SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ramasse Quentin M.) "

Sökning: WFRF:(Ramasse Quentin M.)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Castellanos-Reyes, José Ángel, et al. (författare)
  • Unveiling the impact of temperature on magnon diffuse scattering detection in the transmission electron microscope
  • 2023
  • Ingår i: Physical Review B. - : American Physical Society. - 2469-9950 .- 2469-9969. ; 108:13
  • Tidskriftsartikel (refereegranskat)abstract
    • Magnon diffuse scattering (MDS) signals could, in principle, be studied with high spatial resolution in scanning transmission electron microscopy (STEM), thanks to recent technological progress in electron energy-loss spectroscopy. However, detecting MDS signals in STEM is technically challenging due to their overlap with the much stronger thermal diffuse scattering (TDS) signals. In bcc Fe at 300 K, MDS signals greater than or comparable to TDS signals have been predicted to occur under the central Bragg disk, well into a currently inaccessible energy-loss region. Therefore, to successfully detect MDS in STEM, it is necessary to identify conditions in which TDS and MDS signals can be distinguished from one another in regions outside the central Bragg disk. Temperature may be a key factor due to the distinct thermal signatures of magnon and phonon signals. In this work, we present a study on the effects of temperature on MDS and TDS in bcc Fe-considering a detector outside the central Bragg disk and a fixed convergent electron probe-using the frozen phonon and frozen magnon multislice methods. Our study reveals that neglecting the effects of atomic vibrations causes the MDS signal to grow approximately linearly up to the Curie temperature of Fe, after which it exhibits less variation. The MDS signal displays an alternating behavior due to dynamical diffraction, instead of increasing monotonically as a function of thickness. The inclusion of the effects of atomic vibrations through a complex atomic electrostatic potential causes the linear growth of the MDS signal to change to a nonlinear behavior that exhibits a predominant peak for a sample of thickness 16.072 nm at 1100 K. In contrast, the TDS signal grows more linearly than the MDS signal through the studied temperature range but still exhibits appreciable dynamical diffraction effects. An analysis of the signal-to-noise ratio (SNR) shows that the MDS signal can be a statistically significant contribution to the total scattering intensity under realizable measurement conditions and feasible acquisition times. For example, our study found that a SNR of 3 can be achieved with a beam current of 1 nA in less than 30 min for the 16.072-nm-thick bcc Fe sample at 1100 K.
  •  
2.
  • Isoniemi, Tommi, et al. (författare)
  • Electron Energy Loss Spectroscopy of Bright and Dark Modes in Hyperbolic Metamaterial Nanostructures
  • 2020
  • Ingår i: Advanced Optical Materials. - : Wiley-VCH Verlagsgesellschaft. - 2162-7568 .- 2195-1071. ; 8:13
  • Tidskriftsartikel (refereegranskat)abstract
    • Layered metal/dielectric hyperbolic metamaterials (HMMs) support a wide landscape of plasmon polariton excitations. In addition to surface plasmon polaritons, coupled Bloch-like gap-plasmon polaritons with high modal confinement inside the multilayer are supported. Photons can excite only a subset of these polaritonic modes, typically with a limited energy and momentum range in respect to the wide set of high-K modes supported by hyperbolic dispersion media, and coupling with gratings or local excitation is necessary. Strikingly, electron energy loss spectroscopy (EELS) in a scanning transmission electron microscope allows nm-scale local excitation and mapping of the spatial field distribution of all the modes supported by a photonic or plasmonic structure, both bright and dark, and also all other inelastic interactions of the beam, including phonons and interband transitions. Herein, experimental evidence of the spatial distribution of plasmon polaritons in multilayered type II HMM nanostructures is acquired with an aloof electron beam adjacent to structures of current interest. HMM pillars are useful for their separation and adjustability of optical scattering and absorption, while HMM slot cavities can be used as waveguides with high field confinement. The nature of the modes is confirmed with corresponding simulations of EEL and optical spectra and near-field intensities.
  •  
3.
  • Lyon, Keenan, et al. (författare)
  • Theory of magnon diffuse scattering in scanning transmission electron microscopy
  • 2021
  • Ingår i: Physical Review B. - : American Physical Society. - 2469-9950 .- 2469-9969. ; 104:21
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a theory and a simulation of diffuse scattering due to the excitation of magnons in scanning transmission electron microscopy. The calculations indicate that magnons can present atomic contrast when detected by electron energy-loss spectroscopy using atomic-size electron beams. The results presented here indicate that the intensity of the magnon diffuse scattering in bcc iron at 300 K is 4 orders of magnitude weaker than the intensity of thermal diffuse scattering arising from atomic vibrations.
  •  
4.
  • Zamani, Reza R., et al. (författare)
  • Atomic-Resolution Spectrum Imaging of Semiconductor Nanowires
  • 2018
  • Ingår i: Nano Letters. - : American Chemical Society (ACS). - 1530-6984 .- 1530-6992. ; 18:3, s. 1557-1563
  • Tidskriftsartikel (refereegranskat)abstract
    • Over the past decade, III-V heterostructure nanowires have attracted a surge of attention for their application in novel semiconductor devices such as tunneling field-effect transistors (TFETs). The functionality of such devices critically depends on the specific atomic arrangement at the semiconductor heterointerfaces. However, most of the currently available characterization techniques lack sufficient spatial resolution to provide local information on the atomic structure and composition of these interfaces. Atomic-resolution spectrum imaging by means of electron energy-loss spectroscopy (EELS) in the scanning transmission electron microscope (STEM) is a powerful technique with the potential to resolve structure and chemical composition with sub-angstrom spatial resolution and to provide localized information about the physical properties of the material at the atomic scale. Here, we demonstrate the use of atomic-resolution EELS to understand the interface atomic arrangement in three-dimensional heterostructures in semiconductor nanowires. We observed that the radial interfaces of GaSb-InAs heterostructure nanowires are atomically abrupt, while the axial interface in contrast consists of an interfacial region where intermixing of the two compounds occurs over an extended spatial region. The local atomic configuration affects the band alignment at the interface and, hence, the charge transport properties of devices such as GaSb-InAs nanowire TFETs. STEM-EELS thus represents a very promising technique for understanding nanowire physical properties, such as differing electrical behavior across the radial and axial heterointerfaces of GaSb-InAs nanowires for TFET applications.
  •  
5.
  • Zamani, Reza, 1982, et al. (författare)
  • Unraveling electronic band structure of narrow-bandgap p-n nanojunctions in heterostructured nanowires
  • 2021
  • Ingår i: Physical Chemistry Chemical Physics. - : Royal Society of Chemistry (RSC). - 1463-9084 .- 1463-9076. ; 23:44, s. 25019-25023
  • Tidskriftsartikel (refereegranskat)abstract
    • The electronic band structure of complex nanostructured semiconductors has a considerable effect on the final electronic and optical properties of the material and, ultimately, on the functionality of the devices incorporating them. Valence electron energy-loss spectroscopy (VEELS) in the transmission electron microscope (TEM) provides the possibility of measuring this property of semiconductors with high spatial resolution. However, it still represents a challenge for narrow-bandgap semiconductors, since an electron beam with low energy spread is required. Here we demonstrate that by means of monochromated VEELS we can study the electronic band structure of narrow-gap materials GaSb and InAs in the form of heterostructured nanowires, with bandgap values down to 0.5 eV, especially important for newly developed structures with unknown bandgaps. Using complex heterostructured InAs-GaSb nanowires, we determine a bandgap value of 0.54 eV for wurtzite InAs. Moreover, we directly compare the bandgaps of wurtzite and zinc blende polytypes of GaSb in a single nanostructure, measured here as 0.84 and 0.75 eV, respectively. This allows us to solve an existing controversy in the band alignment between these structures arising from theoretical predictions. The findings demonstrate the potential of monochromated VEELS to provide a better understanding of the band alignment at the heterointerfaces of narrow-bandgap complex nanostructured materials with high spatial resolution. This is especially important for semiconductor device applications where even the slightest variations of the electronic band structure at the nanoscale can play a crucial role in their functionality.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy