SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ridoutt Brad) "

Sökning: WFRF:(Ridoutt Brad)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Metson, Genevieve, et al. (författare)
  • Mapping phosphorus hotspots in Sydney’s organic wastes: a spatially-explicit inventory to facilitate urban phosphorus recycling
  • 2018
  • Ingår i: Journal of Urban Ecology. - : Oxford University Press. - 2058-5543. ; 4:1, s. 1-19
  • Tidskriftsartikel (refereegranskat)abstract
    • Phosphorus is an essential element for food production whose main global sources are becoming scarce and expensive. Furthermore, losses of phosphorus throughout the food production chain can also cause serious aquatic pollution. Recycling urban organic waste resources high in phosphorus could simultaneously address scarcity concerns for agricultural producers who rely on phosphorus fertilisers, and waste managers seeking to divert waste from landfills to decrease environmental burdens. Recycling phosphorus back to agricultural lands however requires careful logistical planning to maximize benefits and minimize costs, including processing and transportation. The first step towards such analyses is quantifying recycling potential in a spatially explicit way. Here we present such inventories and scenarios for the Greater Sydney Basin’s recyclable phosphorus supply and agricultural demand. In 2011, there was 15 times more phosphorus available in organic waste than agricultural demand for phosphorus in Sydney. Hypothetically, if future city residents shifted to a plant-based diet, eliminated edible food waste, and removed animal production in the Greater Sydney Basin, available phosphorus supply would decrease to 7.25 kt of phosphorus per year, even when accounting for population growth by 2031, and demand would also decrease to 0.40 kt of phosphorus per year. Creating a circular phosphorus economy for Sydney, in all scenarios considered, would require effective recycling strategies which include transport outside of the Greater Sydney Basin. These spatially explicit scenarios can be used as a tool to facilitate stakeholders engagement to identify opportunities and barriers for appropriate organic waste recycling strategies.
  •  
2.
  • Chrysafi, Anna, et al. (författare)
  • Quantifying Earth system interactions for sustainable food production via expert elicitation
  • 2022
  • Ingår i: Nature Sustainability. - : Springer Science and Business Media LLC. - 2398-9629. ; 5:10, s. 830-842
  • Tidskriftsartikel (refereegranskat)abstract
    • Several safe boundaries of critical Earth system processes have already been crossed due to human perturbations; not accounting for their interactions may further narrow the safe operating space for humanity. Using expert knowledge elicitation, we explored interactions among seven variables representing Earth system processes relevant to food production, identifying many interactions little explored in Earth system literature. We found that green water and land system change affect other Earth system processes strongly, while land, freshwater and ocean components of biosphere integrity are the most impacted by other Earth system processes, most notably blue water and biogeochemical flows. We also mapped a complex network of mechanisms mediating these interactions and created a future research prioritization scheme based on interaction strengths and existing knowledge gaps. Our study improves the understanding of Earth system interactions, with sustainability implications including improved Earth system modelling and more explicit biophysical limits for future food production.
  •  
3.
  • Metson, Genevieve, 1988-, et al. (författare)
  • Potential impact of dietary choices on phosphorus recycling and global phosphorus footprints: the case of the average Australian city
  • 2016
  • Ingår i: Frontiers in Nutrition. - : Frontiers Media S.A.. - 2296-861X. ; 3, s. 1-7
  • Tidskriftsartikel (refereegranskat)abstract
    • Changes in human diets, population increases, farming practices, and globalized food chains have led to dramatic increases in the demand for phosphorus fertilizers. Long-term food security and water quality are, however, threatened by such increased phosphorus consumption, because the world’s main source, phosphate rock, is an increasingly scarce resource. At the same time, losses of phosphorus from farms and cities have caused widespread water pollution. As one of the major factors contributing to increased phosphorus demand, dietary choices can play a key role in changing our resource consumption pathway. Importantly, the effects of dietary choices on phosphorus management are twofold: First, dietary choices affect a person or region’s “phosphorus footprint” – the magnitude of mined phosphate required to meet food demand. Second, dietary choices affect the magnitude of phosphorus content in human excreta and hence the recycling- and pollution-potential of phosphorus in sanitation systems. When considering options and impacts of interventions at the city scale (e.g., potential for recycling), dietary changes may be undervalued as a solution toward phosphorus sustainability. For example, in an average Australian city, a vegetable-based diet could marginally increase phosphorus in human excreta (an 8% increase). However, such a shift could simultaneously dramatically decrease the mined phosphate required to meet the city resident’s annual food demand by 72%. Taking a multi-scalar perspective is therefore key to fully exploring dietary choices as one of the tools for sustainable phosphorus management.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy