SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Raina Deepak) "

Sökning: WFRF:(Raina Deepak)

  • Resultat 1-25 av 48
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Dejea, Hector, et al. (författare)
  • Multi-scale characterization of the spatio-temporal interplay between elemental composition, mineral deposition and remodelling in bone fracture healing
  • 2023
  • Ingår i: Acta Biomaterialia. - 1742-7061. ; 167, s. 135-146
  • Tidskriftsartikel (refereegranskat)abstract
    • Bone mineralization involves a complex orchestration of physico-chemical responses from the organism. Despite extensive studies, the detailed mechanisms of mineralization remain to be elucidated. This study aims to characterize bone mineralization using an in-vivo long bone fracture healing model in the rat. The spatio-temporal distribution of relevant elements was correlated to the deposition and maturation of hydroxyapatite and the presence of matrix remodeling compounds (MMP-13). Multi-scale measurements indicated that (i) zinc is required for both the initial mineral deposition and resorption processes during mature mineral remodeling; (ii) Zinc and MMP-13 show similar spatio-temporal trends during early mineralization; (iii) Iron acts locally and in coordination with zinc during mineralization, thus indicating novel evidence of the time-events and inter-play between the elements. These findings improve the understanding of bone mineralization by explaining the link between the different constituents of this process throughout the healing time.
  •  
3.
  • Horstmann, Peter Frederik, et al. (författare)
  • Composite biomaterial as a carrier for bone-Active substances for metaphyseal tibial bone defect reconstruction in rats
  • 2017
  • Ingår i: Tissue Engineering - Part A. - : Mary Ann Liebert Inc. - 1937-3341 .- 1937-335X. ; 23:23-24, s. 1403-1412
  • Tidskriftsartikel (refereegranskat)abstract
    • Restoring lost bone is a major challenge in orthopedic surgery. Currently available treatment strategies have shortcomings, such as risk of infection, nonunion, and excessive resorption. Our primary aim was to study if a commercially available gentamicin-containing composite calcium sulfate/hydroxyapatite biomaterial (GBM) could serve as a carrier for local delivery of bone morphogenic protein-2 (BMP-2) and zoledronic acid (ZA) in a tibia defect model in rats. Empty and allograft-filled defects were used as controls. A 3 × 4-mm metaphyseal bone defect was created in the proximal tibia, and the rats were grouped according to defect filling: (1) Empty, (2) Allograft, (3) GBM, (4) GBM + ZA, and (5) GBM + ZA + BMP-2. In vivo microcomputed tomography (micro-CT) images at 4 weeks showed significantly higher mineralized tissue volume (MV) in the intramedullary defect region and the neocortical/callus region in all GBM-Treated groups. After euthanization at 8 weeks, ex vivo micro-CT showed that addition of ZA (GBM + ZA) and BMP-2 (GBM + ZA + BMP-2) mainly increased the neocortical and callus formation, with the highest MV in the combined ZA and BMP-2-Treated group. Qualitative histological analysis, verifying the increased neocortical/callus thickness and finding of trabecular bone in all GBM-Treated groups, supported that the differences in MV measured with micro-CT in fact represented bone tissue. In conclusion, GBM can serve as a carrier for ZA and BMP-2 leading to increased MV in the neocortex and callus of a metaphyseal bone defect in rats.
  •  
4.
  • Huang, Jintian, et al. (författare)
  • A calcium sulphate/hydroxyapatite ceramic biomaterial carrier for local delivery of tobramycin in bone infections : Analysis of rheology, drug release and antimicrobial efficacy
  • 2023
  • Ingår i: Ceramics International. - 0272-8842. ; 49:21, s. 33725-33734
  • Tidskriftsartikel (refereegranskat)abstract
    • Local targeted treatment of bone and joint infections using antibiotic-containing carriers is a common practice today. A recently FDA approved biphasic calcium sulphate/hydroxyapatite (CaS/HA) carrier containing gentamicin has been reported to give a sustained drug release, highly effective in eradicating bone infections. We present the first study evaluating the widely used aminoglycoside tobramycin (TOB) incorporated in the CaS/HA material with or without gentamycin (GEN) or vancomycin (VAN) with focus on rheology, drug release and antibacterial efficacy. In-vitro antibiotic release kinetics and biomaterial degradation were established by immersing the composites in phosphate buffered saline. The anti-bacterial effect of antibiotic containing CaS/HA composites as well as antibiotics release fractions were evaluated by Kirby-Bauer disk diffusion against S. aureus. The CaS/HA + GEN + TOB combination delayed setting to over 30 min whereas TOB + VAN slightly prolonged setting time (25 min vs. 15 min) still with good injectability. TOB was released from CaS/HA continuously for 35 days and during this period, the antibiotic loaded biomaterial could show a continuous anti-bacterial efficacy even at the last time point of day-35. After day-35, the pellets used for antibiotic release were taken out from release medium and broken into a paste. CaS/HA + TOB paste showed the largest ZOI (25 mm) against S. aureus ATCC 25923, while CaS/HA + VAN paste had no ZOI and CaS/HA + VAN + TOB paste had a ZOI of 18 mm. At the same time, the ZOI of CaS/HA + TOB against S. aureus P-3 was 14 mm compared to 0 mm in the other two groups. Adding TOB to CaS/HA containing VAN, extended the antimicrobial effect with a longer time and larger zone of inhibition, while no synergistic effect of the co-delivery was observed. Our in-vitro results indicate that CaS/HA could be used as a carrier for TOB as a local targeted delivery system in the treatment of bone infections.
  •  
5.
  • Kok, Joeri, et al. (författare)
  • Augmenting a dynamic hip screw with a calcium sulfate/hydroxyapatite biomaterial
  • 2021
  • Ingår i: Medical Engineering and Physics. - : Elsevier BV. - 1350-4533. ; 92, s. 102-109
  • Tidskriftsartikel (refereegranskat)abstract
    • Internal fixation failure in hip fractures can lead to reoperation. Calcium sulfate/hydroxyapatite (CaS/HA) is a biomaterial that can be used for augmenting fracture fixation. We aimed to determine whether an injection of 2 ml CaS/HA increases the fixation of a dynamic hip screw inserted in synthetic and human trabecular bone. The study consists of two parts: 1) synthetic bone blocks (n = 74), with three subgroups: empty (cannulated screw, no injection), cannulated, and fenestrated; and 2) osteoporotic human femoral heads (n = 29), with the same subgroups. The heads were imaged using µCT. Bone volume fraction, insertion angle, and head diameter were measured. Pullout tests were performed and peak force, stiffness, and work were measured. The fenestrated group showed increases in pullout strength compared to no injection in the synthetic blocks. The cannulated group showed a higher pullout strength in low-density blocks. In the femoral heads, the variation was larger and there were no significant differences between groups. The bone volume fraction correlated with the peak force and work, and the insertion angle correlated with the stiffness. CaS/HA can improve the fixation of a dynamic hip screw. For clinical use, spreading of the material around the threads of the screw must be ensured.
  •  
6.
  • Kok, Joeri, et al. (författare)
  • Fracture behavior of a composite of bone and calcium sulfate/hydroxyapatite
  • 2022
  • Ingår i: Journal of the Mechanical Behavior of Biomedical Materials. - : Elsevier BV. - 1751-6161. ; 130
  • Tidskriftsartikel (refereegranskat)abstract
    • Calcium sulfate/hydroxyapatite (CaS/HA) biomaterials have been investigated for use in several orthopedic applications. However, the mechanical interactions between the composite of CaS/HA and bone at the microscale are still unknown. The aim of this study was to determine if and how augmentation with CaS/HA alters the fracture behavior of bone. Eleven cylinders of trabecular bone were drilled from human femoral heads and cleaned from bone marrow. Among them, five cylinders were injected with CaS/HA to generate composite specimens, while the others were kept intact. One extra specimen of pure CaS/HA was prepared. All specimens were compressed in situ using synchrotron X-ray tomography and imaged at ∼2% strain intervals. Structural properties were calculated from the images in unloaded state and mechanical properties were determined from the load-curves. CaS/HA alone displayed the highest peak force and stiffness and the lowest strain at fracture. All composite specimens had a higher peak force than the pure bone specimens and the composite specimens had higher toughness than the pure CaS/HA specimen. Furthermore, the fracture behavior was analyzed further to characterize the local deformations. The pure bone specimens presented damage in multiple trabeculae and the CaS/HA specimen displayed sharp transition in strains, with low strain in one load step and large cracks in the next. The composite specimens deformed uniformly, with the CaS/HA preventing tissue damage and the bone preventing cracks in the CaS/HA from propagating through the specimen. In conclusion, using tomography with in situ loading, it was possible to show how CaS/HA can help prevent bone tissue damage before global failure.
  •  
7.
  • Kok, Joeri, et al. (författare)
  • Fracture strength of the proximal femur injected with a calcium sulfate/hydroxyapatite bone substitute
  • 2019
  • Ingår i: Clinical Biomechanics. - : Elsevier BV. - 0268-0033. ; 63, s. 172-178
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Available interventions for preventing fragility hip fractures show limited efficacy. Injection of a biomaterial as bone substitute could increase the fracture strength of the hip. This study aimed to show the feasibility of injecting a calcium sulfate/hydroxyapatite based biomaterial in the femoral neck and to calculate the consequent change in strength using the finite element method. Methods: Five patients were injected with 10 ml calcium sulfate/hydroxyapatite in their femoral neck. Quantitative CT scans were taken before and after injection. Five additional patients with fragility hip fractures were also scanned and the images from the non-fractured contralateral sides were used. Finite element models were created for all proximal femora with and without injection and the models were tested under stance and sideways fall loading until fracture. The change in fracture strength caused by the injection was calculated. Additionally, perturbations in volume, location, and stiffness of the injected material were created to investigate their contribution to the fracture strength increase. Findings: The 10 ml injection succeeded in all patients. Baseline simulations showed theoretical fracture strength increases of 0–9%. Volume increase, change in location and increase in stiffness of the material led to increases in fracture strength of 1–27%, −8-26% and 0–17%, respectively. Altering the location of the injection to a more lateral position and increasing the stiffness of the material led to increases in fracture strength of up to 42%. Interpretation: This study shows that an injection of calcium sulfate/hydroxyapatite is feasible and can theoretically increase the hip's fracture strength.
  •  
8.
  • Li, Xiaoya, et al. (författare)
  • Nonionic nontoxic antimicrobial polymers: indole-grafted poly(vinyl alcohol) with pendant alkyl or ether groups
  • 2022
  • Ingår i: Polymer Chemistry. - : Royal Society of Chemistry (RSC). - 1759-9954 .- 1759-9962. ; 13:16, s. 2307-2319
  • Tidskriftsartikel (refereegranskat)abstract
    • A series of new nonionic antimicrobial polymers with a biodegradable polyvinyl alcohol (PVA) backbone grafted with indole units and different hydrophobic alkyl or ether groups were synthesized by facile esterification. The chemical structures and thermal properties of the obtained polymers were characterized by GPC, NMR, FTIR, WAXD, TGA and DSC analyses. All these nonionic polymers showed a significant antibacterial effect similar to gentamicin against 9 food and human pathogenic bacteria according to the disk diffusion assay. The presence of alkyl or ether groups in most cases did not significantly affect the antibacterial effect compared to the polymer with unsubstituted indole units (with N–H moieties). The impacts of the OH conversion and molecular weight of the obtained polymers on their antimicrobial and anti-quorum sensing effects were also preliminarily investigated. Finally, the obtained indole-grafted PVAs were subjected to MTT assay using a mammalian cell line and hemolysis investigations, and the results showed excellent biocompatibility, particularly for those with ether substituents.
  •  
9.
  • Li, Xiaoya, et al. (författare)
  • Synthesis, Enzymatic Degradation, and Polymer-Miscibility Evaluation of Nonionic Antimicrobial Hyperbranched Polyesters with Indole or Isatin Functionalities
  • 2021
  • Ingår i: Biomacromolecules. - : American Chemical Society (ACS). - 1525-7797 .- 1526-4602. ; 22:5, s. 2256-2271
  • Tidskriftsartikel (refereegranskat)abstract
    • Most macromolecular antimicrobials are ionic and thus lack miscibility/compatibility with nonionic substrate materials. In this context, nonionic hyperbranched polyesters (HBPs) with indole or isatin functionality were rationally designed, synthesized, and characterized. Antimicrobial disk diffusion assay indicated that these HBPs showed significant antibacterial activity against 8 human pathogenic bacteria compared to small molecules with indole or isatin groups. According to DSC measurements, up to 20% indole-based HBP is miscible with biodegradable polyesters (polyhydroxybutyrate or polycaprolactone), which can be attributed to the favorable hydrogen bonding between the N-H moiety of indole and the C=O of polyesters. HBPs with isatin or methylindole were completely immiscible with the same matrices. None of the HBPs leaked out from plastic matrix after being immersed in water for 5 days. The incorporation of indole into HBPs as well as small molecules facilitated their enzymatic degradation with PETase from Ideonella sakaiensis, while isatin had a complex impact. Molecular docking simulations of monomeric molecules with PETase revealed different orientations of the molecules at the active site due to the presence of indole or isatin groups, which could be related to the observed different enzymatic degradation behavior. Finally, biocompatibility analysis with a mammalian cell line showed the negligible cytotoxic effect of the fabricated HBPs.
  •  
10.
  •  
11.
  • Liu, Yang, et al. (författare)
  • Bone mineral : A trojan horse for bone cancers. Efficient mitochondria targeted delivery and tumor eradication with nano hydroxyapatite containing doxorubicin
  • 2022
  • Ingår i: Materials Today Bio. - : Elsevier BV. - 2590-0064. ; 14
  • Tidskriftsartikel (refereegranskat)abstract
    • Efficient systemic pharmacological treatment of solid tumors is hampered by inadequate tumor concentration of cytostatics necessitating development of smart local drug delivery systems. To overcome this, we demonstrate that doxorubicin (DOX), a cornerstone drug used for osteosarcoma treatment, shows reversible accretion to hydroxyapatite (HA) of both nano (nHA) and micro (mHA) size. nHA particles functionalized with DOX get engulfed in the lysosome of osteosarcoma cells where the acidic microenvironment causes a disruption of the binding between DOX and HA. The released DOX then accumulates in the mitochondria causing cell starvation, reduced migration and apoptosis. The HA+DOX delivery system was also tested in-vivo on osteosarcoma bearing mice. Locally delivered DOX via the HA particles had a stronger tumor eradication effect compared to the controls as seen by PET-CT and immunohistochemical staining of proliferation and apoptosis markers. These results indicate that in addition to systemic chemotherapy, an adjuvant nHA could be used as a carrier for intracellular delivery of DOX for prevention of tumor recurrence after surgical resection in an osteosarcoma. Furthermore, we demonstrate that nHA particles are pivotal in this approach but a combination of nHA with mHA could increase the safety associated with particulate nanomaterials while maintaining similar therapeutic potential.
  •  
12.
  • Liu, Yang, et al. (författare)
  • Longitudinal in vivo biodistribution of nano and micro sized hydroxyapatite particles implanted in a bone defect
  • 2022
  • Ingår i: Frontiers in Bioengineering and Biotechnology. - : Frontiers Media SA. - 2296-4185. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Hydroxyapatite (HA) has been widely used as a bone substitute and more recently as a carrier for local delivery of bone targeted drugs. Majority of the approved HA based biomaterials and drug carriers comprise of micrometer sized particulate HA (mHA) or granules and can therefore only be used for extracellular drug release. This shortcoming could be overcome with the use of cell penetrating HA nanoparticles (nHA) but a major concern with the clinical use of nHA is the lack of data on its in vivo biodistribution after implantation. In this study, we aimed to study the in vivo biodistribution of locally implanted nHA in a clinically relevant tibial void in rats and compare it with mHA or a combination of mHA and nHA. To enable in vivo tracking, HA particles were first labelled with 14C-zoledronic acid (14C-ZA), known to have a high binding affinity to HA. The labelled particles were then implanted in the animals and the radioactivity in the proximal tibia and vital organs was detected at various time points (Day 1, 7 and 28) post-implantation using scintillation counting. The local distribution of the particles in the bone was studied with micro-CT. We found that majority (>99.9%) of the implanted HA particles, irrespective of the size, stayed locally at the implantation site even after 28 days and the findings were confirmed using micro-CT. Less than 0.1% radioactivity was observed in the kidney and the spleen at later time points of day 7 and 28. No pathological changes in any of the vital organs could be observed histologically. This is the first longitudinal in vivo HA biodistribution study showing that the local implantation of nHA particles in bone is safe and that nHA could potentially be used for localized drug delivery.
  •  
13.
  • Liu, Yang, et al. (författare)
  • Sustained and controlled delivery of doxorubicin from an in-situ setting biphasic hydroxyapatite carrier for local treatment of a highly proliferative human osteosarcoma
  • 2021
  • Ingår i: Acta Biomaterialia. - : Elsevier BV. - 1742-7061. ; 131, s. 555-571
  • Tidskriftsartikel (refereegranskat)abstract
    • Doxorubicin (DOX) is a cornerstone drug in the treatment of osteosarcoma. However, achieving sufficient concentration in the tumor tissue after systemic administration with few side effects has been a challenge. Even with the most advanced nanotechnology approaches, less than 5% of the total administered drug gets delivered to the target site. Alternatives to increase the local concentration of DOX within the tumor using improved drug delivery methods are needed. In this study, we evaluate a clinically approved calcium sulfate/hydroxyapatite (CaS/HA) carrier, both in-vitro and in-vivo, for local, sustained and controlled delivery of DOX to improve osteosarcoma treatment. In-vitro drug release studies indicated that nearly 28% and 36% of the loaded drug was released over a period of 4-weeks at physiological pH (7.4) and acidic pH (5), respectively. About 63% of the drug had been released after 4-weeks in-vivo. The efficacy of the released drug from the CaS/HA material was verified on two human osteosarcoma cell lines MG-63 and 143B. It was demonstrated that the released drug fractions functioned the same way as the free drug without impacting its efficacy. Finally, the carrier system with DOX was assessed using two clinically relevant human osteosarcoma xenograft models. Compared to no treatment or the clinical standard of care with systemic DOX administration, the delivery of DOX using a CaS/HA biomaterial could significantly hinder tumor progression by inhibiting angiogenesis and cell proliferation. Our results indicate that a clinically approved CaS/HA biomaterial containing cytostatics could potentially be used for the local treatment of osteosarcoma. Statement of significance: The triad of doxorubicin (DOX), methotrexate and cisplatin has routinely been used for the treatment of osteosarcoma. These drugs dramatically improved the prognosis, but 45-55% of the patients respond poorly to the treatment with low 5-year survival. In the present study, we repurpose the cornerstone drug DOX by embedding it in a calcium sulfate/hydroxyapatite (CaS/HA) biomaterial, ensuring a spatio-temporal drug release and a hypothetically higher and longer lasting intra-tumoral concentration of DOX. This delivery system could dramatically hinder the progression of a highly aggressive osteosarcoma compared to systemic administration, by inhibiting angiogenesis and cell proliferation. Our data show an efficient method for supplementary osteosarcoma treatment with possible rapid translational potential due to clinically approved constituents.
  •  
14.
  • Liu, Yang, et al. (författare)
  • Sustained delivery of a heterodimer bone morphogenetic protein-2/7 via a collagen hydroxyapatite scaffold accelerates and improves critical femoral defect healing
  • 2023
  • Ingår i: Acta Biomaterialia. - : Elsevier BV. - 1878-7568 .- 1742-7061. ; 162, s. 164-181
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite the glimmer of hope provided by the discovery and commercialization of bone morphogenetic protein-2 (BMP-2) as a bone graft substitute, side effects related to the use of supraphysiological doses have hindered its clinical usage. In this study, we compared the osteoinductive potential of BMP-2 homodimer with a heterodimer of BMP-2/7, both delivered via a collagen-hydroxyapatite (CHA) scaffold delivery system, with the aim to reduce the overall therapeutic BMP doses and the associated side-effects. We first show that the incorporation of hydroxyapatite in collagen-based BMP delivery systems is pivotal for achieving efficient BMP sequestration and controlled release. Using an ectopic implantation model, we then showed that the CHA+BMP-2/7 was more osteoinductive than CHA+BMP-2. Further evaluation of the molecular mechanisms responsible for this increased osteoinductivity at an early stage in the regeneration process indicated that the CHA+BMP-2/7 enhanced progenitor cell homing at the implantation site, upregulated the key transcriptomic determinants of bone formation, and increased the production of bone extracellular matrix components. Using fluorescently labelled BMP-2/7 and BMP-2, we demonstrated that the CHA scaffold provided a long-term delivery of both molecules for at least 20 days. Finally, using a rat femoral defect model, we showed that an ultra-low dose (0.5 µg) of BMP-2/7 accelerated fracture healing and performed at a level comparable to 20-times higher BMP-2 dose. Our results indicate that the sustained delivery of BMP-2/7 via a CHA scaffold could bring us a step closer in the quest for the use of physiological growth factor doses in fracture healing. STATEMENT OF SIGNIFICANCE: • Incorporation of hydroxyapatite (HA) in a collagen scaffold dramatically improves bone morphogenic protein (BMP) sequestration via biophysical interactions with BMP, thereby providing more controlled BMP release compared with pristine collagen. • We then investigate the molecular mechanisms responsible for increased osteoinductive potential of a heterodimer BMP-2/7 with is clinically used counterpart, the BMP-2 homodimer. • The superior osteoinductive properties of BMP-2/7 are a consequence of its direct positive effect on progenitor cell homing at the implantation site, which consequently leads to upregulation of cartilage and bone related genes and biochemical markers. • An ultra-low dose of BMP-2/7 delivered via a collagen-HA (CHA) scaffold leads to accelerated healing of a critical femoral defect in rats while a 20-times higher BMP-2 dose was required to achieve comparable results.
  •  
15.
  • Markeviciute, Vetra, et al. (författare)
  • Systemically administered zoledronic acid activates locally implanted synthetic hydroxyapatite particles enhancing peri-implant bone formation : A regenerative medicine approach to improve fracture fixation
  • Ingår i: Acta Biomaterialia. - 1742-7061.
  • Tidskriftsartikel (refereegranskat)abstract
    • Fracture fixation in an ageing population is challenging and fixation failure increases mortality and societal costs. We report a novel fracture fixation treatment by applying a hydroxyapatite (HA) based biomaterial at the bone-implant interface and biologically activating the biomaterial by systemic administration of a bisphosphonate (zoledronic acid, ZA). We first used an animal model of implant integration and applied a calcium sulphate (CaS)/HA biomaterial around a metallic screw in the tibia of osteoporotic rats. Using systemic ZA administration at 2-weeks post-surgery, we demonstrated that the implant surrounded by HA particles showed significantly higher peri‑implant bone formation compared to the unaugmented implants at 6-weeks. We then evaluated the optimal timing (day 1, 3, 7 and 14) of ZA administration to achieve a robust effect on peri‑implant bone formation. Using fluorescent ZA, we demonstrated that the uptake of ZA in the CaS/HA material was the highest at 3- and 7-days post-implantation and the uptake kinetics had a profound effect on the eventual peri‑implant bone formation. We furthered our concept in a feasibility study on trochanteric fracture patients randomized to either CaS/HA augmentation or no augmentation followed by systemic ZA treatment. Radiographically, the CaS/HA group showed signs of increased peri‑implant bone formation compared with the controls. Finally, apart from HA, we demonstrated that the concept of biologically activating a ceramic material by ZA could also be applied to β-tricalcium phosphate. This novel approach for fracture treatment that enhances immediate and long-term fracture fixation in osteoporotic bone could potentially reduce reoperations, morbidity and mortality. Statement of significance: • Fracture fixation in an ageing population is challenging. Biomaterial-based augmentation of fracture fixation devices has been attempted but lack of satisfactory biological response limits their widespread use. • We report the biological activation of locally implanted microparticulate hydroxyapatite (HA) particles placed around an implant by systemic administration of the bisphosphonate zoledronic acid (ZA). The biological activation of HA by ZA enhances peri‑implant bone formation. •Timing of ZA administration after HA implantation is critical for optimal ZA uptake and consequently determines the extent of peri‑implant bone formation. • We translate the developed concept from small animal models of implant integration to a proof-of-concept clinical study on osteoporotic trochanteric fracture patients. • ZA based biological activation can also be applied to other calcium phosphate biomaterials.
  •  
16.
  • Mathavan, Neashan, et al. (författare)
  • 18 F-fluoride as a prognostic indicator of bone regeneration
  • 2019
  • Ingår i: Acta Biomaterialia. - : Elsevier BV. - 1742-7061. ; 90, s. 403-411
  • Tidskriftsartikel (refereegranskat)abstract
    • Positron emission tomography (PET) is a form of nuclear imaging, which quantitatively assesses the metabolic activity through the uptake of radioactive tracers. 18 F-fluoride is a positron-emitting isotope with high affinity for bone. Despite its potential as a non-invasive measure of bone metabolism, quantitative 18 F-fluoride PET has only been used sparsely in orthopaedic applications. It has been speculated that 18 F-fluoride PET characterizes cellular activity of bone forming cells in the early stages of the regenerative process and therefore precedes the mineralization detected by conventional computed tomography (CT). Our aim was thus to combine in vivo PET and CT to map the spatiotemporal course of bone regeneration during fracture healing using an open femur fracture model in the rat and characterize regeneration in untreated and pharmacologically treated fractures using both imaging modalities. We hypothesized that PET 18 F-fluoride tracer activity at an earlier time point is predictive of CT measured bone formation at a later time point. On the basis of the RMSE and R 2 metrics of linear regression models it was conceivable for bone volumes to be predicted up to three weeks in advance in a rodent model (RMSE: 14 mm 3 –18 mm 3 , R 2 : 0.79–0.82). Moreover, the data suggested that 18 F-fluoride positron-emitting activity had the potential to separate bone formation from resorption and thus could be of interest across a wide array of orthopaedic applications. Based on this data, we conclude that 18 F-fluoride positron-emitting activity is strongly correlated to bone formation and could potentially predict the volume of bone regenerated at fracture sites. The volume of bone regenerated at a fracture site can be interpreted as a measure of the healing response and 18 F-fluoride should be further investigated as a predictive diagnostic tool to identify if bone fractures will heal successfully or result in delayed healing or non-union. Statement of Significance: We aimed to combine in vivo PET and CT imaging to map the spatiotemporal course of bone regeneration during fracture healing using an open femur fracture model in the rat and characterize regeneration in untreated and pharmacologically treated fractures using both imaging modalities. We hypothesized that PET 18 F-fluoride tracer activity at an earlier time point is predictive of CT measured bone formation at a later time point. Our data suggest that 18 F-fluoride positron-emitting activity can separate bone formation from resorption and thus could be of interest across a wide array of orthopaedic applications including as a predictive diagnostic tool to identify if fractures will heal successfully or result in delayed healing or non-union.
  •  
17.
  • Mathavan, Neashan, et al. (författare)
  • Longitudinal in vivo monitoring of callus remodeling in BMP-7- and Zoledronate-treated fractures
  • 2020
  • Ingår i: Journal of Orthopaedic Research. - : Wiley. - 0736-0266 .- 1554-527X. ; 38:9, s. 1905-1913
  • Tidskriftsartikel (refereegranskat)abstract
    • Pharmacological interventions that combine pro-anabolic and anti-catabolic drugs to treat recalcitrant fractures have shown remarkable efficacy in augmenting the regenerative response. Specifically, in rodent models of fracture repair, treatment with BMP-7 and Zoledronate (ZA) has almost uniformally resulted in complete union. However, delayed remodeling may be problematic for ZA-treated fractures. The increase in newly formed bone is substantial but if translated in humans, delayed remodeling may delay functional recovery. Our objective was to determine if, and to what extent, bone morphogenetic protein (BMP) (in synergistically administered BMP-7 + ZA) can modulate the delayed hard callus remodeling caused by ZA. Callus remodeling in BMP-7-only and BMP-7 + ZA-treated osteotomies were monitored using in vivo µCT to follow the progression of healing at 6-week intervals over 24 weeks in an open femoral fracture rat model. None of the groups recovered baseline cortical bone volumes within 24 weeks post-osteotomy. Treatment prolonged the remodeling phase but the kinetics of remodeling appeared to differ between BMP and BMP + ZA groups. However, the mechanical characteristics were largely restored. Callus/bone volumes in BMP-only treated fractures peaked as early as week 3 suggesting that remodeling is stimulated prematurely. However, this rate of remodeling was not maintained as BMP-7 was found to exhibit negligible changes in callus/bone volumes between weeks 6 and 18, whereas declines in callus/bone volumes were present at these time points in the BMP-7 + ZA group. Our findings suggest that inclusion of ZA as an anti-catabolic agent may not be detrimental to the regenerative process despite a prolonged remodeling phase.
  •  
18.
  • Mishra, Ruchi, et al. (författare)
  • Study of in Vitro and in Vivo Bone Formation in Composite Cryogels and the Influence of Electrical Stimulation.
  • 2015
  • Ingår i: International Journal of Biological Sciences. - : Ivyspring International Publisher. - 1449-2288. ; 11:11, s. 1325-1336
  • Tidskriftsartikel (refereegranskat)abstract
    • This work studies osteoinduction and bone conduction in polyvinyl alcohol-tetraethylorthosilicate-alginate-calcium oxide (PTAC) biocomposite cryogels along with the synergistic effect of electrical stimulation. In vitro osteoinduction of C2C12 myoblast towards osteogenic lineage is demonstrated through alkaline phosphatase assay, scanning electron microscopy and energy dispersive X-ray spectroscopy. These results were followed by in vivo implantation studies of PTAC biocomposite cryogel scaffolds in the bone conduction chamber model depicting bone formation after 24 days based on immunohistological staining for osteogenic markers, i.e., collagen type I (Col I), osteocalcin (OCN), osteopontin (OPN) and bone sialoprotein (BSP). Further, osteogenic differentiation of murine mesenchymal stem cells was studied with and without electrical stimulation. The q-PCR analysis shows that the electrically stimulated cryogels exhibit ~ 6 folds higher collagen type I and ~ 10 folds higher osteopontin mRNA level, in comparison to the unstimulated cryogels. Thus, PTAC biocomposite cryogels present osteoinductive and osteoconductive properties during in vitro and in vivo studies and support osteogenic differentiation of mesenchymal stem cells under the influence of electrical stimulation.
  •  
19.
  • Pigeot, Sébastien, et al. (författare)
  • Manufacturing of Human Tissues as off-the-Shelf Grafts Programmed to Induce Regeneration
  • 2021
  • Ingår i: Advanced Materials. - : Wiley. - 0935-9648 .- 1521-4095. ; 33:43
  • Tidskriftsartikel (refereegranskat)abstract
    • Design criteria for tissue-engineered materials in regenerative medicine include robust biological effectiveness, off-the-shelf availability, and scalable manufacturing under standardized conditions. For bone repair, existing strategies rely on primary autologous cells, associated with unpredictable performance, limited availability and complex logistic. Here, a conceptual shift based on the manufacturing of devitalized human hypertrophic cartilage (HyC), as cell-free material inducing bone formation by recapitulating the developmental process of endochondral ossification, is reported. The strategy relies on a customized human mesenchymal line expressing bone morphogenetic protein-2 (BMP-2), critically required for robust chondrogenesis and concomitant extracellular matrix (ECM) enrichment. Following apoptosis-driven devitalization, lyophilization, and storage, the resulting off-the-shelf cartilage tissue exhibits unprecedented osteoinductive properties, unmatched by synthetic delivery of BMP-2 or by living engineered grafts. Scalability and pre-clinical efficacy are demonstrated by bioreactor-based production and subsequent orthotopic assessment. The findings exemplify the broader paradigm of programming human cell lines as biological factory units to engineer customized ECMs, designed to activate specific regenerative processes.
  •  
20.
  • Puthia, Manoj, et al. (författare)
  • Bioactive Suture with Added Innate Defense Functionality for the Reduction of Bacterial Infection and Inflammation
  • 2023
  • Ingår i: Advanced healthcare materials. - 2192-2659. ; 12:31
  • Tidskriftsartikel (refereegranskat)abstract
    • Surgical site infections (SSI) are a clinical and economic burden. Suture-associated SSI may develop when bacteria colonize the suture surface and form biofilms that are resistant to antibiotics. Thrombin-derived C-terminal peptide (TCP)-25 is a host defense peptide with a unique dual mode of action that can target both bacteria and the excessive inflammation induced by bacterial products. The peptide demonstrates therapeutic potential in preclinical in vivo wound infection models. In this study, the authors set out to explore whether TCP-25 can provide a new bioactive innate immune feature to hydrophilic polyglactin sutures (Vicryl). Using a combination of biochemical, biophysical, antibacterial, biofilm, and anti-inflammatory assays in vitro, in silico molecular modeling studies, along with experimental infection and inflammation models in mice, a proof-of-concept that TCP-25 can provide Vicryl sutures with a previously undisclosed host defense capacity, that enables targeting of bacteria, biofilms, and the accompanying inflammatory response, is shown.
  •  
21.
  • Puthia, Manoj, et al. (författare)
  • Bioactive Suture with Added Innate Defense Functionality for the Reduction of Bacterial Infection and Inflammation
  • 2023
  • Ingår i: Advanced Healthcare Materials. - : Wiley. - 2192-2640 .- 2192-2659. ; 12:31, s. 1-20
  • Tidskriftsartikel (refereegranskat)abstract
    • Surgical site infections (SSI) are a clinical and economic burden. Suture-associated SSI may develop when bacteria colonize the suture surface and form biofilms that are resistant to antibiotics. Thrombin-derived C-terminal peptide (TCP)-25 is a host defense peptide with a unique dual mode of action that can target both bacteria and the excessive inflammation induced by bacterial products. The peptide demonstrates therapeutic potential in preclinical in vivo wound infection models. In this study, the authors set out to explore whether TCP-25 can provide a new bioactive innate immune feature to hydrophilic polyglactin sutures (Vicryl). Using a combination of biochemical, biophysical, antibacterial, biofilm, and anti-inflammatory assays in vitro, in silico molecular modeling studies, along with experimental infection and inflammation models in mice, a proof-of-concept that TCP-25 can provide Vicryl sutures with a previously undisclosed host defense capacity, that enables targeting of bacteria, biofilms, and the accompanying inflammatory response, is shown.
  •  
22.
  • Qayoom, Irfan, et al. (författare)
  • A biphasic nanohydroxyapatite/calcium sulphate carrier containing Rifampicin and Isoniazid for local delivery gives sustained and effective antibiotic release and prevents biofilm formation
  • 2020
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Long term multiple systemic antibiotics form the cornerstone in the treatment of bone and joint tuberculosis, often combined with local surgical eradication. Implanted carriers for local drug delivery have recently been introduced to overcome some of the limitations associated with conventional treatment strategies. In this study, we used a calcium sulphate hemihydrate (CSH)/nanohydroxyapatite (nHAP) based nanocement (NC) biomaterial as a void filler as well as a local delivery carrier of two standard of care tuberculosis drugs, Rifampicin (RFP) and Isoniazid (INH). We observed that the antibiotics showed different release patterns where INH showed a burst release of 67% and 100% release alone and in combination within one week, respectively whereas RFP showed sustained release of 42% and 49% release alone and in combination over a period of 12 weeks, respectively indicating different possible interactions of antibiotics with nHAP. The interactions were studied using computational methodology, which showed that the binding energy of nHAP with RFP was 148 kcal/mol and INH was 11 kcal/mol, thus varying substantially resulting in RFP being retained in the nHAP matrix. Our findings suggest that a biphasic ceramic based drug delivery system could be a promising treatment alternative to bone and joint TB.
  •  
23.
  • Raina, Deepak Bushan, et al. (författare)
  • A Biphasic Calcium Sulphate/Hydroxyapatite Carrier Containing Bone Morphogenic Protein-2 and Zoledronic Acid Generates Bone
  • 2016
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • In orthopedic surgery, large amount of diseased or injured bone routinely needs to be replaced. Autografts are mainly used but their availability is limited. Commercially available bone substitutes allow bone ingrowth but lack the capacity to induce bone formation. Thus, off-the-shelf osteoinductive bone substitutes that can replace bone grafts are required. We tested the carrier properties of a biphasic, calcium sulphate and hydroxyapatite ceramic material, containing a combination of recombinant human bone morphogenic protein-2 (rhBMP-2) to induce bone, and zoledronic acid (ZA) to delay early resorption. In-vitro, the biphasic material released 90% of rhBMP-2 and 10% of ZA in the first week. No major changes were found in the surface structure using scanning electron microscopy (SEM) or in the mechanical properties after adding rhBMP-2 or ZA. In-vivo bone formation was studied in an abdominal muscle pouch model in rats (n = 6/group). The mineralized volume was significantly higher when the biphasic material was combined with both rhBMP-2 and ZA (21.4 ± 5.5 mm3) as compared to rhBMP-2 alone (10.9 ± 2.1 mm3) when analyzed using micro computed tomography (μ-CT) (p 0.01). In the clinical setting, the biphasic material combined with both rhBMP-2 and ZA can potentially regenerate large volumes of bone.
  •  
24.
  • Raina, Deepak Bushan, et al. (författare)
  • A facile one-stage treatment of critical bone defects using a calcium sulfate/hydroxyapatite biomaterial providing spatiotemporal delivery of bone morphogenic protein-2 and zoledronic acid
  • 2020
  • Ingår i: Science Advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 6:48
  • Tidskriftsartikel (refereegranskat)abstract
    • Bone morphogenic proteins (BMPs) are the only true osteoinductive molecules. Despite being tremendously potent, their clinical use has been limited for reasons including supraphysiological doses, suboptimal delivery systems, and the pro-osteoclast effect of BMPs. Efforts to achieve spatially controlled bone formation using BMPs are being made. We demonstrate that a carrier consisting of a powder of calcium sulfate/hydroxyapatite (CaS/HA) mixed with bone active molecules provides an efficient drug delivery platform for critical femoral defect healing in rats. The bone-active molecules were composed of osteoinductive rhBMP-2 and the bisphosphonate, and zoledronic acid (ZA) was chosen to overcome BMP-2-induced bone resorption. It was demonstrated that delivery of rhBMP-2 was necessary for critical defect healing and restoration of mechanical properties, but codelivery of BMP-2 and ZA led to denser and stronger fracture calluses. Together, the CaS/HA biomaterial with rhBMP-2 and/or ZA can potentially be used as an off-the-shelf alternative to autograft bone.
  •  
25.
  • Raina, Deepak Bushan, et al. (författare)
  • A New Augmentation Method for Improved Screw Fixation in Fragile Bone
  • 2022
  • Ingår i: Frontiers in Bioengineering and Biotechnology. - : Frontiers Media SA. - 2296-4185. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Pertrochanteric fractures (TF) due to osteoporosis constitute nearly half of all proximal femur fractures. TFs are treated with a surgical approach and fracture fixation is achieved using metallic fixation devices. Poor quality cancellous bone in osteoporotic patients makes anchorage of a fixation device challenging, which can lead to failure of the fracture fixation. Methods to reinforce the bone-implant interface using bone cement (PMMA) and other calcium phosphate cements in TFs have been described earlier but a clear evidence on the advantage of using such biomaterials for augmentation is weak. Furthermore, there is no standardized technique for delivering these biomaterials at the bone-implant interface. In this study, we firstly describe a method to deliver a calcium sulphate/hydroxyapatite (CaS/HA) based biomaterial for the augmentation of a lag-screw commonly used for TF fixation. We then used an osteoporotic Sawbones model to study the consequence of CaS/HA augmentation on the immediate mechanical anchorage of the lag-screw to osteoporotic bone. Finally, as a proof-of-concept, the method of delivering the CaS/HA biomaterial at the bone-implant interface as well as spreading of the CaS/HA material at this interface was tested in patients undergoing treatment for TF as well as in donated femoral heads. The mechanical testing results indicated that the CaS/HA based biomaterial increased the peak extraction force of the lag-screw by 4 times compared with un-augmented lag-screws and the results were at par with PMMA. The X-ray images from the patient series showed that it was possible to inject the CaS/HA material at the bone-implant interface without applying additional pressure and the CaS/HA material spreading was observed at the interface of the lag-screw threads and the bone. Finally, the spreading of the CaS/HA material was also verified on donated femoral heads and micro-CT imaging indicated that the entire length of the lag-screw threads was covered with the CaS/HA biomaterial. In conclusion, we present a novel method for augmenting a lag-screw in TFs, which could potentially reduce the risk of fracture fixation failure and reoperation in fragile osteoporotic patients.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 48
Typ av publikation
tidskriftsartikel (45)
forskningsöversikt (2)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (47)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Raina, Deepak Bushan (39)
Tägil, Magnus (36)
Lidgren, Lars (35)
Isaksson, Hanna (25)
Liu, Yang (21)
Kumar, Ashok (10)
visa fler...
Tarasevicius, Saruna ... (10)
Sebastian, Sujeesh (10)
Zwingenberger, Stefa ... (7)
Širka, Aurimas (6)
Vater, Corina (6)
Puthia, Manoj (5)
Raina, Deepak (5)
Huang, Jintian (5)
Collin, Mattias (4)
Kok, Joeri (4)
Markeviciute, Vetra (4)
Engellau, Jacob (3)
Törnquist, Elin (3)
Larsson, David (3)
Petrlova, Jitka (3)
Stravinskas, Mindaug ... (3)
Zhang, Baozhong (2)
Schmidtchen, Artur (2)
Malmsten, Martin (2)
Ilk, Sedef (2)
Kjellström, Sven (2)
Tengattini, Alessand ... (2)
Li, Xiaoya (2)
Demircan, Deniz (2)
Klementieva, Oxana (2)
Wasserstrom, Sebasti ... (2)
Christensen, Robin (2)
Bourgine, Paul E. (2)
Butrym, Marta (2)
Caselli, Lucrezia (2)
Smailys, Alfredas (2)
Bond, Peter J (2)
Petruk, Ganna (2)
Grassi, Lorenzo (2)
Mathavan, Neashan (2)
Tanner, K. Elizabeth (2)
Le Cann, Sophie (2)
Strömdahl, Ann Charl ... (2)
Hartman, Erik (2)
Thomas, Alexander (2)
Hettwer, Werner (2)
Samsudin, Firdaus (2)
Andersson, Madeleine ... (2)
Qayoom, Irfan (2)
visa färre...
Lärosäte
Lunds universitet (48)
Umeå universitet (5)
Kungliga Tekniska Högskolan (2)
Malmö universitet (2)
Stockholms universitet (1)
Linköpings universitet (1)
visa fler...
Karolinska Institutet (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (48)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (43)
Teknik (13)
Naturvetenskap (3)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy