SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Rickman Hans) "

Search: WFRF:(Rickman Hans)

  • Result 1-25 of 166
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Larsson, Bengt, et al. (author)
  • Molecular oxygen in the rho Ophiuchi cloud
  • 2007
  • In: Astronomy & Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 466:3, s. 5-
  • Journal article (peer-reviewed)abstract
    • Context: Molecular oxygen, O2, has been expected historically to be an abundant component of the chemical species in molecular clouds and, as such, an important coolant of the dense interstellar medium. However, a number of attempts from both ground and from space have failed to detect O2 emission.Aims: The work described here uses heterodyne spectroscopy from space to search for molecular oxygen in the interstellar medium. Methods: The Odin satellite carries a 1.1 m sub-millimeter dish and a dedicated 119 GHz receiver for the ground state line of O2. Starting in 2002, the star forming molecular cloud core ρ Oph A was observed with Odin for 34 days during several observing runs.Results: We detect a spectral line at v_LSR =+3.5 km s-1 with Δ v_FWHM=1.5 km s-1, parameters which are also common to other species associated with ρ Oph A. This feature is identified as the O2 (NJ = 11 - 1_0) transition at 118 750.343 MHz.Conclusions: The abundance of molecular oxygen, relative to H{2} , is 5 × 10-8 averaged over the Odin beam. This abundance is consistently lower than previously reported upper limits.Based on observations with Odin, a Swedish-led satellite project funded jointly by the Swedish National Space Board (SNSB), the Canadian Space Agency (CSA), the National Technology Agency of Finland (Tekes) and Centre National d'Étude Spatiale (CNES). The Swedish Space Corporation has been the industrial prime contractor and also is operating the satellite. Appendix A is only available in electronic form at http://www.aanda.org
  •  
2.
  • Krolikowska, Malgorzata, et al. (author)
  • New catalogue of one-apparition comets discovered in the years 1901-1950 I. Comets from the Oort spike
  • 2014
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 571, s. A63-
  • Journal article (peer-reviewed)abstract
    • Context: The orbits of one-apparition comets discovered in the early part of the last century have formerly been determined with very different numerical methods and assumptions on the model of the solar system, including the number of planets taken into account. Moreover, observations of the comet-minus-star-type sometimes led to determination of the comet position that are less precise than what we can derive today by using a more modern star catalogue. Aims. We aim to provide a new catalogue of cometary orbits that are derived using a completely homogeneous data treatment, accurate numerical integration, and a modern model of the solar system. Methods. We collected the complete sets of observations for investigated comets from the original publications. Then we recalculated the cometary positions for the comet-minus-star-type of observations using the Positions and Proper Motions Star Catalogue, and applied a uniform method for the data selection and weighting. As a final result, new osculating orbits were determined. Secondly, dynamical calculations were performed to the distance of 250 AU from the Sun to derive original and future barycentric orbits for evolution backward and forward in time. These numerical calculations for a given object start from a swarm of virtual comets constructed using our osculating (nominal) orbit. In this way, we obtained the orbital element uncertainties of original and future barycentric orbits. Results. We present homogeneous sets of orbital elements for osculating, original, and future orbits for 38 one-apparition comets. Non-gravitational orbits are derived for thirteen of them.
  •  
3.
  • Tinetti, Giovanna, et al. (author)
  • The EChO science case
  • 2015
  • In: Experimental astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 40:2-3, s. 329-391
  • Journal article (peer-reviewed)abstract
    • The discovery of almost two thousand exoplanets has revealed an unexpectedly diverse planet population. We see gas giants in few-day orbits, whole multi-planet systems within the orbit of Mercury, and new populations of planets with masses between that of the Earth and Neptune-all unknown in the Solar System. Observations to date have shown that our Solar System is certainly not representative of the general population of planets in our Milky Way. The key science questions that urgently need addressing are therefore: What are exoplanets made of? Why are planets as they are? How do planetary systems work and what causes the exceptional diversity observed as compared to the Solar System? The EChO (Exoplanet Characterisation Observatory) space mission was conceived to take up the challenge to explain this diversity in terms of formation, evolution, internal structure and planet and atmospheric composition. This requires in-depth spectroscopic knowledge of the atmospheres of a large and well-defined planet sample for which precise physical, chemical and dynamical information can be obtained. In order to fulfil this ambitious scientific program, EChO was designed as a dedicated survey mission for transit and eclipse spectroscopy capable of observing a large, diverse and well-defined planet sample within its 4-year mission lifetime. The transit and eclipse spectroscopy method, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allows us to measure atmospheric signals from the planet at levels of at least 10(-4) relative to the star. This can only be achieved in conjunction with a carefully designed stable payload and satellite platform. It is also necessary to provide broad instantaneous wavelength coverage to detect as many molecular species as possible, to probe the thermal structure of the planetary atmospheres and to correct for the contaminating effects of the stellar photosphere. This requires wavelength coverage of at least 0.55 to 11 mu m with a goal of covering from 0.4 to 16 mu m. Only modest spectral resolving power is needed, with R similar to 300 for wavelengths less than 5 mu m and R similar to 30 for wavelengths greater than this. The transit spectroscopy technique means that no spatial resolution is required. A telescope collecting area of about 1 m(2) is sufficiently large to achieve the necessary spectro-photometric precision: for the Phase A study a 1.13 m(2) telescope, diffraction limited at 3 mu m has been adopted. Placing the satellite at L2 provides a cold and stable thermal environment as well as a large field of regard to allow efficient time-critical observation of targets randomly distributed over the sky. EChO has been conceived to achieve a single goal: exoplanet spectroscopy. The spectral coverage and signal-to-noise to be achieved by EChO, thanks to its high stability and dedicated design, would be a game changer by allowing atmospheric composition to be measured with unparalleled exactness: at least a factor 10 more precise and a factor 10 to 1000 more accurate than current observations. This would enable the detection of molecular abundances three orders of magnitude lower than currently possible and a fourfold increase from the handful of molecules detected to date. Combining these data with estimates of planetary bulk compositions from accurate measurements of their radii and masses would allow degeneracies associated with planetary interior modelling to be broken, giving unique insight into the interior structure and elemental abundances of these alien worlds. EChO would allow scientists to study exoplanets both as a population and as individuals. The mission can target super-Earths, Neptune-like, and Jupiter-like planets, in the very hot to temperate zones (planet temperatures of 300-3000 K) of F to M-type host stars. The EChO core science would be delivered by a three-tier survey. The EChO Chemical Census: This is a broad survey of a few-hundred exoplanets, which allows us to explore the spectroscopic and chemical diversity of the exoplanet population as a whole. The EChO Origin: This is a deep survey of a subsample of tens of exoplanets for which significantly higher signal to noise and spectral resolution spectra can be obtained to explain the origin of the exoplanet diversity (such as formation mechanisms, chemical processes, atmospheric escape). The EChO Rosetta Stones: This is an ultra-high accuracy survey targeting a subsample of select exoplanets. These will be the bright "benchmark" cases for which a large number of measurements would be taken to explore temporal variations, and to obtain two and three dimensional spatial information on the atmospheric conditions through eclipse-mapping techniques. If EChO were launched today, the exoplanets currently observed are sufficient to provide a large and diverse sample. The Chemical Census survey would consist of > 160 exoplanets with a range of planetary sizes, temperatures, orbital parameters and stellar host properties. Additionally, over the next 10 years, several new ground- and space-based transit photometric surveys and missions will come on-line (e.g. NGTS, CHEOPS, TESS, PLATO), which will specifically focus on finding bright, nearby systems. The current rapid rate of discovery would allow the target list to be further optimised in the years prior to EChO's launch and enable the atmospheric characterisation of hundreds of planets.
  •  
4.
  • Agarwal, Jessica, et al. (author)
  • Acceleration of individual, decimetre-sized aggregates in the lower coma of comet 67P/Churyumov-Gerasimenko
  • 2016
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 462, s. S78-S88
  • Journal article (peer-reviewed)abstract
    • We present observations of decimetre-sized, likely ice-containing aggregates ejected from a confined region on the surface of comet 67P/Churyumov-Gerasimenko. The images were obtained with the narrow angle camera of the Optical, Spectroscopic, and Infrared Remote Imaging System on board the Rosetta spacecraft in 2016 January when the comet was at 2 au from the Sun outbound from perihelion. We measure the acceleration of individual aggregates through a 2 h image series. Approximately 50 per cent of the aggregates are accelerated away from the nucleus, and 50 per cent towards it, and likewise towards either horizontal direction. The accelerations are up to one order of magnitude stronger than local gravity, and are most simply explained by the combined effect of gas drag accelerating all aggregates upwards, and the recoil force from asymmetric outgassing, either from rotating aggregates with randomly oriented spin axes and sufficient thermal inertia to shift the temperature maximum away from an aggregate's subsolar region, or from aggregates with variable ice content. At least 10 per cent of the aggregates will escape the gravity field of the nucleus and feed the comet's debris trail, while others may fall back to the surface and contribute to the deposits covering parts of the Northern hemisphere. The rocket force plays a crucial role in pushing these aggregates back towards the surface. Our observations show the future back fall material in the process of ejection, and provide the first direct measurement of the acceleration of aggregates in the innermost coma (<2 km) of a comet, where gas drag is still significant.
  •  
5.
  • Attree, N., et al. (author)
  • Tensile strength of 67P/Churyumov-Gerasimenko nucleus material from overhangs
  • 2018
  • In: Astronomy and Astrophysics. - : EDP SCIENCES S A. - 0004-6361 .- 1432-0746. ; 611
  • Journal article (peer-reviewed)abstract
    • We directly measured twenty overhanging cliffs on the surface of comet 67P/Churyumov-Gerasimenko extracted from the latest shape model and estimated the minimum tensile strengths needed to support them against collapse under the comet's gravity. We find extremely low strengths of around 1 Pa or less (1 to 5 Pa, when scaled to a metre length). The presence of eroded material at the base of most overhangs, as well as the observed collapse of two features and the implied previous collapse of another, suggests that they are prone to failure and that the true material strengths are close to these lower limits (although we only consider static stresses and not dynamic stress from, for example, cometary activity). Thus, a tensile strength of a few pascals is a good approximation for the tensile strength of the 67P nucleus material, which is in agreement with previous work. We find no particular trends in overhang properties either with size over the similar to 10-100 m range studied here or location on the nucleus. There are no obvious differences, in terms of strength, height or evidence of collapse, between the populations of overhangs on the two cometary lobes, suggesting that 67P is relatively homogenous in terms of tensile strength. Low material strengths are supportive of cometary formation as a primordial rubble pile or by collisional fragmentation of a small body (tens of km).
  •  
6.
  • Auger, A. -T, et al. (author)
  • Geomorphology of the Imhotep region on comet 67P/Churyumov-Gerasimenko from OSIRIS observations
  • 2015
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 583
  • Journal article (peer-reviewed)abstract
    • Context. Since August 2014, the OSIRIS Narrow Angle Camera (NAC) onboard the Rosetta spacecraft has acquired high spatial resolution images of the nucleus of comet 67P/Churyumov-Gerasimenko, down to the decimeter scale. This paper focuses on the Imhotep region, located on the largest lobe of the nucleus, near the equator. Aims. We map, inventory, and describe the geomorphology of the Imhotep region. We propose and discuss some processes to explain the formation and ongoing evolution of this region. Methods. We used OSIRIS NAC images, gravitational heights and slopes, and digital terrain models to map and measure the morphologies of Imhotep. Results. The Imhotep region presents a wide variety of terrains and morphologies: smooth and rocky terrains, bright areas, linear features, roundish features, and boulders. Gravity processes such as mass wasting and collapse play a significant role in the geomorphological evolution of this region. Cometary processes initiate erosion and are responsible for the formation of degassing conduits that are revealed by elevated roundish features on the surface. We also propose a scenario for the formation and evolution of the Imhotep region; this implies the presence of large primordial voids inside the nucleus, resulting from its formation process.
  •  
7.
  • Barucci, M. A., et al. (author)
  • Detection of exposed H2O ice on the nucleus of comet 67P/Churyumov-Gerasimenko as observed by Rosetta OSIRIS and VIRTIS instruments
  • 2016
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 595
  • Journal article (peer-reviewed)abstract
    • Context. Since the orbital insertion of the Rosetta spacecraft, comet 67P/Churyumov-Gerasimenko (67P) has been mapped by OSIRIS camera and VIRTIS spectro-imager, producing a huge quantity of images and spectra of the comet's nucleus. Aims. The aim of this work is to search for the presence of H2O on the nucleus which, in general, appears very dark and rich in dehydrated organic material. After selecting images of the bright spots which could be good candidates to search for H2O ice, taken at high resolution by OSIRIS, we check for spectral cubes of the selected coordinates to identify these spots observed by VIRTIS. Methods. The selected OSIRIS images were processed with the OSIRIS standard pipeline and corrected for the illumination conditions for each pixel using the Lommel-Seeliger disk law. The spots with higher I/F were selected and then analysed spectrophotometrically and compared with the surrounding area. We selected 13 spots as good targets to be analysed by VIRTIS to search for the 2 mu m absorption band of water ice in the VIRTIS spectral cubes. Results. Out of the 13 selected bright spots, eight of them present positive H2O ice detection on the VIRTIS data. A spectral analysis was performed and the approximate temperature of each spot was computed. The H2O ice content was confirmed by modeling the spectra with mixing (areal and intimate) of H2O ice and dark terrain, using Hapke's radiative transfer modeling. We also present a detailed analysis of the detected spots.
  •  
8.
  • Bertini, I., et al. (author)
  • Search for satellites near comet 67P/Churyumov-Gerasimenko using Rosetta/OSIRIS images
  • 2015
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 583
  • Journal article (peer-reviewed)abstract
    • Context. The European Space Agency Rosetta mission reached and started escorting its main target, the Jupiter-family comet 67P/Churyumov-Gerasimenko, at the beginning of August 2014. Within the context of solar system small bodies, satellite searches from approaching spacecraft were extensively used in the past to study the nature of the visited bodies and their collisional environment. Aims. During the approaching phase to the comet in July 2014, the OSIRIS instrument onboard Rosetta performed a campaign aimed at detecting objects in the vicinity of the comet nucleus and at measuring these objects' possible bound orbits. In addition to the scientific purpose, the search also focused on spacecraft security to avoid hazardous material in the comet's environment. Methods. Images in the red spectral domain were acquired with the OSIRIS Narrow Angle Camera, when the spacecraft was at a distance between 5785 km and 5463 km to the comet, following an observational strategy tailored to maximize the scientific outcome. From the acquired images, sources were extracted and displayed to search for plausible displacements of all sources from image to image. After stars were identified, the remaining sources were thoroughly analyzed. To place constraints on the expected displacements of a potential satellite, we performed Monte Carlo simulations on the apparent motion of potential satellites within the Hill sphere. Results. We found no unambiguous detections of objects larger than similar to 6 m within similar to 20 km and larger than similar to 1 m between similar to 20 km and similar to 110 km from the nucleus, using images with an exposure time of 0.14 s and 1.36 s, respectively. Our conclusions are consistent with independent works on dust grains in the comet coma and on boulders counting on the nucleus surface. Moreover, our analysis shows that the comet outburst detected at the end of April 2014 was not strong enough to eject large objects and to place them into a stable orbit around the nucleus. Our findings underline that it is highly unlikely that large objects survive for a long time around cometary nuclei.
  •  
9.
  • Bertini, I., et al. (author)
  • The scattering phase function of comet 67P/Churyumov-Gerasimenko coma as seen from the Rosetta/OSIRIS instrument
  • 2017
  • In: Monthly notices of the Royal Astronomical Society. - : OXFORD UNIV PRESS. - 0035-8711 .- 1365-2966. ; 469, s. S404-S415
  • Journal article (peer-reviewed)abstract
    • The study of dust, the most abundant material in cometary nuclei, is pivotal in understanding the original materials forming the Solar system. Measuring the coma phase function provides a tool to investigate the nature of cometary dust. Rosetta/OSIRIS sampled the coma phase function of comet 67P/Churyumov-Gerasimenko, covering a large phase angle range in a small amount of time. Twelve series were acquired in the period from 2015 March to 2016 February for this scientific purpose. These data allowed, after stray light removal, measuring the phase function shape, its reddening, and phase reddening while varying heliocentric and nucleocentric distances. Despite small dissimilarities within different series, we found a constant overall shape. The reflectance has a u-shape with minimum at intermediate phase angles, reaching similar values at the smallest and largest phase angle sampled. The comparison with cometary phase functions in literature indicates OSIRIS curves being consistent with the ones found in many other single comets. The dust has a negligible phase reddening at alpha < 90 degrees, indicating a coma dominated by single scattering. We measured a reddening of [11-14] %/100 nm between 376 and 744 nm. No trend with heliocentric or nucleocentric distance was found, indicating the coma doesn't change its spectrum with time. These results are consistent with single coma grains and close-nucleus coma photometric results. Comparison with nucleus photometry indicates a different backscattering phase function shape and similar reddening values only at alpha < 30 degrees. At larger phase angles, the nucleus becomes significantly redder than the coma.
  •  
10.
  • Bodewits, D., et al. (author)
  • Changes in the physical environment of the inner coma of 67p/churyumov-gerasimenko with decreasing heliocentric distance
  • 2016
  • In: Astronomical Journal. - : IOP PUBLISHING LTD. - 0004-6256 .- 1538-3881. ; 152:5
  • Journal article (peer-reviewed)abstract
    • The Wide Angle Camera of the OSIRIS instrument on board the Rosetta spacecraft is equipped with several narrow-band filters that are centered on the emission lines and bands of various fragment species. These are used to determine the evolution of the production and spatial distribution of the gas in the inner coma of comet 67P with time and heliocentric distance, here between 2.6 and 1.3 au pre-perihelion. Our observations indicate that the emission observed in the OH, OI, CN, NH, and NH2 filters is mostly produced by dissociative electron impact excitation of different parent species. We conclude that CO2 rather than H2O is a significant source of the [OI] 630 nm emission. A strong plume-like feature observed in the CN and OI filters is present throughout our observations. This plume is not present in OH emission and indicates a local enhancement of the CO2/H2O ratio by as much as a factor of 3. We observed a sudden decrease in intensity levels after 2015 March, which we attribute to decreased electron temperatures in the first few kilometers above the surface of the nucleus.
  •  
11.
  •  
12.
  • Cremonese, G., et al. (author)
  • Photometry of dust grains of comet 67P and connection with nucleus regions
  • 2016
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 588
  • Journal article (peer-reviewed)abstract
    • Aims. Multiple pairs of high-resolution images of the dust coma of comet 67P/Churyumov-Gerasimenko have been collected by OSIRIS onboard Rosetta allowing extraction and analysis of dust grain tracks. Methods. We developed a quasi automatic method to recognize and to extract dust tracks in the Osiris images providing size, FWHM and photometric data. The dust tracks characterized by a low signal-to-noise ratio were checked manually. We performed the photometric analysis of 70 dust grain tracks observed on two different Narrow Angle Camera images in the two filters F24 and F28, centered at lambda = 480.7 nm and at lambda = 743.7 nm, respectively, deriving the color and the reddening of each one. We then extracted several images of the nucleus observed with the same filters and with the same phase angle to be compared with the dust grain reddening. Results. Most of the dust grain reddening is very similar to the nucleus values, confirming they come from the surface or subsurface layer. The histogram of the dust grain reddening has a secondary peak at negative values and shows some grains with values higher than the nucleus, suggesting a different composition from the surface grains. One hypothesis comes from the negative values point at the presence of hydrated minerals in the comet.
  •  
13.
  • Davidsson, Bjorn J. R., et al. (author)
  • CO2-driven surface changes in the Hapi region on Comet 67P/Churyumov-Gerasimenko
  • 2022
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press. - 0035-8711 .- 1365-2966. ; 516:4, s. 6009-6040
  • Journal article (peer-reviewed)abstract
    • Between 2014 December 31 and 2015 March 17, the OSIRIS cameras on Rosetta documented the growth of a 140 -m wide and 0.5 -m deep depression in the Hapi region on Comet 67P/Churyumov-Gerasimenko. This shallow pit is one of several that later formed elsewhere on the comet, all in smooth terrain that primarily is the result of airfall of coma particles. We have compiled observations of this region in Hapi by the microwave instrument MIRO on Rosetta, acquired during October and November 2014. We use thermophysical and radiative transfer models in order to reproduce the MIRO observations. This allows us to place constraints on the thermal inertia, diffusivity, chemical composition, stratification, extinction coefficients, and scattering properties of the surface material, and how they evolved during the months prior to pit formation. The results are placed in context through long-term comet nucleus evolution modelling. We propose that (1) MIRO observes signatures that are consistent with a solid-state greenhouse effect in airfall material; (2) CO2 ice is sufficiently close to the surface to have a measurable effect on MIRO antenna temperatures, and likely is responsible for the pit formation in Hapi observed by OSIRIS; (3) the pressure at the CO2 sublimation front is sufficiently strong to expel dust and water ice outwards, and to compress comet material inwards, thereby causing the near-surface compaction observed by CONSERT, SESAME, and groundbased radar, manifested as the 'consolidated terrain' texture observed by OSIRIS.
  •  
14.
  • Davidsson, Björn J. R., et al. (author)
  • Interpretation of thermal emission. I. The effect of roughness for spatially resolved atmosphereless bodies
  • 2015
  • In: Icarus. - : Elsevier BV. - 0019-1035 .- 1090-2643. ; 252, s. 1-21
  • Journal article (peer-reviewed)abstract
    • Spacecraft observations of atmosphereless Solar System bodies, combined with thermophysical modeling, provide important information about the thermal inertia and degree of surface roughness of these bodies. The thermophysical models rely on various methods of generating topography, the most common being the concave spherical segment. We here compare the properties of thermal emission for a number of different topographies - concave spherical segments, random Gaussians, fractals and parallel sinusoidal trenches - for various illumination and viewing geometries, degrees of surface roughness and wavelengths. We find that the thermal emission is strongly dependent on roughness type, even when the degrees of roughness are identical, for certain illumination and viewing geometries. The systematic usage of any single topography model may therefore bias determinations of thermal inertia and level of roughness. We outline strategies that may be employed during spacecraft observations to disentangle thermal inertia, level of roughness and type of topography. We also compare the numerically complex and time consuming full-scale thermophysical models with a simplified statistical approach, which is fairly easy to implement and quick to run. We conclude that the simplified statistical approach is similar to thermophysical models for cases tested here, which enables the user to analyze huge amounts of spectral data at a low numerical cost.
  •  
15.
  • Davidsson, Björn J. R., et al. (author)
  • Nucleus properties of Comet 9P/Tempel 1 estimated from non-gravitational force modeling
  • 2007
  • In: Icarus. - : Elsevier BV. - 0019-1035 .- 1090-2643. ; 187:1, s. 306-320
  • Journal article (peer-reviewed)abstract
    • The nucleus mass and bulk density of Comet 9P/Tempel 1 have been estimated by utilizing the non-gravitational force modeling technique. Here, the water production rates and non-gravitational perturbations of the orbit are calculated for a large number of model nuclei with different surface ice distribution patterns. By requiring that the empirical water production rate curve is reproduced, a subset of model nuclei are selected, for which masses are calculated by demanding that empirical non-gravitational changes of the orbital period and in the longitude of perihelion (per revolution) are reproduced. We obtain a mass M=5.8(±1.6)×1013 kg, and a bulk density , which compares very well with measurements made by the Deep Impact Science Team. The main goal of the current work is therefore to demonstrate functionality of an indirect method, i.e., mass estimation through non-gravitational force modeling, by comparing such results to ground truth data. Furthermore, the thermal inertia of active areas is estimated as 30–100 MKS, using a comparatively realistic thermophysical model (although a value in the range 100–350 MKS is obtained with a more simple model). An active area fraction of 3% is predicted, and these areas are probably confined to the northern hemisphere, being located close to the cometary equator.
  •  
16.
  • Davidsson, Björn J. R., et al. (author)
  • Physical properties of morphological units on Comet 9P/Tempel 1 derived from near-IR Deep Impact spectra
  • 2009
  • In: Icarus. - : Elsevier BV. - 0019-1035 .- 1090-2643. ; 201:1, s. 335-357
  • Journal article (peer-reviewed)abstract
    • In this paper we analyze near-infrared thermal emission spectra of the spatially resolved nucleus Of Comet 9P/Tempel 1 obtained by the NASA spacecraft Deep Impact. Maps of spectral reddening. the product X' between the beaming function and directional emissivity, as well as Suit ace temperature are constructed. Thermophysical modeling is used to estimate the degree of small scale surface toughness and thermal inertia by detailed reproduction of the empirical temperature map. Mie and Hapke theories are Used in combination with numerically Calculated beaming functions to analyze the X' trial and place constraints oil composition and grain size of the Surface material. We show that it is absolutely mandatory to include small scale Surface roughness in thermophysical modeling of this object, since the resulting self treating is vital for reproducing the measured temperatures. A small scale self heating parameter in the range 0.6 <= xi <= 0.75 is common, but smoother areas where 0.2 <= xi <= 0.3 are also found. Contrary to models neglecting small scale surface roughness, we find that the thermal inertia of Comet 9P/Tempel 1 generally is high (1000-3000 J m(-1) K-1 s(-1/2)). although it may be substantially lower (40-380 Jm(-2) K-1 s(-1/2)) in specific areas. We obtain a disk-averaged reddening of 3.5% kA(-1), with statistically significant local variations around that value on a +/- 1.0% kA(-1) level. vast regions appear covered by small (similar to 0.1 mu m) highly absorbing grains such as carbon or iron-rich silicates. Other regions appear dominated by somewhat larger (similar to 0.5 mu m) and/or less absorbing grains such as troilite or magnesium-rich silicates. Surface variations in reddening, roughness, thermal inertia, composition and/or grain size are moderately to strongly correlated to the locations of morphological units oil the surface. The existence of morphological units with differing physical properties may be primordial. hence reflecting a diversity in the building block cometesimals, or resulting front evolutionary processes. (c) 2009 Elsevier Inc. All rights reserved.
  •  
17.
  • Davidsson, Björn J. R., et al. (author)
  • Surface roughness and three-dimensional heat conduction in thermophysical models
  • 2014
  • In: Icarus. - : Elsevier BV. - 0019-1035 .- 1090-2643. ; 243, s. 58-77
  • Journal article (peer-reviewed)abstract
    • A thermophysical model is presented that considers surface roughness, cast shadows, multiple or single scattering of radiation, visual and thermal infrared self heating, as well as heat conduction in one or three dimensions. The code is suitable for calculating infrared spectral energy distributions for spatially resolved or unresolved minor Solar System bodies without significant atmospheres or sublimation, such as the Moon, Mercury, asteroids, irregular satellites or inactive regions on comet nuclei. It is here used to explore the effects of surface roughness on spatial scales small enough for heat conduction to erase lateral temperature gradients. Analytically derived corrections to one-dimensional models that reproduce the results of three-dimensional modeling are presented. We find that the temperature of terrains with such small-scale roughness is identical to that of smooth surfaces for certain types of topographies and non-scattering material. However, systematic differences between smooth and rough terrains are found for scattering materials, or topographies with prominent positive relief. Contrary to common beliefs, the roughness on small spatial scales may therefore affect the thermal emission of Solar System bodies.
  •  
18.
  • Davidsson, Björn J. R., et al. (author)
  • Thermal inertia and surface roughness of Comet 9P/Tempel 1
  • 2013
  • In: Icarus. - : Elsevier BV. - 0019-1035 .- 1090-2643. ; 224:1, s. 154-171
  • Journal article (peer-reviewed)abstract
    • Re-calibrated near-infrared spectroscopy of the resolved nucleus of Comet 9P/Tempel 1 acquired by the Deep Impact spacecraft has been analyzed by utilizing the post-Stardust-NExT nucleus shape model and spin pole solution, as well as a novel thermophysical model that explicitly accounts for small-scale surface roughness and thermal inertia. We find that the thermal inertia varies measurably across the surface, and that thermal emission from certain regions only can be reproduced satisfactory if surface roughness is accounted for. Particularly, a scarped/pitted terrain that experienced morning sunrise during the flyby is measurably rough (Hapke mean slope angle similar to 45 degrees) and has a thermal inertia of at most 50J m(-2) K-1 s(-1/2), but probably much lower. However, thick layered terrain and thin layered terrain experiencing local noon during the flyby have a substantially larger thermal inertia, reaching 150J m(-2) K-1 s(-1/2) if the surface is as rough as the scarped/pitted terrain, but 200J m(-2) K-1 s(-1/2) if the terrain is considered locally flat. Furthermore, the reddening of the nucleus near-infrared 1.5-2.2 gm spectrum varies between morphological units, being reddest for thick layered terrain (median value 3.4% k angstrom(-1)) and most neutral for the smooth terrain known to contain surface water ice (median value 3.1% k angstrom(-1)). Thus, Comet 9P/Tempel 1 is heterogeneous in terms of both thermophysical and optical properties, due to formation conditions and/or post-formation processing. 
  •  
19.
  • Davidsson, Björn J. R., et al. (author)
  • Thermal Inertia and Surface Roughness of Comet 9P/Tempel 1 Derived from Recalibrated Deep Impact NIR Spectroscopy
  • 2011
  • In: EPSC-DPS Joint Meeting 2011. ; , s. 221-
  • Conference paper (peer-reviewed)abstract
    • On July 4, 2005, the HRI-IR instrument onboard the Deep Impact spacecraft (NASA/Univ. of Maryland) acquired the first ever near-infrared spectra of a fully resolved comet nucleus, 9P/Tempel 1. Early attempts to estimate the thermal inertia of the surface material were inconclusive, due to negligence of small-scale surface roughness in the thermophysical models used to analyze the spectra. Following a substantial recalibration of the original dataset, we now reconsider the 9P/Tempel 1 spectra, using more realistic thermophysical models. In addition to largescale nucleus irregularity, these models now explicitly consider small-scale roughness and related phenomena such as shadowing and IR self heating. Furthermore, 3D heat conduction can be utilized when topographic features are similar in size to the thermal skin depth, or smaller. Estimates of the thermal inertia, degree of small-scale roughness and their levels of variation across the nucleus are presented.
  •  
20.
  • Davidsson, Björn, et al. (author)
  • Orbital elements of the material surrounding comet 67P/Churyumov-Gerasimenko
  • 2015
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 583
  • Journal article (peer-reviewed)abstract
    • Context. We investigate the dust coma within the Hill sphere of comet 67P/Churyumov-Gerasimenko. Aims. We aim to determine osculating orbital elements for individual distinguishable but unresolved slow-moving grains in the vicinity of the nucleus. In addition, we perform photometry and constrain grain sizes. Methods. We performed astrometry and photometry using images acquired by the OSIRIS Wide Angle Camera on the European Space Agency spacecraft Rosetta. Based on these measurements, we employed standard orbit determination and orbit improvement techniques. Results. Orbital elements and effective diameters of four grains were constrained, but we were unable to uniquely determine them. Two of the grains have light curves that indicate grain rotation. Conclusions. The four grains have diameters nominally in the range 0.14-0.50 m. For three of the grains, we found elliptic orbits, which is consistent with a cloud of bound particles around the nucleus. However, hyperbolic escape trajectories cannot be excluded for any of the grains, and for one grain this is the only known option. One grain may have originated from the surface shortly before observation. These results have possible implications for the understanding of the dispersal of the cloud of bound debris around comet nuclei, as well as for understanding the ejection of large grains far from the Sun.
  •  
21.
  • Davidsson, Björn, et al. (author)
  • The primordial nucleus of comet 67P/Churyumov-Gerasimenko
  • 2016
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 592
  • Journal article (peer-reviewed)abstract
    • Context. We investigate the formation and evolution of comet nuclei and other trans-Neptunian objects (TNOs) in the solar nebula and primordial disk prior to the giant planet orbit instability foreseen by the Nice model. Aims. Our goal is to determine whether most observed comet nuclei are primordial rubble-pile survivors that formed in the solar nebula and young primordial disk or collisional rubble piles formed later in the aftermath of catastrophic disruptions of larger parent bodies. We also propose a concurrent comet and TNO formation scenario that is consistent with observations. Methods. We used observations of comet 67P/Churyumov-Gerasimenko by the ESA Rosetta spacecraft, particularly by the OSIRIS camera system, combined with data from the NASA Stardust sample-return mission to comet 81P/Wild 2 and from meteoritics; we also used existing observations from ground or from spacecraft of irregular satellites of the giant planets, Centaurs, and TNOs. We performed modeling of thermophysics, hydrostatics, orbit evolution, and collision physics. Results. We find that thermal processing due to short-lived radionuclides, combined with collisional processing during accretion in the primordial disk, creates a population of medium-sized bodies that are comparably dense, compacted, strong, heavily depleted in supervolatiles like CO and CO2; they contain little to no amorphous water ice, and have experienced extensive metasomatism and aqueous alteration due to liquid water. Irregular satellites Phoebe and Himalia are potential representatives of this population. Collisional rubble piles inherit these properties from their parents. Contrarily, comet nuclei have low density, high porosity, weak strength, are rich in supervolatiles, may contain amorphous water ice, and do not display convincing evidence of in situ metasomatism or aqueous alteration. We outline a comet formation scenario that starts in the solar nebula and ends in the primordial disk, that reproduces these observed properties, and additionally explains the presence of extensive layering on 67P/Churyumov-Gerasimenko (and on 9P/Tempel 1 observed by Deep Impact), its bi-lobed shape, the extremely slow growth of comet nuclei as evidenced by recent radiometric dating, and the low collision probability that allows primordial nuclei to survive the age of the solar system. Conclusions. We conclude that observed comet nuclei are primordial rubble piles, and not collisional rubble piles. We argue that TNOs formed as a result of streaming instabilities at sizes below similar to 400 km and that similar to 350 of these grew slowly in a low-mass primordial disk to the size of Triton, Pluto, and Eris, causing little viscous stirring during growth. We thus propose a dynamically cold primordial disk, which prevented medium-sized TNOs from breaking into collisional rubble piles and allowed the survival of primordial rubble-pile comets. We argue that comets formed by hierarchical agglomeration out of material that remained after TNO formation, and that this slow growth was a necessity to avoid thermal processing by short-lived radionuclides that would lead to loss of supervolatiles, and that allowed comet nuclei to incorporate similar to 3 Myr old material from the inner solar system.
  •  
22.
  • Deshapriya, J. D. P., et al. (author)
  • Exposed bright features on the comet 67P/Churyumov-Gerasimenko : distribution and evolution
  • 2018
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 613
  • Journal article (peer-reviewed)abstract
    • Context. Since its arrival at the comet 67P/Churyumov-Gerasimenko in August 2014, the Rosetta spacecraft followed the comet as it went past the perihelion and beyond until September 2016. During this time there were many scientific instruments operating on board Rosetta to study the comet and its evolution in unprecedented detail. In this context, our study focusses on the distribution and evolution of exposed bright features that have been observed by OSIRIS, which is the scientific imaging instrument aboard Rosetta. Aims. We envisage investigating various morphologies of exposed bright features and the mechanisms that triggered their appearance. Methods. We co-registered multi-filter observations of OSIRIS images that are available in reflectance. The Lommel-Seeliger disk function was used to correct for the illumination conditions and the resulting colour cubes were used to perform spectrophotometric analyses on regions of interest. Results. We present a catalogue of 57 exposed bright features observed on the nucleus of the comet, all of which are attributed to the presence of H2O ice on the comet. Furthermore, we categorise these patches under four different morphologies and present geometric albedos for each category. Conclusions. Although the nucleus of 67P/Churyumov-Gerasimenko appears to be dark in general, there are localised H2O ice sources on the comet. Cometary activity escalates towards the perihelion passage and reveals such volatile ices. We propose that isolated H2O ice patches found in smooth terrains in regions, such as Imhotep, Bes, and Hapi, result from frost as an aftermath of the cessation of the diurnal water cycle on the comet as it recedes from perihelion. Upon the comet's return to perihelion, such patches are revealed when sublimation-driven erosion removes the thin dust layers that got deposited earlier. More powerful activity sources such as cometary outbursts are capable of revealing much fresher, less contaminated H2O ice that is preserved with consolidated cometary material, as observed on exposed patches resting on boulders. This is corroborated by our albedo calculations that attribute higher albedos for bright features with formations related to outbursts.
  •  
23.
  • Deshapriya, J. D. P., et al. (author)
  • Spectrophotometry of the Khonsu region on the comet 67P/Churyumov-Gerasimenko using OSIRIS instrument images
  • 2016
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 462, s. S274-S286
  • Journal article (peer-reviewed)abstract
    • Our work focuses on the spectrophotometric analysis of selected terrain and bright patches in the Khonsu region on the comet 67P/Churyumov-Gerasimenko. Despite the variety of geological features, their spectrophotometric properties appear to indicate a similar composition. It is noticeable that the smooth areas in Khonsu possess similar spectrophotometric behaviour to some other regions of the comet. We observed bright patches on Khonsu with an estimation of >40 per cent of normal albedo and suggest that they are associated with H2O ice. One of the studied bright patches has been observed to exist on the surface for more than 5 months without a major decay of its size, implying the existence of potential sub-surface icy layers. Its location may be correlated with a cometary outburst during the perihelion passage of the comet in 2015 August, and we interpret it to have triggered the surface modifications necessary to unearth the stratified icy layers beneath the surface. A boulder analysis on Khonsu leads to a power-law index of -3.1 + 0.2/-0.3 suggesting a boulder formation, shaped by varying geological processes for different morphological units.
  •  
24.
  • Dones, Luke, et al. (author)
  • Origin and Evolution of the Cometary Reservoirs
  • 2015
  • In: Space Science Reviews. - : Springer Science and Business Media LLC. - 0038-6308 .- 1572-9672. ; 197:1-4, s. 191-269
  • Research review (peer-reviewed)abstract
    • Comets have three known reservoirs: the roughly spherical Oort Cloud (for long-period comets), the flattened Kuiper Belt (for ecliptic comets), and, surprisingly, the asteroid belt (for main-belt comets). Comets in the Oort Cloud were thought to have formed in the region of the giant planets and then placed in quasi-stable orbits at distances of thousands or tens of thousands of AU through the gravitational effects of the planets and the Galaxy. The planets were long assumed to have formed in place. However, the giant planets may have undergone two episodes of migration. The first would have taken place in the first few million years of the Solar System, during or shortly after the formation of the giant planets, when gas was still present in the protoplanetary disk around the Sun. The Grand Tack (Walsh et al. in Nature 475:206-209, 2011) models how this stage of migration could explain the low mass of Mars and deplete, then repopulate the asteroid belt, with outer-belt asteroids originating between, and outside of, the orbits of the giant planets. The second stage of migration would have occurred later (possibly hundreds of millions of years later) due to interactions with a remnant disk of planetesimals, i.e., a massive ancestor of the Kuiper Belt. Safronov (Evolution of the Protoplanetary Cloud and Formation of the Earth and the Planets, 1969) and Fernandez and Ip (Icarus 58:109-120, 1984) proposed that the giant planets would have migrated as they interacted with leftover planetesimals; Jupiter would have moved slightly inward, while Saturn and (especially) Uranus and Neptune would have moved outward from the Sun. Malhotra (Nature 365:819-821, 1993) showed that Pluto's orbit in the 3:2 resonance with Neptune was a natural outcome if Neptune captured Pluto into resonance while it migrated outward. Building on this work, Tsiganis et al. (Nature 435:459-461, 2005) proposed the Nice model, in which the giant planets formed closer together than they are now, and underwent a dynamical instability that led to a flood of comets and asteroids throughout the Solar System (Gomes et al. in Nature 435:466-469, 2005b). In this scenario, it is somewhat a matter of luck whether an icy planetesimal ends up in the Kuiper Belt or Oort Cloud (Brasser and Morbidelli in Icarus 225:40-49, 2013), as a Trojan asteroid (Morbidelli et al. in Nature 435:462-465, 2005; NesvornA1/2 and VokrouhlickA1/2 in Astron. J. 137:5003-5011, 2009; NesvornA1/2 et al. in Astrophys. J. 768:45, 2013), or as a distant "irregular" satellite of a giant planet (NesvornA1/2 et al. in Astron. J. 133:1962-1976, 2007). Comets could even have been captured into the asteroid belt (Levison et al. in Nature 460:364-366, 2009). The remarkable finding of two "inner Oort Cloud" bodies, Sedna and 2012 , with perihelion distances of 76 and 81 AU, respectively (Brown et al. in Astrophys. J. 617:645-649, 2004; Trujillo and Sheppard in Nature 507:471-474, 2014), along with the discovery of other likely inner Oort Cloud bodies (Chen et al. in Astrophys. J. Lett. 775:8, 2013; Brasser and Schwamb in Mon. Not. R. Astron. Soc. 446:3788-3796, 2015), suggests that the Sun formed in a denser environment, i.e., in a star cluster (Brasser et al. in Icarus 184:59-82, 2006, 191:413-433, 2007, 217:1-19, 2012b; Kaib and Quinn in Icarus 197:221-238, 2008). The Sun may have orbited closer or further from the center of the Galaxy than it does now, with implications for the structure of the Oort Cloud (Kaib et al. in Icarus 215:491-507, 2011). We focus on the formation of cometary nuclei; the orbital properties of the cometary reservoirs; physical properties of comets; planetary migration; the formation of the Oort Cloud in various environments; the formation and evolution of the Kuiper Belt and Scattered Disk; and the populations and size distributions of the cometary reservoirs. We close with a brief discussion of cometary analogs around other stars and a summary.
  •  
25.
  • Drolshagen, E., et al. (author)
  • Distance determination method of dust particles using Rosetta OSIRIS NAC and WAC data
  • 2017
  • In: Planetary and Space Science. - : PERGAMON-ELSEVIER SCIENCE LTD. - 0032-0633 .- 1873-5088. ; 143, s. 256-264
  • Journal article (peer-reviewed)abstract
    • The ESA Rosetta spacecraft has been tracking its target, the Jupiter-family comet 67P/Churyumov-Gerasimenko, in close vicinity for over two years. It hosts the OSIRIS instruments: the Optical, Spectroscopic, and Infrared Remote Imaging System composed of two cameras, see e.g. Keller et al. (2007). In some imaging sequences dedicated to observe dust particles in the comet's coma, the two cameras took images at the same time. The aim of this work is to use these simultaneous double camera observations to calculate the dust particles' distance to the spacecraft. As the two cameras are mounted on the spacecraft with an offset of 70 cm, the distance of particles observed by both cameras can be determined by a shift of the particles' apparent trails on the images. This paper presents first results of the ongoing work, introducing the distance determination method for the OSIRIS instrument and the analysis of an example particle. We note that this method works for particles in the range of about 500-6000 m from the spacecraft.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-25 of 166
Type of publication
journal article (147)
book chapter (8)
book (4)
conference paper (2)
research review (2)
editorial collection (1)
show more...
other publication (1)
doctoral thesis (1)
show less...
Type of content
peer-reviewed (138)
pop. science, debate, etc. (22)
other academic/artistic (6)
Author/Editor
Rickman, Hans (165)
Sierks, H. (75)
Groussin, O. (75)
Barbieri, C. (74)
Thomas, N (73)
Rodrigo, R. (73)
show more...
Koschny, D. (73)
Bertini, I. (73)
Cremonese, G. (73)
Fornasier, S. (73)
Keller, H. U. (73)
Lazzarin, M. (73)
Marzari, F. (73)
Bertaux, J. -L (72)
Da Deppo, V. (72)
Jorda, L. (72)
Knollenberg, J. (72)
Tubiana, C. (71)
De Cecco, M. (71)
Fulle, M. (71)
Naletto, G. (71)
Vincent, J. -B (70)
Barucci, M. A. (70)
Debei, S. (70)
Oklay, N. (68)
Gutierrez, P. J. (67)
Hviid, S. F. (67)
Kuehrt, E. (65)
A'Hearn, M. F. (64)
Ip, W. -H (64)
Guettler, C. (63)
Kramm, J. -R (59)
Pajola, M. (57)
Lara, L. M. (56)
Lopez Moreno, J. J. (56)
Mottola, S. (56)
Lamy, P. L. (49)
Agarwal, J. (47)
Davidsson, Björn (43)
Kueppers, M. (38)
Kovacs, G (38)
Scholten, F. (38)
Preusker, F. (37)
Kuppers, M. (34)
Shi, X. (33)
Deller, J. (33)
El-Maarry, M. R. (33)
Hofmann, M. (32)
Bodewits, D. (32)
Massironi, M. (32)
show less...
University
Uppsala University (165)
Stockholm University (3)
Lund University (2)
Chalmers University of Technology (2)
Royal Institute of Technology (1)
Luleå University of Technology (1)
Language
English (150)
Swedish (16)
Research subject (UKÄ/SCB)
Natural sciences (141)
Engineering and Technology (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view