SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Raeymaekers Joost A. M.) "

Sökning: WFRF:(Raeymaekers Joost A. M.)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Santangelo, James S., et al. (författare)
  • Global urban environmental change drives adaptation in white clover
  • 2022
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 375
  • Tidskriftsartikel (refereegranskat)abstract
    • Urbanization transforms environments in ways that alter biological evolution. We examined whether urban environmental change drives parallel evolution by sampling 110,019 white clover plants from 6169 populations in 160 cities globally. Plants were assayed for a Mendelian antiherbivore defense that also affects tolerance to abiotic stressors. Urban-rural gradients were associated with the evolution of clines in defense in 47% of cities throughout the world. Variation in the strength of clines was explained by environmental changes in drought stress and vegetation cover that varied among cities. Sequencing 2074 genomes from 26 cities revealed that the evolution of urban-rural dines was best explained by adaptive evolution, but the degree of parallel adaptation varied among cities. Our results demonstrate that urbanization leads to adaptation at a global scale.
  •  
2.
  • Deflem, Io S., et al. (författare)
  • Predicting fish community responses to environmental policy targets
  • 2021
  • Ingår i: Biodiversity and Conservation. - : Springer Science and Business Media LLC. - 0960-3115 .- 1572-9710. ; 30:5, s. 1457-1478
  • Tidskriftsartikel (refereegranskat)abstract
    • The European Union adopted the Water Framework Directive (WFD) in the year 2000 to tackle the rapid degradation of freshwater systems. However, biological, hydromorphological, and physico-chemical water quality targets are currently not met, and identifying successful policy implementation and management actions is of key importance. We built a joint species distribution model for riverine fish in Flanders (Belgium) to better understand the response of fish communities to current environmental policy goals. Environmental covariates included physico-chemical variables and hydromorphological quality indices, while waterway distances accounted for spatial effects. We detected strong effects of physico-chemistry on fish species’ distributions. Evaluation of fish community responses to simulated policy scenarios revealed that targeting a ‘good’ status, following the WFD, increases average species richness with a fraction of species (0.13–0.69 change in accumulated occurrence probabilities). Targeting a ‘very good’ status, however, predicted an increase of 0.17–1.38 in average species richness. These simulations indicated that riverbed quality, nitrogen, and conductivity levels should be the focal point of policy. However, the weak response of species to a ‘good’ quality together with the complexity of nutrient-associated problems, suggest a challenging future for river restoration in Flanders.
  •  
3.
  • Pearman, Peter B., et al. (författare)
  • Monitoring of species' genetic diversity in Europe varies greatly and overlooks potential climate change impacts
  • 2024
  • Ingår i: Nature Ecology & Evolution. - : Springer Nature. - 2397-334X. ; 8:2, s. 267-281
  • Tidskriftsartikel (refereegranskat)abstract
    • Genetic monitoring of populations currently attracts interest in the context of the Convention on Biological Diversity but needs long-term planning and investments. However, genetic diversity has been largely neglected in biodiversity monitoring, and when addressed, it is treated separately, detached from other conservation issues, such as habitat alteration due to climate change. We report an accounting of efforts to monitor population genetic diversity in Europe (genetic monitoring effort, GME), the evaluation of which can help guide future capacity building and collaboration towards areas most in need of expanded monitoring. Overlaying GME with areas where the ranges of selected species of conservation interest approach current and future climate niche limits helps identify whether GME coincides with anticipated climate change effects on biodiversity. Our analysis suggests that country area, financial resources and conservation policy influence GME, high values of which only partially match species' joint patterns of limits to suitable climatic conditions. Populations at trailing climatic niche margins probably hold genetic diversity that is important for adaptation to changing climate. Our results illuminate the need in Europe for expanded investment in genetic monitoring across climate gradients occupied by focal species, a need arguably greatest in southeastern European countries. This need could be met in part by expanding the European Union's Birds and Habitats Directives to fully address the conservation and monitoring of genetic diversity. Comparing data on genetic monitoring efforts across Europe with the distributions of areas at species' climatic niche margins, the authors show that monitoring efforts should be expanded to populations at trailing niche margins to include genetic variation that may prove important for adaptation to ongoing climate warming.
  •  
4.
  • Bruijning, Marjolein, et al. (författare)
  • Host-parasite dynamics shaped by temperature and genotype : Quantifying the role of underlying vital rates
  • 2022
  • Ingår i: Functional Ecology. - : John Wiley & Sons. - 0269-8463 .- 1365-2435. ; 36:2, s. 485-499
  • Tidskriftsartikel (refereegranskat)abstract
    • Global warming challenges the persistence of local populations, not only through heat-induced stress, but also through indirect biotic changes. We study the interactive effects of temperature, competition and parasitism in the water flea Daphnia magna.We carried out a common garden experiment monitoring the dynamics of Daphnia populations along a temperature gradient. Halfway through the experiment, all populations became infected with the ectoparasite Amoebidium parasiticum, enabling us to study the interactive effects of temperature and parasite dynamics. We combined Integral Projection Models with epidemiological models, parameterized using the experimental data on the performance of individuals within dynamic populations. This enabled us to quantify the contribution of different vital rates and epidemiological parameters to population fitness across temperatures and Daphnia clones originating from two latitudes.Interactions between temperature and parasitism shaped competition, where Belgian clones performed better under infection than Norwegian clones. Infected Daphnia populations performed better at higher than at lower temperatures, mainly due to an increased host capability of reducing parasite loads. Temperature strongly affected individual vital rates, but effects largely cancelled out on a population-level. In contrast, parasitism strongly reduced fitness through consistent negative effects on all vital rates. As a result, temperature-mediated parasitism was more important than the direct effects of temperature in shaping population dynamics. Both the outcome of the competition treatments and the observed extinction patterns support our modelling results.Our study highlights that shifts in biotic interactions can be equally or more important for responses to warming than direct physiological effects of warming, emphasizing that we need to include such interactions in our studies to predict the competitive ability of natural populations experiencing global warming. A free Plain Language Summary can be found within the Supporting Information of this article.
  •  
5.
  • Fossen, Erlend, et al. (författare)
  • Do genetic differences in growth thermal reaction norms maintain genetic variation in timing of diapause induction?
  • 2021
  • Ingår i: Freshwater Biology. - : John Wiley & Sons. - 0046-5070 .- 1365-2427. ; 66:11, s. 2185-2195
  • Tidskriftsartikel (refereegranskat)abstract
    • An optimal timing for diapause induction through the sexual production of dormant propagules is expected in organisms with temporary populations. Yet, empirical studies often find high within-population genetic variation in the sexual production of such propagules, suggesting that this is a common feature of such organisms. Here, we hypothesize that genetic variation in the propensity to produce dormant propagules, P-d, is maintained by a genotype-by-environment interaction in clonal reproductive rates, where fast-growing genotypes within an environment should delay diapause relative to slow-growing genotypes. From this, we derive two predictions. First, if reaction norms of clonal reproduction cross between two environments, the genetic correlation of P-d between these environments should be negative. Second, the correlation between plasticity values of clonal reproduction and P-d should be negative. We tested these predictions by quantifying ephippia production in genotypes of a population of the facultative sexual cladoceran Daphnia magna at two temperatures. The population biomass at the onset of ephippia production was used as a measure of P-d, whereas juvenile somatic growth rate was used as a proxy for clonal reproductive rate. Plasticity for both measurements was derived from thermal reaction norms. Our results did not support either prediction, as neither the genetic correlation of P-d between environments, nor the correlation between plasticity values of growth and P-d were found to be significant. Our results suggest that genetic variation in the timing of diapause is not maintained by genetic differences in thermal clonal reproduction reaction norms. We propose as an alternative hypothesis that if there is variation across years in how the environment deteriorates over a season, fluctuating selection may favor genotypes with different P-d between years.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy