SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rest A.) "

Sökning: WFRF:(Rest A.)

  • Resultat 1-25 av 61
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Petroff, E., et al. (författare)
  • A polarized fast radio burst at low Galactic latitude
  • 2017
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford Academic. - 0035-8711 .- 1365-2966. ; 469:4, s. 4465-4482
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the discovery of a new fast radio burst (FRB), FRB 150215, with the Parkes radio telescope on 2015 February 15. The burst was detected in real time with a dispersion measure (DM) of 1105.6 +/- 0.8 pc cm(-3), a pulse duration of 2.8(-0.5)(+1.2) ms, and a measured peak flux density assuming that the burst was at beam centre of 0.7(-0.1)(+0.2) Jy. The FRB originated at a Galactic longitude and latitude of 24.66 degrees, 5.28 degrees and 25 degrees away from the Galactic Center. The burst was found to be 43 +/- 5 per cent linearly polarized with a rotation measure (RM) in the range -9 < RM < 12 rad m(-2) (95 per cent confidence level), consistent with zero. The burst was followed up with 11 telescopes to search for radio, optical, X-ray, gamma-ray and neutrino emission. Neither transient nor variable emission was found to be associated with the burst and no repeat pulses have been observed in 17.25 h of observing. The sightline to the burst is close to the Galactic plane and the observed physical properties of FRB 150215 demonstrate the existence of sight lines of anomalously low RM for a given electron column density. The Galactic RM foreground may approach a null value due to magnetic field reversals along the line of sight, a decreased total electron column density from the Milky Way, or some combination of these effects. A lower Galactic DM contribution might explain why this burst was detectable whereas previous searches at low latitude have had lower detection rates than those out of the plane.
  •  
2.
  • Aartsen, M. G., et al. (författare)
  • The Detection Of A Sn Iin In Optical Follow-Up Observations Of Icecube Neutrino Events
  • 2015
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 811:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The IceCube neutrino observatory pursues a follow-up program selecting interesting neutrino events in real-time and issuing alerts for electromagnetic follow-up observations. In 2012 March, the most significant neutrino alert during the first three years of operation was issued by IceCube. In the follow-up observations performed by the Palomar Transient Factory (PTF), a Type IIn supernova (SN IIn) PTF12csy was found 0.degrees 2 away from the neutrino alert direction, with an error radius of 0.degrees 54. It has a redshift of z = 0.0684, corresponding to a luminosity distance of about 300 Mpc and the Pan-STARRS1 survey shows that its explosion time was at least 158 days (in host galaxy rest frame) before the neutrino alert, so that a causal connection is unlikely. The a posteriori significance of the chance detection of both the neutrinos and the SN at any epoch is 2.2 sigma within IceCube's 2011/12 data acquisition season. Also, a complementary neutrino analysis reveals no long-term signal over the course of one year. Therefore, we consider the SN detection coincidental and the neutrinos uncorrelated to the SN. However, the SN is unusual and interesting by itself: it is luminous and energetic, bearing strong resemblance to the SN IIn 2010jl, and shows signs of interaction of the SN ejecta with a dense circumstellar medium. High-energy neutrino emission is expected in models of diffusive shock acceleration, but at a low, non-detectable level for this specific SN. In this paper, we describe the SN PTF12csy and present both the neutrino and electromagnetic data, as well as their analysis.
  •  
3.
  • Smartt, S. J., et al. (författare)
  • A kilonova as the electromagnetic counterpart to a gravitational-wave source
  • 2017
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 551:7678, s. 75-
  • Tidskriftsartikel (refereegranskat)abstract
    • Gravitational waves were discovered with the detection of binary black-hole mergers(1) and they should also be detectable from lower-mass neutron-star mergers. These are predicted to eject material rich in heavy radioactive isotopes that can power an electromagnetic signal. This signal is luminous at optical and infrared wavelengths and is called a kilonova(2-5). The gravitational-wave source GW170817 arose from a binary neutron-star merger in the nearby Universe with a relatively well confined sky position and distance estimate(6). Here we report observations and physical modelling of a rapidly fading electromagnetic transient in the galaxy NGC 4993, which is spatially coincident with GW170817 and with a weak, short.-ray burst(7,8). The transient has physical parameters that broadly match the theoretical predictions of blue kilonovae from neutron-star mergers. The emitted electromagnetic radiation can be explained with an ejected mass of 0.04 +/- 0.01 solar masses, with an opacity of less than 0.5 square centimetres per gram, at a velocity of 0.2 +/- 0.1 times light speed. The power source is constrained to have a power-law slope of -1.2 +/- 0.3, consistent with radioactive powering from r-process nuclides. (The r-process is a series of neutron capture reactions that synthesise many of the elements heavier than iron.) We identify line features in the spectra that are consistent with light r-process elements (atomic masses of 90-140). As it fades, the transient rapidly becomes red, and a higher-opacity, lanthanide-rich ejecta component may contribute to the emission. This indicates that neutron-star mergers produce gravitational waves and radioactively powered kilonovae, and are a nucleosynthetic source of the r-process elements.
  •  
4.
  • Ackley, K., et al. (författare)
  • Observational constraints on the optical and near-infrared emission from the neutron star-black hole binary merger candidate S190814bv
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 643
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Gravitational wave (GW) astronomy has rapidly reached maturity, becoming a fundamental observing window for modern astrophysics. The coalescences of a few tens of black hole (BH) binaries have been detected, while the number of events possibly including a neutron star (NS) is still limited to a few. On 2019 August 14, the LIGO and Virgo interferometers detected a high-significance event labelled S190814bv. A preliminary analysis of the GW data suggests that the event was likely due to the merger of a compact binary system formed by a BH and a NS.Aims. In this paper, we present our extensive search campaign aimed at uncovering the potential optical and near infrared electromagnetic counterpart of S190814bv. We found no convincing electromagnetic counterpart in our data. We therefore use our non-detection to place limits on the properties of the putative outflows that could have been produced by the binary during and after the merger.Methods. Thanks to the three-detector observation of S190814bv, and given the characteristics of the signal, the LIGO and Virgo Collaborations delivered a relatively narrow localisation in low latency - a 50% (90%) credible area of 5 deg(2) (23 deg(2)) - despite the relatively large distance of 26752 Mpc. ElectromagNetic counterparts of GRAvitational wave sources at the VEry Large Telescope collaboration members carried out an intensive multi-epoch, multi-instrument observational campaign to identify the possible optical and near infrared counterpart of the event. In addition, the ATLAS, GOTO, GRAWITA-VST, Pan-STARRS, and VINROUGE projects also carried out a search on this event. In this paper, we describe the combined observational campaign of these groups.Results. Our observations allow us to place limits on the presence of any counterpart and discuss the implications for the kilonova (KN), which was possibly generated by this NS-BH merger, and for the strategy of future searches. The typical depth of our wide-field observations, which cover most of the projected sky localisation probability (up to 99.8%, depending on the night and filter considered), is r similar to 22 (resp. K similar to 21) in the optical (resp. near infrared). We reach deeper limits in a subset of our galaxy-targeted observations, which cover a total similar to 50% of the galaxy-mass-weighted localisation probability. Altogether, our observations allow us to exclude a KN with large ejecta mass M greater than or similar to 0.1 M-circle dot to a high (> 90%) confidence, and we can exclude much smaller masses in a sub-sample of our observations. This disfavours the tidal disruption of the neutron star during the merger.Conclusions. Despite the sensitive instruments involved in the campaign, given the distance of S190814bv, we could not reach sufficiently deep limits to constrain a KN comparable in luminosity to AT 2017gfo on a large fraction of the localisation probability. This suggests that future (likely common) events at a few hundred megaparsecs will be detected only by large facilities with both a high sensitivity and large field of view. Galaxy-targeted observations can reach the needed depth over a relevant portion of the localisation probability with a smaller investment of resources, but the number of galaxies to be targeted in order to get a fairly complete coverage is large, even in the case of a localisation as good as that of this event.
  •  
5.
  • Scolnic, D., et al. (författare)
  • How Many Kilonovae Can Be Found in Past, Present, and Future Survey Data Sets?
  • 2018
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8205 .- 2041-8213. ; 852:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The discovery of a kilonova (KN) associated with the Advanced LIGO (aLIGO)/Virgo event GW170817 opens up new avenues of multi-messenger astrophysics. Here, using realistic simulations, we provide estimates of the number of KNe that could be found in data from past, present, and future surveys without a gravitational-wave trigger. For the simulation, we construct a spectral time-series model based on the DES-GW multi-band light curve from the single known KN event, and we use an average of BNS rates from past studies of 103Gpc(-3) yr(-1), consistent with the one event found so far. Examining past and current data sets from transient surveys, the number of KNe we expect to find for ASAS-SN, SDSS, PS1, SNLS, DES, and SMT is between 0 and 0.3. We predict the number of detections per future survey to be 8.3 from ATLAS, 10.6 from ZTF, 5.5/69 from LSST (the Deep Drilling/Wide Fast Deep), and 16.0 from WFIRST. The maximum redshift of KNe discovered for each survey is z = 0.8 for WFIRST, z = 0.25 for LSST, and z = 0.04 for ZTF and ATLAS. This maximum redshift for WFIRST is well beyond the sensitivity of aLIGO and some future GW missions. For the LSST survey, we also provide contamination estimates from Type Ia and core-collapse supernovae: after light curve and template-matching requirements, we estimate a background of just two events. More broadly, we stress that future transient surveys should consider how to optimize their search strategies to improve their detection efficiency and to consider similar analyses for GW follow-up programs.
  •  
6.
  • Nicholl, M., et al. (författare)
  • Slowly fading super-luminous supernovae that are not pair-instability explosions
  • 2013
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 502:7471, s. 346-
  • Tidskriftsartikel (refereegranskat)abstract
    • Super-luminous supernovae(1-4) that radiate more than 1044 ergs per second at their peak luminosity have recently been discovered in faint galaxies at redshifts of 0.1-4. Some evolve slowly, resembling models of 'pair-instability' supernovae(5,6). Such models involve stars with original masses 140-260 times that of the Sun that now have carbon-oxygen cores of 65-130 solar masses. In these stars, the photons that prevent gravitational collapse are converted to electron-positron pairs, causing rapid contraction and thermonuclear explosions. Many solar masses of Ni-56 are synthesized; this isotope decays to Fe-56 via Co-56, powering bright light curves(7,8). Such massive progenitors are expected to have formed from metal-poor gas in the early Universe(9). Recently, supernova 2007bi in a galaxy at redshift 0.127 (about 12 billion years after the Big Bang) with a metallicity one-third that of the Sun was observed to look like a fading pair-instability supernova(1,10). Here we report observations of two slow-to-fade super-luminous supernovae that show relatively fast rise times and blue colours, which are incompatible with pair-instability models. Their late-time light-curve and spectral similarities to supernova 2007bi call the nature of that event into question. Our early spectra closely resemble typical fast-declining super-luminous supernovae(2,11,12), which are not powered by radio-activity. Modelling our observations with 10-16 solar masses of magnetar-energized(13,14) ejecta demonstrates the possibility of a common explosion mechanism. The lack of unambiguous nearby pair-instability events suggests that their local rate of occurrence is less than 6 x 10(-6) times that of the core-collapse rate.
  •  
7.
  • Chen, T.-W., et al. (författare)
  • SN 2017ens : The Metamorphosis of a Luminous Broadlined Type Ic Supernova into an SN IIn
  • 2018
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8205 .- 2041-8213. ; 867:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present observations of supernova (SN) 2017ens, discovered by the ATLAS survey and identified as a hot blue object through the GREAT program. The redshift z = 0.1086 implies a peak brightness of M-g = -21.1 mag, placing the object within the regime of superluminous supernovae. We observe a dramatic spectral evolution, from initially being blue and featureless, to later developing features similar to those of the broadlined Type Ic SN 1998bw, and finally showing 2000 km s(-1) wide H alpha and H beta emission. Relatively narrow Balmer emission (reminiscent of a SN IIn) is present at all times. We also detect coronal lines, indicative of a dense circumstellar medium. We constrain the progenitor wind velocity to similar to 50-60 km s(-1) based on P-Cygni profiles, which is far slower than those present in Wolf-Rayet stars. This may suggest that the progenitor passed through a luminous blue variable phase, or that the wind is instead from a binary companion red supergiant star. At late times we see the similar to 2000 km s(-1) wide H alpha emission persisting at high luminosity (similar to 3 x 10(40) erg s(-1)) for at least 100 day, perhaps indicative of additional mass loss at high velocities that could have been ejected by a pulsational pair instability.
  •  
8.
  • Pastorello, A., et al. (författare)
  • Supernovae 2016bdu and 2005gl, and their link with SN 2009ip-like transients : another piece of the puzzle
  • 2018
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 474:1, s. 197-218
  • Tidskriftsartikel (refereegranskat)abstract
    • Supernova (SN) 2016bdu is an unusual transient resembling SN 2009ip. SN 2009ip-like events are characterized by a long-lasting phase of erratic variability that ends with two luminous outbursts a few weeks apart. The second outburst is significantly more luminous (about 3 mag) than the first. In the case of SN 2016bdu, the first outburst (Event A) reached an absolute magnitude M-r approximate to -15.3 mag, while the second one (Event B) occurred over one month later and reached M-r approximate to -18 mag. By inspecting archival data, a faint source at the position of SN 2016bdu is several times in the past few years. We interpret these detections as signatures of a phase of erratic variability, similar to that experienced by SN 2009ip between 2008 and mid-2012, and resembling the currently observed variability of the luminous blue variable SN 2000ch in NGC 3432. Spectroscopic monitoring of SN 2016bdu during the second peak initially shows features typical of an SN IIn. One month after the Event B maximum, the spectra develop broad Balmer lines with P Cygni profiles and broad metal features. At these late phases, the spectra resemble those of a typical Type II SN. All members of this SN 2009ip-like group are remarkably similar to the Type IIn SN 2005gl. For this object, the claim of a terminal SN explosion is supported by the disappearance of the progenitor star. While the similarity with SN 2005gl supports a genuine SN explosion scenario for SN 2009ip-like events, the unequivocal detection of nucleosynthesized elements in their nebular spectra is still missing.
  •  
9.
  • Wood-Vasey, W. M., et al. (författare)
  • Observational constraints on the nature of dark energy : First cosmological results from the ESSENCE supernova survey
  • 2007
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 666:2, s. 694-715
  • Forskningsöversikt (refereegranskat)abstract
    • We present constraints on the dark energy equation-of-state parameter, w = P/(rho c(2)), using 60 SNe Ia fromthe ESSENCE supernova survey. We derive a set of constraints on the nature of the dark energy assuming a flat universe. By including constraints on (Omega(M), w) from baryon acoustic oscillations, we obtain a value for a static equation-of-state parameter w = -1:05(-0.12)(+0: 13) (stat 1 sigma) +/- 0: 13 (sys) and Omega(M) = 0:274(-0.020)(+0:033) (stat 1 sigma) with a bestfit chi(2)/dof of 0.96. These results are consistent with those reported by the Supernova Legacy Survey from the first year of a similar program measuring supernova distances and redshifts. We evaluate sources of systematic error that afflict supernova observations and present Monte Carlo simulations that explore these effects. Currently, the largest systematic with the potential to affect our measurements is the treatment of extinction due to dust in the supernova host galaxies. Combining our set of ESSENCE SNe Ia with the first-results Supernova Legacy Survey SNe Ia, we obtain a joint constraint of w = -1:07(-0: 09)(+0:09) (stat 1 sigma) +/- 0: 13 ( sys), Omega(M) 0:267(-0:028)(+0:028) (stat 1 sigma) with a best-fit chi(2)/dof of 0.91. The current global SN Ia data alone rule out empty (Omega(M) = 0), matter-only Omega(M) = 0: 3, and Omega(M) = 1 universes at > 4.5 sigma. The current SN Ia data are fully consistent with a cosmological constant.
  •  
10.
  • Miknaitis, G., et al. (författare)
  • The ESSENCE supernova survey : Survey optimization, observations, and supernova photometry
  • 2007
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 666:2, s. 674-693
  • Forskningsöversikt (refereegranskat)abstract
    • We describe the implementation and optimization of the ESSENCE supernova survey, which we have undertaken to measure the dark energy equation-of-state parameter, w = P/(rho c(2)). We present a method for optimizing the survey exposure times and cadence to maximize our sensitivity to w for a given fixed amount of telescope time. For our survey on the CTIO 4 m telescope, measuring the luminosity distances and redshifts for supernovae at modest redshifts (z approximate to 0: 5 +/- 0: 2) is optimal for determining w. We describe the data analysis pipeline based on using reliable and robust image subtraction to find supernovae automatically and in nearly real time. Since making cosmological inferences with supernovae relies crucially on accurate measurement of their apparent brightnesses, we describe our efforts to establish a thorough calibration of the CTIO 4 m telescope's natural photometric system. In its first four years, ESSENCE has discovered and spectroscopically confirmed 102 Type Ia supernovae, at redshifts from 0.10 to 0.78, identified through an impartial, effective methodology for spectroscopic classification and redshift determination. We present the resulting light curves for all of the Type Ia supernovae found by ESSENCE and used in our measurement of w, presented in a companion paper by Wood-Vasey and coworkers.
  •  
11.
  • Smartt, S. J., et al. (författare)
  • Pan-STARRS and PESSTO search for an optical counterpart to the LIGO gravitational-wave source GW150914
  • 2016
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 462:4, s. 4094-4116
  • Tidskriftsartikel (refereegranskat)abstract
    • We searched for an optical counterpart to the first gravitational-wave source discovered by LIGO (GW150914), using a combination of the Pan-STARRS1 wide-field telescope and the Public ESO Spectroscopic Survey of Transient Objects (PESSTO) spectroscopic follow-up programme. As the final LIGO sky maps changed during analysis, the total probability of the source being spatially coincident with our fields was finally only 4.2 per cent. Therefore, we discuss our results primarily as a demonstration of the survey capability of Pan-STARRS and spectroscopic capability of PESSTO. We mapped out 442 deg(2) of the northern sky region of the initial map. We discovered 56 astrophysical transients over a period of 41 d from the discovery of the source. Of these, 19 were spectroscopically classified and a further 13 have host galaxy redshifts. All transients appear to be fairly normal supernovae (SNe) and AGN variability and none is obviously linked with GW150914. We illustrate the sensitivity of our survey by defining parametrized light curves with time-scales of 4, 20 and 40 d and use the sensitivity of the Pan-STARRS1 images to set limits on the luminosities of possible sources. The Pan-STARRS1 images reach limiting magnitudes of iP1 = 19.2, 20.0 and 20.8, respectively, for the three time-scales. For long time-scale parametrized light curves (with full width half-maximum similar or equal to 40 d), we set upper limits of M-i <= -17.2(+1.4)(-0.9) if the distance to GW150914 is D-L = 400 +/- 200 Mpc. The number of Type Ia SN we find in the survey is similar to that expected from the cosmic SN rate, indicating a reasonably complete efficiency in recovering SN like transients out to D-L = 400 +/- 200 Mpc.
  •  
12.
  • Anderson, J. P., et al. (författare)
  • A nearby super-luminous supernova with a long pre-maximum plateau and strong C (II) features
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 620
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Super-luminous supernovae (SLSNe) are rare events defined as being significantly more luminous than normal terminal stellar explosions. The source of the additional power needed to achieve such luminosities is still unclear. Discoveries in the local Universe (i.e. z < 0.1) are scarce, but afford dense multi-wavelength observations. Additional low-redshift objects are therefore extremely valuable.Aims. We present early-time observations of the type I SLSN ASASSN-18km/SN 2018bsz. These data are used to characterise the event and compare to literature SLSNe and spectral models. Host galaxy properties are also analysed.Methods. Optical and near-IR photometry and spectroscopy were analysed. Early-time ATLAS photometry was used to constrain the rising light curve. We identified a number of spectral features in optical-wavelength spectra and track their time evolution. Finally, we used archival host galaxy photometry together with H( II )region spectra to constrain the host environment.Results. ASASSN-18km/SN 2018bsz is found to be a type I SLSN in a galaxy at a redshift of 0.0267 (111 Mpc), making it the lowest-redshift event discovered to date. Strong C- II lines are identified in the spectra. Spectral models produced by exploding a Wolf-Rayet progenitor and injecting a magnetar power source are shown to be qualitatively similar to ASASSN-18km/SN 2018bsz, contrary to most SLSNe-I that display weak or non-existent C (II) lines. ASASSN-18km/SN 2018bsz displays along, slowly rising, red plateau of >26 days, before a steeper, faster rise to maximum. The host has an absolute magnitude of -19.8 mag (r), a mass of M-* = 1.5(-0.33)(+0.08) x 10(9) M-circle dot, and a star formation rate of =0.50(-0.19)(+2.22) M-circle dot yr(-1). A nearby H (II) region has an oxygen abundance (O3N2) of 8.31 +/- 0.01 dex.
  •  
13.
  • Margutti, R., et al. (författare)
  • A PANCHROMATIC VIEW OF THE RESTLESS SN 2009ip REVEALS THE EXPLOSIVE EJECTION OF A MASSIVE STAR ENVELOPE
  • 2014
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 780:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The double explosion of SN 2009ip in 2012 raises questions about our understanding of the late stages of massive star evolution. Here we present a comprehensive study of SN 2009ip during its remarkable rebrightenings. High-cadence photometric and spectroscopic observations from the GeV to the radio band obtained from a variety of ground-based and space facilities (including the Very Large Array, Swift, Fermi, Hubble Space Telescope, and XMM) constrain SN 2009ip to be a low energy (E similar to 1050 erg for an ejecta mass similar to 0.5 M-circle dot) and asymmetric explosion in a complex medium shaped by multiple eruptions of the restless progenitor star. Most of the energy is radiated as a result of the shock breaking out through a dense shell of material located at similar to 5 x 10(14) cm with M similar to 0.1 M-circle dot, ejected by the precursor outburst similar to 40 days before the major explosion. We interpret the NIR excess of emission as signature of material located further out, the origin of which has to be connected with documented mass-loss episodes in the previous years. Our modeling predicts bright neutrino emission associated with the shock break-out if the cosmic-ray energy is comparable to the radiated energy. We connect this phenomenology with the explosive ejection of the outer layers of the massive progenitor star, which later interacted with material deposited in the surroundings by previous eruptions. Future observations will reveal if the massive luminous progenitor star survived. Irrespective of whether the explosion was terminal, SN 2009ip brought to light the existence of new channels for sustained episodic mass loss, the physical origin of which has yet to be identified.
  •  
14.
  • Narayan, G., et al. (författare)
  • LIGHT CURVES OF 213 TYPE Ia SUPERNOVAE FROM THE ESSENCE SURVEY
  • 2016
  • Ingår i: Astrophysical Journal Supplement Series. - : American Astronomical Society. - 0067-0049 .- 1538-4365. ; 224:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The ESSENCE survey discovered 213 Type Ia supernovae at redshifts 0.1 < z < 0.81 between 2002 and 2008. We present their R- and I-band photometry, measured from images obtained using the MOSAIC II camera at the CTIO Blanco, along with rapid-response spectroscopy for each object. We use our spectroscopic follow-up observations to determine an accurate, quantitative classification, and precise redshift. Through an extensive calibration program we have improved the precision of the CTIO Blanco natural photometric system. We use several empirical metrics to measure our internal photometric consistency and our absolute calibration of the survey. We assess the effect of various potential sources of systematic bias on our measured fluxes, and estimate the dominant term in the systematic error budget from the photometric calibration on our absolute fluxes is similar to 1%.
  •  
15.
  • Pastorello, A., et al. (författare)
  • Ultra-bright Optical Transients are Linked with Type Ic Supernovae
  • 2010
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 724, s. L16-L21
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent searches by unbiased, wide-field surveys have uncovered a group of extremely luminous optical transients. The initial discoveries of SN 2005ap by the Texas Supernova Search and SCP-06F6 in a deep Hubble pencil beam survey were followed by the Palomar Transient Factory confirmation of host redshifts for other similar transients. The transients share the common properties of high optical luminosities (peak magnitudes ~-21 to -23), blue colors, and a lack of H or He spectral features. The physical mechanism that produces the luminosity is uncertain, with suggestions ranging from jet-driven explosion to pulsational pair instability. Here, we report the most detailed photometric and spectral coverage of an ultra-bright transient (SN 2010gx) detected in the Pan-STARRS 1 sky survey. In common with other transients in this family, early-time spectra show a blue continuum and prominent broad absorption lines of O II. However, about 25 days after discovery, the spectra developed type Ic supernova features, showing the characteristic broad Fe II and Si II absorption lines. Detailed, post-maximum follow-up may show that all SN 2005ap and SCP-06F6 type transients are linked to supernovae Ic. This poses problems in understanding the physics of the explosions: there is no indication from late-time photometry that the luminosity is powered by 56Ni, the broad light curves suggest very large ejected masses, and the slow spectral evolution is quite different from typical Ic timescales. The nature of the progenitor stars and the origin of the luminosity are intriguing and open questions.
  •  
16.
  • Prentice, S. J., et al. (författare)
  • Investigating the properties of stripped-envelope supernovae; what are the implications for their progenitors?
  • 2019
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 485:2, s. 1559-1578
  • Tidskriftsartikel (refereegranskat)abstract
    • We present observations and analysis of 18 stripped-envelope supernovae observed during 2013-2018. This sample consists of five H/He-rich SNe, sixH-poor/He-rich SNe, three narrow lined SNe Ic, and four broad lined SNe Ic. The peak luminosity and characteristic time-scales of the bolometric light curves are calculated, and the light curves modelled to derive Ni-56 and ejecta masses (M-Ni and M-cj). Additionally, the temperature evolution and spectral line velocity curves of each SN are examined. Analysis of the [O I] line in the nebular phase of eight SNe suggests their progenitors had initial masses < 20 M-circle dot. The bolometric light curve properties are examined in combination with those of other SE events from the literature. The resulting data set gives the M-ej distribution for 80 SE-SNe, the largest such sample in the literature to date, and shows that SNe Ib have the lowest median M-ej, followed by narrow-lined SNe Ic, H/He-rich SNe, broad-lined SNe Ic, and finally gamma-ray burst SNe. SNe Ic-6/7 show the largest spread of M-ej ranging from similar to 1.2-11 M-circle dot, considerably greater than any other subtype. For all SE-SNe = 2.8 +/- 1.5 M-circle dot which further strengthens the evidence that SE-SNe arise from low-mass progenitors which are typically <5 M-circle dot at the time of explosion, again suggesting M-ZAMS < 25 M-circle dot. The low and lack of clear bimodality in the distribution implies < 30 M-circle dot progenitors and that envelope stripping via binary interaction is the dominant evolutionary pathway of these SNe.
  •  
17.
  • Smartt, S. J., et al. (författare)
  • A SEARCH FOR AN OPTICAL COUNTERPART TO THE GRAVITATIONAL-WAVE EVENT GW151226
  • 2016
  • Ingår i: Astrophysical Journal Letters. - 2041-8205 .- 2041-8213. ; 827:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a search for an electromagnetic counterpart of the gravitational-wave source GW151226. Using the Pan-STARRS1 telescope we mapped out 290 square degrees in the optical i(P1) filter, starting 11.5 hr after the LIGO information release and lasting for an additional 28 days. The first observations started 49.5 hr after the time of the GW151226 detection. We typically reached sensitivity limits of i(P1) = 20.3-20.8 and covered 26.5% of the LIGO probability skymap. We supplemented this with ATLAS survey data, reaching 31% of the probability region to shallower depths of m similar or equal to 19. We found 49 extragalactic transients (that are not obviously active galactic nuclei), including a faint transient in a galaxy at 7 Mpc (a luminous blue variable outburst) plus a rapidly decaying M-dwarf flare. Spectral classification of 20 other transient events showed them all to be supernovae. We found an unusual transient, PS15dpn, with an explosion date temporally coincident with GW151226, that evolved into a type Ibn supernova. The redshift of the transient is secure at z = 0.1747 +/- 0.0001 and we find it unlikely to be linked, since the luminosity distance has a negligible probability of being consistent with that of GW151226. In the 290 square degrees surveyed we therefore do not find a likely counterpart. However we show that our survey strategy would be sensitive to NS-NS mergers producing kilonovae at D-L less than or similar to 100 Mpc, which is promising for future LIGO/Virgo searches.
  •  
18.
  • Botticella, M. T., et al. (författare)
  • Supernova 2009kf : An Ultraviolet Bright Type IIP Supernova Discovered with Pan-STARRS 1 and GALEX
  • 2010
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 717, s. L52-L56
  • Tidskriftsartikel (refereegranskat)abstract
    • We present photometric and spectroscopic observations of a luminous Type IIP Supernova (SN) 2009kf discovered by the Pan-STARRS 1 (PS1) survey and also detected by the Galaxy Evolution Explorer. The SN shows a plateau in its optical and bolometric light curves, lasting approximately 70 days in the rest frame, with an absolute magnitude of M V = -18.4 mag. The P-Cygni profiles of hydrogen indicate expansion velocities of 9000 km s-1 at 61 days after discovery which is extremely high for a Type IIP SN. SN 2009kf is also remarkably bright in the near-ultraviolet (NUV) and shows a slow evolution 10-20 days after optical discovery. The NUV and optical luminosity at these epochs can be modeled with a blackbody with a hot effective temperature (T ~ 16,000 K) and a large radius (R ~ 1 × 1015 cm). The bright bolometric and NUV luminosity, the light curve peak and plateau duration, the high velocities, and temperatures suggest that 2009kf is a Type IIP SN powered by a larger than normal explosion energy. Recently discovered high-z SNe (0.7 < z < 2.3) have been assumed to be IIn SNe, with the bright UV luminosities due to the interaction of SN ejecta with a dense circumstellar medium. UV-bright SNe similar to SN 2009kf could also account for these high-z events, and its absolute magnitude M NUV = -21.5 ± 0.5 mag suggests such SNe could be discovered out to z ~ 2.5 in the PS1 survey.
  •  
19.
  • Nicholl, M., et al. (författare)
  • Superluminous supernovae from PESSTO
  • 2014
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 444:3, s. 2096-2113
  • Tidskriftsartikel (refereegranskat)abstract
    • We present optical spectra and light curves for three hydrogen-poor superluminous supernovae followed by the Public ESO Spectroscopic Survey of Transient Objects (PESSTO). Time series spectroscopy from a fewdays aftermaximum light to 100 d later shows them to be fairly typical of this class, with spectra dominated by Ca II, MgII, FeII, and Si II, which evolve slowly over most of the post-peak photospheric phase. We determine bolometric light curves and apply simple fitting tools, based on the diffusion of energy input by magnetar spin-down, Ni-56 decay, and collision of the ejecta with an opaque circumstellar shell. We investigate how the heterogeneous light curves of our sample (combined with others from the literature) can help to constrain the possible mechanisms behind these events. We have followed these events to beyond 100-200 d after peak, to disentangle host galaxy light from fading supernova flux and to differentiate between the models, which predict diverse behaviour at this phase. Models powered by radioactivity require unrealistic parameters to reproduce the observed light curves, as found by previous studies. Both magnetar heating and circumstellar interaction still appear to be viable candidates. A large diversity is emerging in observed tail-phase luminosities, with magnetar models failing in some cases to predict the rapid drop in flux. This would suggest either that magnetars are not responsible, or that the X-ray flux from the magnetar wind is not fully trapped. The light curve of one object shows a distinct rebrightening at around 100 d after maximum light. We argue that this could result either from multiple shells of circumstellar material, or from a magnetar ionization front breaking out of the ejecta.
  •  
20.
  • Pastorello, A., et al. (författare)
  • Forbidden hugs in pandemic times II. The luminous red nova variety AT 2020hat and AT 2020kog
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 647
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the results of our monitoring campaigns of the luminous red novae (LRNe) AT 2020hat in NGC 5068 and AT 2020kog in NGC 6106. The two objects were imaged (and detected) before their discovery by routine survey operations. They show a general trend of slow luminosity rise, lasting at least a few months. The subsequent major LRN outbursts were extensively followed in photometry and spectroscopy. The light curves present an initial short-duration peak, followed by a redder plateau phase. AT 2020kog is a moderately luminous event peaking at similar to 7 x 10(40) erg s(-1), while AT 2020hat is almost one order of magnitude fainter than AT 2020kog, although it is still more luminous than V838 Mon. In analogy with other LRNe, the spectra of AT 2020kog change significantly with time. They resemble those of type TM supernovae at early phases, then they become similar to those of K-type stars during the plateau, and to M-type stars at very late phases. In contrast, AT 2020hat already shows a redder continuum at early epochs, and its spectrum shows the late appearance of molecular bands. A moderate-resolution spectrum of AT 2020hat taken at +37 d after maximum shows a forest of narrow P Cygni lines of metals with velocities of 180 km s(-1), along with an Ha emission with a full-width at half-maximum velocity of 250 km s(-1). For AT 2020hat, a robust constraint on its quiescent progenitor is provided by archival images of the Hubble Space Telescope. The progenitor is clearly detected as a mid-K type star, with an absolute magnitude of M-F606W = -3.33 +/- 0.09 mag and a colour of F606W - F814W = 1.14 +/- 0.05 mag, which are inconsistent with the expectations from a massive star that could later produce a core-collapse supernova. Although quite peculiar, the two objects nicely match the progenitor versus light curve absolute magnitude correlations discussed in the literature.
  •  
21.
  • Pierel, J. D. R., et al. (författare)
  • LensWatch. I. Resolved HST Observations and Constraints on the Strongly Lensed Type Ia Supernova 2022qmx (SN Zwicky)
  • 2023
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 948:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Supernovae (SNe) that have been multiply imaged by gravitational lensing are rare and powerful probes for cosmology. Each detection is an opportunity to develop the critical tools and methodologies needed as the sample of lensed SNe increases by orders of magnitude with the upcoming Vera C. Rubin Observatory and Nancy Grace Roman Space Telescope. The latest such discovery is of the quadruply imaged Type Ia SN 2022qmx (aka, SN Zwicky) at z = 0.3544. SN Zwicky was discovered by the Zwicky Transient Facility in spatially unresolved data. Here we present follow-up Hubble Space Telescope observations of SN Zwicky, the first from the multicycle LensWatch (www.lenswatch.org) program. We measure photometry for each of the four images of SN Zwicky, which are resolved in three WFC3/UVIS filters (F475W, F625W, and F814W) but unresolved with WFC3/IR F160W, and present an analysis of the lensing system using a variety of independent lens modeling methods. We find consistency between lens-model-predicted time delays (less than or similar to 1 day), and delays estimated with the single epoch of Hubble Space Telescope colors (less than or similar to 3.5 days), including the uncertainty from chromatic microlensing (similar to 1-1.5 days). Our lens models converge to an Einstein radius of theta(E) = 0.168 (+0.009)(-0.005) the smallest yet seen in a lensed SN system. The standard candle nature of SN Zwicky provides magnification estimates independent of the lens modeling that are brighter than predicted by similar to 1.7 (-0.6) (+0.8) mag and similar to 0.9 (-0.6) (+0.8) mag for two of the four images, suggesting significant microlensing and/or additional substructure beyond the flexibility of our image-position mass models.
  •  
22.
  • Tinyanont, S., et al. (författare)
  • Keck Infrared Transient Survey. I. Survey Description and Data Release 1
  • 2024
  • Ingår i: Publications of the Astronomical Society of the Pacific. - 0004-6280 .- 1538-3873. ; 136:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the Keck Infrared Transient Survey, a NASA Key Strategic Mission Support program to obtain near-infrared (NIR) spectra of astrophysical transients of all types, and its first data release, consisting of 105 NIR spectra of 50 transients. Such a data set is essential as we enter a new era of IR astronomy with the James Webb Space Telescope (JWST) and the upcoming Nancy Grace Roman Space Telescope (Roman). NIR spectral templates will be essential to search JWST images for stellar explosions of the first stars and to plan an effective Roman SN Ia cosmology survey, both key science objectives for mission success. Between 2022 February and 2023 July, we systematically obtained 274 NIR spectra of 146 astronomical transients, representing a significant increase in the number of available NIR spectra in the literature. Here, we describe the first release of data from the 2022A semester. We systematically observed three samples: a flux-limited sample that includes all transients <17 mag in a red optical band (usually ZTF r or ATLAS o bands); a volume-limited sample including all transients within redshift z < 0.01 (D ≈ 50 Mpc); and an SN Ia sample targeting objects at phases and light-curve parameters that had scant existing NIR data in the literature. The flux-limited sample is 39% complete (60% excluding SNe Ia), while the volume-limited sample is 54% complete and is 79% complete to z = 0.005. Transient classes observed include common Type Ia and core-collapse supernovae, tidal disruption events, luminous red novae, and the newly categorized hydrogen-free/helium-poor interacting Type Icn supernovae. We describe our observing procedures and data reduction using PypeIt, which requires minimal human interaction to ensure reproducibility.
  •  
23.
  • Berendsen, A. A. M., et al. (författare)
  • Association of Adherence to a Healthy Diet with Cognitive Decline in European and American Older Adults: A Meta-Analysis within the CHANCES Consortium
  • 2017
  • Ingår i: Dementia and Geriatric Cognitive Disorders. - : S. Karger AG. - 1420-8008 .- 1421-9824. ; 43:3-4, s. 215-227
  • Tidskriftsartikel (refereegranskat)abstract
    • Aim: To examine the association between a healthy diet, assessed by the Healthy Diet Indicator (HDI), and cognitive decline in older adults. Methods: Data from 21,837 participants aged >= 55 years from 3 cohorts (Survey in Europe on Nutrition and the Elderly, a Concerted Action [SENECA], Rotterdam Study [RS], Nurses' Health Study [NHS]) were analyzed. HDI scores were based on intakes of saturated fatty acids, polyunsaturated fatty acids, mono-and disaccharides, protein, cholesterol, fruits and vegetables, and fiber. The Telephone Interview for Cognitive Status in NHS and Mini-Mental State Examination in RS and SENECA were used to assess cognitive function from multiple repeated measures. Using multivariable-adjusted, mixed linear regression, mean differences in annual rates of cognitive decline by HDI quintiles were estimated. Results: Multivariable-adjusted differences in rates in the highest versus the lowest HDI quintile were 0.01 (95% CI -0.01, 0.02) in NHS, 0.00 (95% CI -0.02, 0.01) in RS, and 0.00 (95% CI -0.05, 0.05) in SENECA with a pooled estimate of 0.00 (95% CI -0.01, 0.01), I-2 = 0%. Conclusions: A higher HDI score was not related to reduced rates of cognitive decline in European and American older adults. (C) 2017 The Author(s) Published by S. Karger AG, Basel
  •  
24.
  • Bouchet, P., et al. (författare)
  • JWST MIRI Imager Observations of Supernova SN 1987A
  • 2024
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 965:1
  • Tidskriftsartikel (refereegranskat)abstract
    • There exist very few mid-infrared (IR) observations of supernovae (SNe) in general. Therefore, SN 1987A, the closest visible SN in 400 yr, gives us the opportunity to explore the mid-IR properties of SNe, the dust in their ejecta, and the surrounding medium and to witness the birth of an SN remnant (SNR). The James Webb Space Telescope, with its high spatial resolution and extreme sensitivity, gives a new view on these issues. We report on the first imaging observations obtained with the Mid-InfraRed Instrument (MIRI). We build temperature maps and discuss the morphology of the nascent SNR. Our results show that the temperatures in the equatorial ring (ER) are quite nonuniform. This could be due to dust destruction in some parts of the ring, as had been assumed in some previous works. We show that the IR emission extends beyond the ER, illustrating the fact that the shock wave has now passed through this ring to affect the circumstellar medium on a larger scale. Finally, while submillimeter Atacama Large Millimeter Array observations have hinted at the location of the compact remnant of SN 1987A, we note that our MIRI data have found no such evidence.
  •  
25.
  • Fransson, Claes, 1951-, et al. (författare)
  • Emission lines due to ionizing radiation from a compact object in the remnant of Supernova 1987A
  • 2024
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 383:6685, s. 898-903
  • Tidskriftsartikel (refereegranskat)abstract
    • The nearby Supernova 1987A was accompanied by a burst of neutrino emission, which indicates that a compact object (a neutron star or black hole) was formed in the explosion. There has been no direct observation of this compact object. In this work, we observe the supernova remnant with JWST spectroscopy, finding narrow infrared emission lines of argon and sulfur. The line emission is spatially unresolved and blueshifted in velocity relative to the supernova rest frame. We interpret the lines as gas illuminated by a source of ionizing photons located close to the center of the expanding ejecta. Photoionization models show that the line ratios are consistent with ionization by a cooling neutron star or a pulsar wind nebula. The velocity shift could be evidence for a neutron star natal kick.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 61

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy