SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rehermann Carolin) "

Sökning: WFRF:(Rehermann Carolin)

  • Resultat 1-11 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Felix, Roberto, et al. (författare)
  • Photoinduced phase segregation and degradation of perovskites revealed by x-ray photoelectron spectroscopy
  • 2019
  • Ingår i: 2019 IEEE 46th Photovoltaic Specialists Conference, PVSC 2019. - 0160-8371. - 9781728104942 ; , s. 2362-2367
  • Konferensbidrag (refereegranskat)abstract
    • Pb-based perovskite absorbers with organic (i.e., CH3NH3+) and inorganic (i.e., Cs+) cations and a halide composition of 75% Br and 25% I are investigated with x-ray photoelectron spectroscopy while submitted to environmental stress factors to study their stability. Changes in chemical properties of the absorbers were monitored in ultra-high vacuum and under simulated solar, as well as, x-ray irradiation. Although changes are detected for both types of perovskite absorbers, the organic cation perovskite exhibits a more pronounced tendency to photodegrade.
  •  
2.
  • Hermerschmidt, Felix, et al. (författare)
  • Finally, inkjet-printed metal halide perovskite LEDs-utilizing seed crystal templating of salty PEDOT:PSS
  • 2020
  • Ingår i: Materials Horizons. - : Royal Society of Chemistry (RSC). - 2051-6347 .- 2051-6355. ; 7:7, s. 1773-1781
  • Tidskriftsartikel (refereegranskat)abstract
    • Solution-processable metal halide perovskites are increasingly implemented in perovskite-based light-emitting diodes (PeLEDs). Especially green PeLEDs based on methylammonium lead bromide (MAPbBr3) composites exhibit impressive optoelectronic properties, while allowing processing by low-cost and upscalable printing methods. In this study, we have investigated the influence of potassium chloride (KCl) blended into the common hole injection material poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) to boost PeLED device performance. The inclusion of KCl firstly results in a change in morphology of the PEDOT:PSS layer, which then acts as a template during deposition of the perovskite layer. A MAPbBr3:polyethylene glycol (PEG) composite was used, which does not require the deposition of an anti-solvent droplet to induce preferential perovskite crystallization and is therefore suitable for spin coating and scalable inkjet printing processes. PeLEDs utilizing the KCl induced templating effect on a planar PEDOT:PSS/MAPbBr3:PEG architecture show improved performance, predominantly due to improved crystallization. PeLEDs incorporating spin-coated perovskite layers yield a 40-fold increase in luminance (8000 cd m-2) while the turn-on voltage decreases to 2.5 V. KCl-modified PEDOT:PSS contact layers enabled the realization of inkjet-printed PeLEDs with luminance increased by a factor of 20 at a maximum of 4000 cd m-2 and a turn-on voltage of 2.5 V. This work paves the way for inkjet-printed perovskite light-emitting devices for a wide variety of low-cost and customizable applications. This journal is
  •  
3.
  • Kiligaridis, Alexander, et al. (författare)
  • Excitation wavelength dependence of photoluminescence flickering in degraded MAPbI3 perovskite and its connection to lead iodide formation
  • 2020
  • Ingår i: Journal of Luminescence. - : Elsevier BV. - 0022-2313. ; 222
  • Tidskriftsartikel (refereegranskat)abstract
    • Metal halide perovskite semiconductors often exhibit photoluminescence blinking and flickering when luminescence of individual small nano- or even microcrystals is monitored. The nature of these fluctuations is not well understood but must be related to the presence of metastable non-radiative recombination channels and efficient charge migration in these materials. Here we report on the excitation wavelength dependence of photoluminescence flickering effect in degraded methylammonium lead iodide (MAPbI3) thin films. While the luminescence intensity is temporary stable when excited in the blue region with wavelength shorter than 530 nm, excitation with red light (wavelength longer than 530 nm) results in luminescence flickering. It is hypothesised that the wavelength dependence reflects the excitation energy dependence of the photochemical mechanism that switches non-radiative recombination channels on and off. The effect can also be related to hindered charge carrier diffusion due to their localization in the interfacial layer between MAPbI3 and PbI2 which is formed in the course of degradation.
  •  
4.
  • Mathies, Florian, et al. (författare)
  • Gas flow-assisted vacuum drying : Identification of a novel process for attaining high-quality perovskite films
  • 2021
  • Ingår i: Materials Advances. - : Royal Society of Chemistry (RSC). - 2633-5409. ; 2:16, s. 5365-5370
  • Tidskriftsartikel (refereegranskat)abstract
    • Controlling the nucleation and crystal growth in solution-processed metal halide perovskite (MHP) thin films is the pivotal point in fabricating homogenous and pinhole-free films. Using scalable coating and printing techniques, vacuum and gas flow-assisted drying processes turn out to be the most promising methods to induce nucleation and crystallization. Yet, the exact interplay and nature of these processes are unclear. In our work, we optically monitor these processes in situ. For the first time, we can show that a controlled venting of the vacuum chamber and the use of a subsequent gas flow are key to achieve homogenous nucleation. Utilizing this gas flow-assisted vacuum drying process, we find that regular, optically dense and pinhole-free MHP layers can be fabricated via inkjet printing, which yield solar cells with a power conversion efficiency of 16%, as compared to 4.5% for vacuum drying.
  •  
5.
  • Merdasa, Aboma, et al. (författare)
  • Impact of Excess Lead Iodide on the Recombination Kinetics in Metal Halide Perovskites
  • 2019
  • Ingår i: ACS Energy Letters. - : American Chemical Society (ACS). - 2380-8195. ; , s. 1370-1378
  • Tidskriftsartikel (refereegranskat)abstract
    • Fundmental comprehension of light-induced processes in perovskites are still scarce. One active debate surrounds the influence of excess lead iodide (PbI2) on device performance, as well as optoelectronic properties, where both beneficial and detrimental traits have been reported. Here, we study its impact on charge carrier recombination kinetics by simultaneously acquiring the photoluminescence quantum yield and time-resolved photoluminescence as a function of excitation wavelength (450-780 nm). The presence of PbI2 in the perovskite film is identified via a unique spectroscopic signature in the PLQY spectrum. Probing the recombination in the presence and absence of this signature, we detect a radiative bimolecular recombination mechanism induced by PbI2. Spatially resolving the photoluminescence, we determine that this radiative process occurs in a small volume at the PbI2/perovskite interface, which is only active when charge carriers are generated in PbI2, and therefore provide deeper insight into how excess PbI2 may improve the properties of perovskite-based devices.
  •  
6.
  • Rehermann, Carolin, et al. (författare)
  • Origin of Ionic Inhomogeneity in MAPb(IxBr1-x)3Perovskite Thin Films Revealed by In-Situ Spectroscopy during Spin Coating and Annealing
  • 2020
  • Ingår i: ACS Applied Materials and Interfaces. - : American Chemical Society (ACS). - 1944-8244 .- 1944-8252. ; 12:27, s. 30343-30352
  • Tidskriftsartikel (refereegranskat)abstract
    • Irradiation-induced phase segregation in mixed methylammonium halide perovskite samples such as methylammonium lead bromide-iodide, MAPb(IxBr1-x)3, is being studied intensively because it limits the efficiency of wide band gap perovskite solar cells. It has been postulated that this phenomenon depends on the intrinsic ionic (in)homogeneity in samples already induced during film formation. A deeper understanding of the MAPb(IxBr1-x)3 formation processes and the influence of the halide ratio, solvents, and the perovskite precursor composition as well as the influence of processing parameters during deposition, e.g., spin coating and annealing parameters, is still lacking. Here, we use a fiber optic-based optical in-situ setup to study the formation processes of the MAPb(IxBr1-x)3 series on a subsecond time scale during spin coating and thermal annealing. In-situ UV-vis measurements during spin coating reveal the influence of different halide ratios, x, in the precursor solution on the preferential crystallization of the phase. Pure bromide samples directly form a perovskite phase, samples with high iodide content form a solvate intermediate phase, and samples with a mixed stoichiometry between 0.1 ≤ x ≤ 0.6 form both. This leads to a heterogeneous formation process via two competing reaction pathways, that leads to a heterogeneous mixture of phases, during spin coating and rationalizes the compositional heterogeneity of mixed bromide-iodide samples even after annealing.
  •  
7.
  • Schröder, Vincent R.F., et al. (författare)
  • Using Combinatorial Inkjet Printing for Synthesis and Deposition of Metal Halide Perovskites in Wavelength-Selective Photodetectors
  • 2022
  • Ingår i: Advanced Engineering Materials. - : Wiley. - 1438-1656 .- 1527-2648. ; 24:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Metal halide perovskites have received great attention in recent years, predominantly due to the high performance of perovskite solar cells. The versatility of the material, which allows the tunability of the bandgap, has led to its use in light-emitting diodes, photo, and X-ray detectors, among other optoelectronic device applications. Specifically in photodetectors, the tunability of the bandgap allows fabrication of spectrally selective devices. Utilizing a combinatorial inkjet printing approach, multiple perovskite compositions absorbing at specific wavelengths in a single printing step are fabricated. The drop-on-demand capabilities of inkjet printing enable the deposition of inks in a precise ratio to produce specific perovskite compositions in the printed thin film. By controlling the halide ratio in the compositions, a mixed halide gradient ranging from pure MAPbI3 via MAPbBr3 to MAPbCl3 is produced. The tunability in the absorption onset from 410 to 790 nm is demonstrated, covering the whole visible spectrum, with a precision of 8 nm steps for MAPb(BrxCl1−x)3 compositions. From this range of mixed halide perovskites, photodetectors which show spectral selectivity corresponding to the measured absorption onset are demonstrated, paving the way for use in a printed visible light spectrometer without the need for a dispersion element.
  •  
8.
  • Suchan, Klara, et al. (författare)
  • Complex evolution of photoluminescence during phase segregation of MAPb(I1-xBrx)3 mixed halide perovskite
  • 2020
  • Ingår i: Journal of Luminescence. - : Elsevier BV. - 0022-2313. ; 221
  • Tidskriftsartikel (refereegranskat)abstract
    • Under illumination, the photoluminescence of a mixed-halide perovskite such as MAPb(I1-xBrx)3 is known to undergo a significant intensity enhancement while spectrally shifting to lower energies. The evolution of low energy photoluminescence is attributed to the formation of iodide rich domains due to phase segregation. This process is detrimental for optoelectronic devices however the mechanism is not well-understood. Here we present a real-time study of the photoluminescence evolution in MAPb(I1-xBrx)3 samples during light-induced phase segregation. We show that the evolution of photoluminescence proceeds via several intermediate stages making it more complex than previously suggested. Within the first few seconds of photo-excitation, we found a very rapid formation of a short-lived intense photoluminescence band with a peak energy even lower than the final emission of the fully segregated sample. We propose that this emission comes from small pure iodide nano-domains formed during the initial stage of photo-induced phase-segregation.
  •  
9.
  • Suchan, Klara, et al. (författare)
  • Multi-Stage Phase-Segregation of Mixed Halide Perovskites under Illumination : A Quantitative Comparison of Experimental Observations and Thermodynamic Models
  • 2023
  • Ingår i: Advanced Functional Materials. - : Wiley. - 1616-301X .- 1616-3028. ; 33:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Photo- and charge-carrier-induced ion migration is a major challenge when utilizing metal halide perovskite semiconductors for optoelectronic applications. For mixed iodide/bromide perovskites, the compositional instability due to light- or electrical bias induced phase-segregation restricts the exploitation of the entire bandgap range. Previous experimental and theoretical work suggests that excited states or charge carriers trigger the process, but the exact mechanism is still under debate. To identify the mechanism and cause of light-induced phase-segregation phenomena, the full compositional range of methylammonium lead bromide/iodide samples are investigated, MAPb(BrxI1-x)3 with x = 0…1, by simultaneous in situ X-ray diffraction (XRD) and photoluminescence (PL) spectroscopy during illumination. The quantitative comparison of composition-dependent in situ XRD and PL shows that at excitation densities of 1 sun, only the initial stage of photo-segregation is rationalized with the previously established thermodynamic models. However, a progression of the phase segregation is observed that is rationalized by considering long-lived accumulative photo-induced material alterations. It is suggested that (additional) photo-induced defects, possibly halide vacancies and interstitials, need to be considered to fully rationalize light-induced phase segregation and anticipate the findings to provide crucial insight for the development of more sophisticated models.
  •  
10.
  • Suchan, Klara, et al. (författare)
  • Rationalizing Performance Losses of Wide Bandgap Perovskite Solar Cells Evident in Data from the Perovskite Database
  • Ingår i: Advanced Energy Materials. - 1614-6832.
  • Tidskriftsartikel (refereegranskat)abstract
    • Metal halide perovskites (MHPs) have become a widely studied class of semiconductors for various optoelectronic devices. The possibility to tune their bandgap (Eg) over a broad spectral range from 1.2 eV to 3 eV by compositional engineering makes them particularly attractive for light emitting devices and multi-junction solar cells. In this metadata study, data from Peer-reviewed publications available in the Perovskite Database (www.perovskitedatabase.com) is used to evaluate the current state of Eg tuning in wide Eg MHP semiconductors. Recent literature on wide Eg MHP semiconductors is examined and the data is extracted and uploaded onto the Perovskite Database. Beyond describing recent highlights and scientific breakthroughs, general trends are drawn from 45,000 individual experimental datasets of MHP solar cell devices. The historical evolution of MHP solar cells is recapitulated, and general conclusions are drawn about the current limits of device performance. Three dominant causes are identified and discussed for the degradation of performance relative to the Shockley-Queisser (SQ) model's theoretical limit for single-junction solar cells: 1) energetically mismatched selective transport materials for wide Eg MHPs, 2) lower optoelectronic quality of wide Eg MHP absorbers, and 3) dynamically evolving compositional heterogeneity due to light-induced phase segregation phenomena.
  •  
11.
  • Wolff, Christian M., et al. (författare)
  • Perfluorinated Self-Assembled Monolayers Enhance the Stability and Efficiency of Inverted Perovskite Solar Cells
  • 2020
  • Ingår i: ACS Nano. - : American Chemical Society (ACS). - 1936-0851 .- 1936-086X. ; 14:2, s. 1445-1456
  • Tidskriftsartikel (refereegranskat)abstract
    • Perovskite solar cells are among the most exciting photovoltaic systems as they combine low recombination losses, ease of fabrication, and high spectral tunability. The Achilles heel of this technology is the device stability due to the ionic nature of the perovskite crystal, rendering it highly hygroscopic, and the extensive diffusion of ions especially at increased temperatures. Herein, we demonstrate the application of a simple solution-processed perfluorinated self-assembled monolayer (p-SAM) that not only enhances the solar cell efficiency, but also improves the stability of the perovskite absorber and, in turn, the solar cell under increased temperature or humid conditions. The p-i-n-type perovskite devices employing these SAMs exhibited power conversion efficiencies surpassing 21%. Notably, the best performing devices are stable under standardized maximum power point operation at 85 °C in inert atmosphere (ISOS-L-2) for more than 250 h and exhibit superior humidity resilience, maintaining ∼95% device performance even if stored in humid air in ambient conditions over months (∼3000 h, ISOS-D-1). Our work, therefore, demonstrates a strategy towards efficient and stable perovskite solar cells with easily deposited functional interlayers.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-11 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy