising material in a number of emerging applications. These material properties, particularly promising in the field of bioelectronics, include its well‐known high‐degree of mechanical flexibility, stability, and high conductivity. However, perhaps the most advantageous property is its ease of fabrication: namely, low‐cost and straight‐forward deposition processes. PEDOT processing is generally carried out at low temperatures with simple deposition techniques, allowing for significant customization of the material properties through, as highlighted in this review, both process parameter variation and the addition of numerous additives. Here we aim to review the role of PEDOT in addressing an assortment of mechanical and electronic requirements as a function of the conditions used to cast or polymerize the films, and the addition of additives such as surfactants and secondary dopants. Contemporary bioelectronic research examples investigating and utilizing the effects of these modifications will be highlighted.
  •  
10.
  • Faber, Zachary J, et al. (författare)
  • The genomic landscape of core-binding factor acute myeloid leukemias
  • 2016
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 48, s. 1551-1556
  • Tidskriftsartikel (refereegranskat)abstract
    • Acute myeloid leukemia (AML) comprises a heterogeneous group of leukemias frequently defined by recurrent cytogenetic abnormalities, including rearrangements involving the core-binding factor (CBF) transcriptional complex. To better understand the genomic landscape of CBF-AMLs, we analyzed both pediatric (n = 87) and adult (n = 78) samples, including cases with RUNX1-RUNX1T1 (n = 85) or CBFB-MYH11 (n = 80) rearrangements, by whole-genome or whole-exome sequencing. In addition to known mutations in the Ras pathway, we identified recurrent stabilizing mutations in CCND2, suggesting a previously unappreciated cooperating pathway in CBF-AML. Outside of signaling alterations, RUNX1-RUNX1T1 and CBFB-MYH11 AMLs demonstrated remarkably different spectra of cooperating mutations, as RUNX1-RUNX1T1 cases harbored recurrent mutations in DHX15 and ZBTB7A, as well as an enrichment of mutations in epigenetic regulators, including ASXL2 and the cohesin complex. This detailed analysis provides insights into the pathogenesis and development of CBF-AML, while highlighting dramatic differences in the landscapes of cooperating mutations for these related AML subtypes.
  •  
11.
  • Feng, Chungang, et al. (författare)
  • A cis-Regulatory Mutation of PDSS2 Causes Silky-Feather in Chickens
  • 2014
  • Ingår i: PLOS Genetics. - : Public Library of Science (PLoS). - 1553-7390 .- 1553-7404. ; 10:8, s. e1004576-
  • Tidskriftsartikel (refereegranskat)abstract
    • Silky-feather has been selected and fixed in some breeds due to its unique appearance. This phenotype is caused by a single recessive gene (hookless, h). Here we map the silky-feather locus to chromosome 3 by linkage analysis and subsequently fine-map it to an 18.9 kb interval using the identical by descent (IBD) method. Further analysis reveals that a C to G transversion located upstream of the prenyl (decaprenyl) diphosphate synthase, subunit 2 (PDSS2) gene is causing silky-feather. All silky-feather birds are homozygous for the G allele. The silky-feather mutation significantly decreases the expression of PDSS2 during feather development in vivo. Consistent with the regulatory effect, the C to G transversion is shown to remarkably reduce PDSS2 promoter activity in vitro. We report a new example of feather structure variation associated with a spontaneous mutation and provide new insight into the PDSS2 function.
  •  
12.
  •  
13.
  • Guo, Yijie, et al. (författare)
  • Decreased expression of CHST-12, CHST-13, and UST in the proximal interphalangeal joint cartilage of school-age children with Kashin-Beck disease : an endemic osteoarthritis in China caused by selenium deficiency
  • 2019
  • Ingår i: Biological Trace Element Research. - New York : Springer. - 0163-4984 .- 1559-0720. ; 191:2, s. 276-285
  • Tidskriftsartikel (refereegranskat)abstract
    • The objective of this study is to investigate changes in the expression of enzymes involved in chondroitin sulfate (CS) sulfation in distal articular surface of proximal interphalangeal joint isolated from school-age children patients with Kashin-Beck disease (KBD), using normal children as controls. Articular cartilage samples were collected from four normal and four KBD children (7-12 years old), and these children were assigned to control and KBD groups. Hematoxylin and eosin (H&E), toluidine blue (TB), and immunohistochemical (IHC) stainings were utilized to evaluate changes in joint pathology and expression of enzymes involved in CS sulfation, including carbohydrate sulfotransferase 12 (CHST-12), carbohydrate sulfotransferase 13 (CHST-13), and uronyl 2-O-sulfotransferase (UST). The correspondence results were examined by semi-quantitative analysis. Compared with the control group, the KBD group showed the following: a significant decrease of total chondrocytes in superficial, middle, and deep layers and deposition of sulfated glycosaminoglycans in extracellular matrix of KBD cartilage were observed; positive staining chondrocytes of CHST-12, CHST-13, and UST were significantly less in superficial zone of KBD cartilage; and CHST-13 positive staining chondrocytes was reduced in deep zone of KBD cartilage. In contrast, the positive staining rates of CHST-12, CHST-13, and UST in KBD were significantly higher than those in the control group. The decreased expression of these enzymes and the physiologic compensatory reaction may be the signs of early-stage KBD. The alterations of CS structure modifying sulfotransferases in finger articular cartilage might play an important role in the onset and pathogenesis of school-age KBD children.
  •  
14.
  • Han, Jing, et al. (författare)
  • Altered expression of chondroitin sulfate structure modifying sulfotransferases in the articular cartilage from adult osteoarthritis and Kashin-Beck disease
  • 2017
  • Ingår i: Osteoarthritis and Cartilage. - : Elsevier. - 1063-4584 .- 1522-9653. ; 25:8, s. 1372-1375
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: To investigate the expression of enzymes involved in chondroitin sulfate (CS) sulfation in the articular cartilage isolated from adult patients with osteoarthritis (OA) and Kashin-Beck disease (KBD), using normal adults as controls.METHODS: Articular cartilage samples were collected from normal, OA and KBD adults aged 38-60 years old, and divided into three groups with six individual subjects in each group. The morphology and pathology grading of knee joint cartilage was examined by Safranin O staining. The localization and expression of enzymes involved in CS sulfation (CHST-3, CHST-11, CHST-12, CHST-13, CHST-15, and UST) were examined by immunohistochemical staining and semi-quantitative analysis.RESULTS: Positive staining rates for anabolic enzymes CHST-3, CHST-12, CHST-15, and UST were lower in the KBD and OA groups than those in the control group. Meanwhile, reduced levels of CHST-11, and CHST-13 in KBD group were observed, in contrast to those in OA and control groups. The expressions of all six CS sulfation enzymes were less detected in the superficial and deep zones of KBD cartilage compared with control and OA cartilage.CONCLUSION: The reduced expression of the CS structure modifying sulfotransferases in the chondrocytes of both KBD and OA adult patients may provide explanations for their cartilage damages, and therapeutic targets for their treatment.
  •  
15.
  • Han, Jing, et al. (författare)
  • Changing grains for the prevention and treatment of Kashin-Beck disease in children : a Meta-analysis
  • 2015
  • Ingår i: Biomedical and environmental sciences. - : Chinese Center for Disease Control and Prevention. - 0895-3988 .- 2214-0190. ; 28:4, s. 308-311
  • Tidskriftsartikel (refereegranskat)abstract
    • To evaluate the efficacy of changing grains on the prevention and treatment of Kashin-Beck Disease (KBD) in children, community-based trials were acquired from seven electronic databases (up to July 2014). As a result, the methodological quality of the six trials that have been included into our analysis was low. The pooled ORs favoring the prevention and treatment effects of changing grains were 0.15 (95% CI: 0.03-0.70) and 2.13 (95% CI: 1.44-3.16) respectively by meta-analysis. Subgroup analysis demonstrated the pooled OR favoring treatment effect of exchanging grains rather than drying grains both compared with endemic grains. The results showed that changing grains had obvious effects on the prevention and treatment of KBD in children. However, the evidences were limited by the potential biases and confounders. Large and well-designed trials are still needed.
  •  
16.
  • Han, Jing, et al. (författare)
  • Nano-elemental selenium particle developed via supramolecularself-assembly of chondroitin sulfate A and Na2SeO3 to repaircartilage lesions
  • 2023
  • Ingår i: Carbohydrate Polymers. - : Elsevier. - 0144-8617 .- 1879-1344. ; 316
  • Tidskriftsartikel (refereegranskat)abstract
    • Cartilage repair is a significant clinical issue due to its restricted ability to regenerate and self-heal after cartilage lesions or degenerative disease. Herein, a nano-elemental selenium particle (chondroitin sulfate A‑selenium nanoparticle, CSA-SeNP) is developed by the supramolecular self-assembly of Na2SeO3 and negatively charged chondroitin sulfate A (CSA) via electrostatic interactions or hydrogen bonds followed by in-situ reducing of l-ascorbic acid for cartilage lesions repair. The constructed micelle exhibits a hydrodynamic particle size of 171.50 ± 2.40 nm and an exceptionally high selenium loading capacity (9.05 ± 0.03 %) and can promote chondrocyte proliferation, increase cartilage thickness, and improve the ultrastructure of chondrocytes and organelles. It mainly enhances the sulfation modification of chondroitin sulfate by up-regulating the expression of chondroitin sulfate 4-O sulfotransferase-1, −2, −3, which in turn promotes the expression of aggrecan to repair articular and epiphyseal-plate cartilage lesions. The micelles combine the bio-activity of CSA with selenium nanoparticles (SeNPs), which are less toxic than Na2SeO3, and low doses of CSA-SeNP are even superior to inorganic selenium in repairing cartilage lesions in rats. Thus, the developed CSA-SeNP is anticipated to be a promising selenium supplementation preparation in clinical application to address the difficulty of healing cartilage lesions with outstanding repair effects.
  •  
17.
  • Han, Jing, et al. (författare)
  • Role of inflammation in the process of clinical Kashin-Beck disease : latest findings and interpretations
  • 2015
  • Ingår i: Inflammation Research. - : Springer. - 1023-3830 .- 1420-908X. ; 64:11, s. 853-860
  • Tidskriftsartikel (refereegranskat)abstract
    • Kashin-Beck disease (KBD), a particular type of osteoarthritis (OA), and an endemic disease with articular cartilage damage and chondrocytes apoptosis, can affect many joints, and the most commonly affected joints are the knee, ankle, and hand. KBD has traditionally been classified as a non-inflammatory OA. However, recent studies have shown that inflammation has played an important role in the development of KBD. Nowadays, clinical KBD is not only an endemic disease, but also a combined result of many other non-endemic factors, which contains age, altered biomechanics, joint trauma and secondary OA. The characteristics of the developmental joint failure of advanced KBD, because of the biochemical and mechanical processes, are tightly linked with the interaction of joint damage and its immune response, as well as the subsequent state of chronic inflammation leading to KBD progression. In this review, we focus on the epidemiology, pathology, imaging, cytokines and transduction pathways investigating the association of inflammation with KBD; meanwhile, a wide range of data will be discussed to elicit our current hypotheses considering the role of inflammation and immune activation in KBD development.
  •  
18.
  • Han, Jing, et al. (författare)
  • Selenium deficiency and selenium supplements : biological effects on fibrosisin chronic diseases, from animal to human studies
  • 2019
  • Ingår i: Handbook of famine, starvation, and nutrient deprivation. - Cham : Springer. - 9783319400075 - 9783319553863 - 9783319553870 - 9783319553887 ; , s. 1911-1930
  • Bokkapitel (refereegranskat)abstract
    • Selenium is a trace element, which is required for normal growth and development of animals and humans. It works by incorporating into proteins to make selenoproteins. These selenoproteins help to prevent free radicals from causing cellular damage, which may in turn lead to the development of various chronic diseases. Selenium deficiency, although is rare, can happen when the body does not have enough selenium. This chapter will review systematically the effects of selenium deficiency on fibrosis in various chronic diseases, such as cardiac fibrosis, liver fibrosis, kidney fibrosis, cystic fibrosis, thyroid fibrosis, oral submucous fibrosis, and pancreatic fibrosis in both animal and human studies. Moreover, their prevention and treatment with selenium supplement will be evaluated as well.
  •  
19.
  • Hu, Ji-Chong, et al. (författare)
  • Oxidation behavior of Ni-based superalloy GH4738 under tensile stress
  • 2024
  • Ingår i: Rare Metals. - : NONFERROUS METALS SOC CHINA. - 1001-0521 .- 1867-7185.
  • Tidskriftsartikel (refereegranskat)abstract
    • Revealing the oxidation behavior of superalloys is crucial for optimizing material properties and extending service life. This study investigated the oxidation behavior of superalloy GH4738 under stress states at 850 degrees C. High-throughput specimens were fabricated to withstand different stresses at the same time. Isothermal oxidation samples were analyzed using the mass gain method to obtain oxidation kinetic curves. The results show that the external stress below 200 MPa could improve the oxidation resistance of the GH4738. With tensile stress increasing, the oxide layer becomes thinner, denser and more complete, while internal oxidation decreases. The tensile stress alters the structure of the external oxide layer from a two-layer to a three-layer configuration. The Cr2O3 oxide layer inhibits the outward diffusion of Ti, leading to Ti enrichment at the oxide-matrix interface and altering the oxidation mechanism of GH4738.
  •  
20.
  • Kanoni, Stavroula, et al. (författare)
  • Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis.
  • 2022
  • Ingår i: Genome biology. - : Springer Science and Business Media LLC. - 1474-760X .- 1465-6906 .- 1474-7596. ; 23:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these associations are frequently unknown, limiting understanding of these findings and hindering downstream translational efforts such as drug target discovery.To expand our understanding of the underlying biological pathways and mechanisms controlling blood lipid levels, we leverage a large multi-ancestry meta-analysis (N=1,654,960) of blood lipids to prioritize putative causal genes for 2286 lipid associations using six gene prediction approaches. Using phenome-wide association (PheWAS) scans, we identify relationships of genetically predicted lipid levels to other diseases and conditions. We confirm known pleiotropic associations with cardiovascular phenotypes and determine novel associations, notably with cholelithiasis risk. We perform sex-stratified GWAS meta-analysis of lipid levels and show that 3-5% of autosomal lipid-associated loci demonstrate sex-biased effects. Finally, we report 21 novel lipid loci identified on the X chromosome. Many of the sex-biased autosomal and X chromosome lipid loci show pleiotropic associations with sex hormones, emphasizing the role of hormone regulation in lipid metabolism.Taken together, our findings provide insights into the biological mechanisms through which associated variants lead to altered lipid levels and potentially cardiovascular disease risk.
  •  
21.
  • Lei, Jian, et al. (författare)
  • Abnormal expression of chondroitin sulfate sulfotransferases in the articular cartilage of pediatric patients with Kashin-Beck disease
  • 2020
  • Ingår i: Histochemistry and Cell Biology. - : Springer Science and Business Media LLC. - 0948-6143 .- 1432-119X. ; 153:3, s. 153-164
  • Tidskriftsartikel (refereegranskat)abstract
    • The objective of this study is to investigate the expression of enzymes involved in the sulfation of articular cartilage from proximal metacarpophalangeal (PMC) joint cartilage and distal metacarpophalangeal (DMC) joint cartilage in children with Kashin-Beck disease (KBD). The finger cartilage samples of PMC and DMC were collected from KBD and normal children aged 5-14 years old. Hematoxylin and eosin staining as well as immunohistochemical staining were used to observe the morphology and quantitate the expression of carbohydrate sulfotransferase 3 (CHST-3), carbohydrate sulfotransferase 12 (CHST-12), carbohydrate sulfotransferase 13 (CHST-13), uronyl 2-O-sulfotransferase (UST), and aggrecan. In the results, the numbers of chondrocyte decreased in all three zones of PMC and DMC in the KBD group. Less positive staining cells for CHST-3, CHST-12, CHST-13, UST, and aggrecan were observed in almost all three zones of PMC and DMC in KBD. The positive staining cell rates of CHST-12 were higher in superficial and middle zones of PMC and DMC in KBD, and a significantly higher rate of CHST-13 was observed only in superficial zone of PMC in KBD. In conclusion, the abnormal expression of chondroitin sulfate sulfotransferases in chondrocytes of KBD children may provide an explanation for the cartilage damage, and provide therapeutic targets for the treatment.
  •  
22.
  • Li, Danyang, et al. (författare)
  • The effects of T-2 toxin on the prevalence and development of Kashin–Beck disease in China : a meta-analysis and systematic review
  • 2016
  • Ingår i: Toxicology Research. - : Royal Society of Chemistry. - 2045-4538. ; 5:3, s. 731-751
  • Forskningsöversikt (refereegranskat)abstract
    • To reveal the influence of T-2 toxin detection rate and detection amount in food samples on Kashin–Beck disease (KBD), and define a linking mechanism between T-2 toxin induced chondrocytes or cartilage damage and KBD pathological changes, seven electronic databases were searched to obtain epidemiological and experimental studies. For epidemiological studies, subgroup analyses of the positive detection rate (PDR) of the T-2 toxin and PDR of the T-2 toxin with concentrations (PDRC of T-2) >100 ng g−1 were carried out, together with a histogram of the T-2 toxin concentrations in different food types in KBD and non-KBD areas. For experimental studies, a systematic review of a variety of chondrocyte and cartilage changes and damage induced by the T-2 toxin was performed. As a result, in epidemiological studies, meta-analysis demonstrated that the T-2 toxin PDR and the overall PDRC of T-2 toxin >100 ng g−1 showed a slightly significant increase in KBD areas than that in non-KBD areas separately. From the histogram, T-2 toxin accumulation was more serious in endemic areas, especially in wheat flour samples. In experimental studies, the T-2 toxin could induce damage of chondrocytes and cartilage, and inhibit cell proliferation by promoting apoptosis and catabolism as well as intracellular injuries, which is similar to the characteristics of KBD. In conclusion, the amount of T-2 toxin detected has a more significant influence on KBD prevalence and development as compared to the T-2 toxin detection rate. Besides, the T-2 toxin induces chondrocyte and cartilage damage through apoptosis, catabolism promotion and intracellular impairment, which is similar to the KBD change.
  •  
23.
  • Lyu, Yizhen, et al. (författare)
  • Identification of proteins and N-glycosylation sites of knee cartilage in Kashin-Beck Disease compared with osteoarthritis
  • 2022
  • Ingår i: International Journal of Biological Macromolecules. - : Elsevier. - 0141-8130 .- 1879-0003. ; 210, s. 128-138
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of this study was to identify crucial proteins and N-glycosylated sites in the pathological mechanism of Kashin-Beck Disease (KBD) compared with osteoarthritis (OA). Nine KBD knee subjects and nine OA knee subjects were selected for the study. Quantitative proteomics and N-glycoproteomics data of KBD and OA were obtained by protein and N-glycoprotein enrichment and LC-MS/MS analysis. Differentially expressed proteins or N-glycosylation sites were examined with a comparative analysis between KBD and OA. Total 2205 proteins were identified in proteomic analysis, of which 375 were significantly different. Among these, 121 proteins were up-regulated and 254 were down-regulated. In N-glycoproteomic analysis, 278 different N-glycosylated sites that were related to 187 N-glycoproteins were identified. Proteins and their N-glycosylated sites are associated with KBD pathological process including ITGB1, LRP1, ANO6, COL1A1, MXRA5, DPP4, and CSPG4. CRLF1 and GLG1 are proposed to associate with both KBD and OA pathological processes. Key pathways in KBD vs. OA proteomic and N-glycoproteomic analysis contained extracellular matrix receptor interaction, focal adhesion, phagosome, protein digestion, and absorption. N-glycosylation may influence the pathological process by affecting the integrity of chondrocytes or cartilage. It regulated the intercellular signal transduction pathway, which contributes to cartilage destruction in KBD.
  •  
24.
  • Qu, Chang, et al. (författare)
  • Functional significance of asymmetrical retention of parental alleles in a hybrid pine species complex
  • 2024
  • Ingår i: Journal of Systematics and Evolution. - : John Wiley & Sons. - 1674-4918 .- 1759-6831. ; 62:1, s. 135-148
  • Tidskriftsartikel (refereegranskat)abstract
    • Hybrid genomes usually harbor asymmetrical parental contributions. However, it is challenging to infer the functional significance of asymmetrical retention of parental alleles in hybrid populations of conifer trees. Here we investigated the diversity in the glutathione S-transferase (GST) gene family in a hybrid pine Pinus densata and its parents (Pinus tabuliformis and Pinus yunnanensis). Plant GSTs play major roles in protecting plants against biotic and abiotic stresses. In this study, 19 orthologous groups of GST genes were identified and cloned from these three species. We examined their expression in different tissues, and then purified the corresponding proteins to characterize their enzymatic activities and specificities toward different substrates. We found that among the 19 GST orthologous groups, divergence in gene expression and in enzymatic activities toward different substrates was prevalent. P. densata preferentially retained P. yunnanensis-like GSTs for 17 out of the 19 gene loci. We determined the first GST crystal structure from conifer species at a resolution of 2.19 Å. Based on this structure, we performed site-directed mutagenesis to replace amino acid residuals in different wild-types of GSTs to understand their functional impacts. Reciprocal replacement of amino acid residuals in native GSTs of P. densata and P. tabuliformis demonstrated significant changes in enzyme functions and identified key sites controlling GSTs activities. This study illustrates an approach to evaluating the functional significance of sequence variations in conifer genomes. Our study also sheds light on plausible mechanisms for controlling the selective retention of parental alleles in the P. densata genome.
  •  
25.
  • Qu, Jing, et al. (författare)
  • Stiffness, strength and adhesion characterization of electrochemically deposited conjugated polymer films
  • 2016
  • Ingår i: Acta Biomaterialia. - : ELSEVIER SCI LTD. - 1742-7061 .- 1878-7568. ; 31, s. 114-121
  • Tidskriftsartikel (refereegranskat)abstract
    • Conjugated polymers such as poly(3,4-ethylenedioxythiphene) (PEDOT) are of interest for a variety of applications including interfaces between electronic biomedical devices and living tissue. The mechanical properties, strength, and adhesion of these materials to solid substrates are all vital for long-term applications. We have been developing methods to quantify the mechanical properties of conjugated polymer thin films. In this paper, the stiffness, strength and the interfacial shear strength (adhesion) of electrochemically deposited PEDOT and PEDOT-co-1,3,5-tri[2-(3,4-ethylene dioxythienyl)]-benzene (EPh) were studied. The estimated Youngs modulus of the PEDOT films was 2.6 +/- 1.4 GPa, and the strain to failure was around 2%. The tensile strength was measured to be 56 +/- 27 MPa. The effective interfacial shear strength was estimated with a shear-lag model by measuring the crack spacing as a function of film thickness. For PEDOT on gold/palladium-coated hydrocarbon film substrates an interfacial shear strength of 0.7 +/- 0.3 MPa was determined. The addition of 5 mole% of a tri-functional EDOT crosslinker (EPh) increased the tensile strength of the films to 283 +/- 67 MPa, while the strain to failure remained about the same (2%). The effective interfacial shear strength was increased to 2.4 +/- 0.6 MPa. Statement of significance This paper describes methods for estimating the ultimate mechanical properties of electrochemically deposited conjugated polymer (here PEDOT and PEDOT copolymers) films. Of particular interest and novelty is our implementation of a cracking test to quantify the shear strength of the PEDOT thin films on these solid substrates. There is considerable interest in these materials as interfaces between biomedical devices and living tissue, however potential mechanisms and modes of failure are areas of continuing concern, and establishing methods to quantify the strengths of these interfaces are therefore of particular current interest. We are confident that these results will be useful to the broader biological materials community and are worthy of broader dissemination. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 44

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy