SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Renner Max) "

Sökning: WFRF:(Renner Max)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • El Omari, Kamel, et al. (författare)
  • Experimental phasing opportunities for macromolecular crystallography at very long wavelengths
  • 2023
  • Ingår i: Communications Chemistry. - : Nature Publishing Group. - 2399-3669. ; 6:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite recent advances in cryo-electron microscopy and artificial intelligence-based model predictions, a significant fraction of structure determinations by macromolecular crystallography still requires experimental phasing, usually by means of single-wavelength anomalous diffraction (SAD) techniques. Most synchrotron beamlines provide highly brilliant beams of X-rays of between 0.7 and 2 Å wavelength. Use of longer wavelengths to access the absorption edges of biologically important lighter atoms such as calcium, potassium, chlorine, sulfur and phosphorus for native-SAD phasing is attractive but technically highly challenging. The long-wavelength beamline I23 at Diamond Light Source overcomes these limitations and extends the accessible wavelength range to λ = 5.9 Å. Here we report 22 macromolecular structures solved in this extended wavelength range, using anomalous scattering from a range of elements which demonstrate the routine feasibility of lighter atom phasing. We suggest that, in light of its advantages, long-wavelength crystallography is a compelling option for experimental phasing.
  •  
2.
  • Fischer, Joel, et al. (författare)
  • Insights into the copper HiPIMS discharge : deposition rate and ionised flux fraction
  • 2023
  • Ingår i: Plasma sources science & technology. - : IOP Publishing. - 0963-0252 .- 1361-6595. ; 32:12
  • Tidskriftsartikel (refereegranskat)abstract
    • The influence of pulse length, working gas pressure, and peak discharge current density on the deposition rate and ionised flux fraction in high power impulse magnetron sputtering discharges of copper is investigated experimentally using a charge-selective (electrically biasable) magnetically shielded quartz crystal microbalance (or ionmeter). The large explored parameter space covers both common process conditions and extreme cases. The measured ionised flux fraction for copper is found to be in the range from ≈10% to 80%, and to increase with increasing peak discharge current density up to a maximum at ≈ 1.25 A cm − 2 , before abruptly falling off at even higher current density values. Low working gas pressure is shown to be beneficial in terms of both ionised flux fraction and deposition rate fraction. For example, decreasing the working gas pressure from 1.0 Pa to 0.5 Pa leads on average to an increase of the ionised flux fraction by ≈ 14 percentage points (pp) and of the deposition rate fraction by ≈ 4 pp taking into account all the investigated pulse lengths.
  •  
3.
  • Renner, Max, et al. (författare)
  • Angular distribution of titanium ions and neutrals in high-power impulse magnetron sputtering discharges
  • 2023
  • Ingår i: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films. - : American Vacuum Society. - 0734-2101 .- 1520-8559. ; 41:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The angular dependence of the deposition rates due to ions and neutrals in high-power impulse magnetron sputtering (HiPIMS) discharges with a titanium target were determined experimentally using a magnetically shielded and charge-selective quartz crystal microbalance (or ionmeter). These rates have been established as a function of the argon working gas pressure, the peak discharge current density, and the pulse length. For all explored cases, the total deposition rate exhibits a heart-shaped profile and the ionized flux fraction peaks on the discharge axis normal to the cathode target surface. This heart-shaped pattern is found to be amplified at increasing current densities and reduced at increased working gas pressures. Furthermore, it is confirmed that a low working gas pressure is beneficial for achieving high deposition rates and high ionized flux fractions in HiPIMS operation.
  •  
4.
  • Whitehead, Jack D., et al. (författare)
  • Structure of the N-RNA/P interface indicates mode of L/P recruitment to the nucleocapsid of human metapneumovirus
  • 2023
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Human metapneumovirus (HMPV) is a major cause of respiratory illness in young children. The HMPV polymerase (L) binds an obligate cofactor, the phosphoprotein (P). During replication and transcription, the L/P complex traverses the viral RNA genome, which is encapsidated within nucleoproteins (N). An essential interaction between N and a C-terminal region of P tethers the L/P polymerase to the template. This N-P interaction is also involved in the formation of cytoplasmic viral factories in infected cells, called inclusion bodies. To define how the polymerase component P recognizes N-encapsidated RNA (N-RNA) we employed cryogenic electron microscopy (cryo-EM) and molecular dynamics simulations, coupled to activity assays and imaging of inclusion bodies in cells. We report a 2.9 Å resolution structure of a triple-complex between multimeric N, bound to both RNA and the C-terminal region of P. Furthermore, we also present cryo-EM structures of assembled N in different oligomeric states, highlighting the plasticity of N. Combined with our functional assays, these structural data delineate in molecular detail how P attaches to N-RNA whilst retaining substantial conformational dynamics. Moreover, the N-RNA-P triple complex structure provides a molecular blueprint for the design of therapeutics to potentially disrupt the attachment of L/P to its template.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy