SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Riipinen Ilona) "

Sökning: WFRF:(Riipinen Ilona)

  • Resultat 1-25 av 138
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Acosta Navarro, Juan Camilo, 1983- (författare)
  • Anthropogenic influence on climate through changes in aerosol emissions from air pollution and land use change
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Particulate matter suspended in air (i.e. aerosol particles) exerts a substantial influence on the climate of our planet and is responsible for causing severe public health problems in many regions across the globe. Human activities have altered the natural and anthropogenic emissions of aerosol particles through direct emissions or indirectly by modifying natural sources. The climate effects of the latter have been largely overlooked. Humans have dramatically altered the land surface of the planet causing changes in natural aerosol emissions from vegetated areas. Regulation on anthropogenic and natural aerosol emissions have the potential to affect the climate on regional to global scales. Furthermore, the regional climate effects of aerosol particles could potentially be very different than the ones caused by other climate forcers (e.g. well mixed greenhouse gases). The main objective of this work was to investigate the climatic effects of land use and air pollution via aerosol changes.Using numerical model simulations it was found that land use changes in the past millennium have likely caused a positive radiative forcing via aerosol climate interactions. The forcing is an order of magnitude smaller and has an opposite sign than the radiative forcing caused by direct aerosol emissions changes from other human activities. The results also indicate that future reductions of fossil fuel aerosols via air quality regulations may lead to an additional warming of the planet by mid-21st century and could also cause an important Arctic amplification of the warming. In addition, the mean position of the intertropical convergence zone and the Asian monsoon appear to be sensitive to aerosol emission reductions from air quality regulations. For these reasons, climate mitigation policies should take into consideration aerosol air pollution, which has not received sufficient attention in the past.
  •  
2.
  • Acosta Navarro, Juan C., et al. (författare)
  • Future response of temperature and precipitation to reduced aerosol emissions as compared with increased greenhouse gas concentrations
  • 2017
  • Ingår i: Journal of Climate. - 0894-8755 .- 1520-0442. ; 30:3, s. 939-954
  • Tidskriftsartikel (refereegranskat)abstract
    • Experiments with a climate model (NorESM1) were performed to isolate the effects of aerosol particles and greenhouse gases on surface temperature and precipitation in simulations of future climate. The simulations show that by 2025-2049, a reduction of aerosol emissions from fossil fuels following a maximum technically feasible reduction (MFR) scenario could lead to a global and Arctic warming of 0.26 K and 0.84 K, respectively; as compared with a simulation with fixed aerosol emissions at the level of 2005. If fossil fuel emissions of aerosols follow a current legislation emissions (CLE) scenario, the NorESM1 model simulations yield a non-significant change in global and Arctic average surface temperature as compared with aerosol emissions fixed at year 2005. The corresponding greenhouse gas effect following the RCP4.5 emission scenario leads to a global and Arctic warming of 0.35 K and 0.94 K, respectively.The model yields a marked annual average northward shift in the inter-tropical convergence zone with decreasing aerosol emissions and subsequent warming of the northern hemisphere. The shift is most pronounced in the MFR scenario but also visible in the CLE scenario. The modeled temperature response to a change in greenhouse gas concentrations is relatively symmetric between the hemispheres and there is no marked shift in the annual average position of the inter-tropical convergence zone. The strong reduction in aerosol emissions in MFR also leads to a net southward cross-hemispheric energy transport anomaly both in the atmosphere and ocean, and enhanced monsoon circulation in Southeast and East Asia causing an increase in precipitation over a large part of this region.
  •  
3.
  • Acosta Navarro, Juan Camilo, et al. (författare)
  • Global emissions of terpenoid VOCs from terrestrial vegetation in the last millennium
  • 2014
  • Ingår i: Journal of Geophysical Research - Atmospheres. - : Wiley-Blackwell. - 2169-897X .- 2169-8996. ; 119:11, s. 6867-6885
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigated the millennial variability (1000 A.D.-2000 A.D.) of global biogenic volatile organic compound (BVOC) emissions by using two independent numerical models: The Model of Emissions of Gases and Aerosols from Nature (MEGAN), for isoprene, monoterpene, and sesquiterpene, and Lund-Potsdam-Jena-General Ecosystem Simulator (LPJ-GUESS), for isoprene and monoterpenes. We found the millennial trends of global isoprene emissions to be mostly affected by land cover and atmospheric carbon dioxide changes, whereas monoterpene and sesquiterpene emission trends were dominated by temperature change. Isoprene emissions declined substantially in regions with large and rapid land cover change. In addition, isoprene emission sensitivity to drought proved to have significant short-term global effects. By the end of the past millennium MEGAN isoprene emissions were 634 TgC yr-1 (13% and 19% less than during 1750-1850 and 1000-1200, respectively), and LPJ-GUESS emissions were 323 TgC yr-1(15% and 20% less than during 1750-1850 and 1000-1200, respectively). Monoterpene emissions were 89 TgC yr-1(10% and 6% higher than during 1750-1850 and 1000-1200, respectively) in MEGAN, and 24 TgC yr-1 (2% higher and 5% less than during 1750-1850 and 1000-1200, respectively) in LPJ-GUESS. MEGAN sesquiterpene emissions were 36 TgC yr-1(10% and 4% higher than during 1750-1850 and 1000-1200, respectively). Although both models capture similar emission trends, the magnitude of the emissions are different. This highlights the importance of building better constraints on VOC emissions from terrestrial vegetation.
  •  
4.
  • Acosta Navarro, Juan Camilo (författare)
  • Historical anthropogenic radiative forcing of changes in biogenic secondary organic aerosol
  • 2015
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Human activities have lead to changes in the energy balance of the Earth and the global climate. Changes in atmospheric aerosols are the second largest contributor to climate change after greenhouse gases since 1750 A.D. Land-use practices and other environmental drivers have caused changes in the emission of biogenic volatile organic compounds (BVOCs) and secondary organic aerosol (SOA) well before 1750 A.D, possibly causing climate effects through aerosol-radiation and aerosol-cloud interactions. Two numerical emission models LPJ-GUESS and MEGAN were used to quantify the changes in aerosol forming BVOC emissions in the past millennium. A chemical transport model of the atmosphere (GEOS-Chem-TOMAS) was driven with those BVOC emissions to quantify the effects on radiation caused by millennial changes in SOA.The specific objectives of this licentiate thesis are: 1) to understand what drove the changes in aerosol-forming BVOC emissions (i.e. isoprene, monoterpenes and sesquiterpenes) and to quantify these changes; 2) to calculate for the first time the combined historical aerosol direct and aerosol-cloud albedo effects on radiation from changing BVOC emissions through SOA formation; 3) to investigate how important the biological climate feedback associated to BVOC emissions and SOA formation is from a global climate perspective.We find that global isoprene emissions decreased after 1800 A.D. by about 12% - 15%. This decrease was dominated by losses of natural vegetation, whereas monoterpene and sesquiterpene emissions increased by about 2% - 10%, driven mostly by rising surface air temperatures. From 1000 A.D. to 1800 A.D, isoprene, monoterpene and sesquiterpene emissions decline by 3% - 8% driven by both, natural vegetation losses, and the moderate global cooling between the medieval climate anomaly and the little ice age. The millennial reduction in BVOC emissions lead to a 0.5% to 2% reduction in climatically relevant aerosol particles (> 80 nm) and cause a direct radiative forcing between +0.02 W/m² and +0.07 W/m², and an indirect radiative forcing between -0.02 W/m² and +0.02 W/m². The suggested biological climate feedback seems to be too small to have observable consequences on the global climate in the recent past.
  •  
5.
  • Ahlm, Lars, et al. (författare)
  • Particle number concentrations over Europe in 2030 : the role of emissions and new particle formation
  • 2013
  • Ingår i: Atmospheric Chemistry and Physics Discussions. - : Copernicus GmbH. - 1680-7367 .- 1680-7375 .- 1680-7324. ; 13:20, s. 10271-10283
  • Tidskriftsartikel (refereegranskat)abstract
    • The aerosol particle number concentration is a key parameter when estimating impacts of aerosol particles on climate and human health. We use a three-dimensional chemical transport model with detailed microphysics, PMCAMx-UF, to simulate particle number concentrations over Europe in the year 2030, by applying emission scenarios for trace gases and primary aerosols. The scenarios are based on expected changes in anthropogenic emissions of sulfur dioxide, ammonia, nitrogen oxides, and primary aerosol particles with a diameter less than 2.5 mu m (PM2.5) focusing on a photochemically active period, and the implications for other seasons are discussed. For the baseline scenario, which represents a best estimate of the evolution of anthropogenic emissions in Europe, PMCAMx-UF predicts that the total particle number concentration (N-tot) will decrease by 30-70% between 2008 and 2030. The number concentration of particles larger than 100 nm (N-100), a proxy for cloud condensation nuclei (CCN) concentration, is predicted to decrease by 40-70% during the same period. The predicted decrease in N-tot is mainly a result of reduced new particle formation due to the expected reduction in SO2 emissions, whereas the predicted decrease in N-100 is a result of both decreasing condensational growth and reduced primary aerosol emissions. For larger emission reductions, PMCAMx-UF predicts reductions of 60-80% in both N-tot and N-100 over Europe. Sensitivity tests reveal that a reduction in SO2 emissions is far more efficient than any other emission reduction investigated, in reducing N-tot. For N-100, emission reductions of both SO2 and PM2.5 contribute significantly to the reduced concentration, even though SO2 plays the dominant role once more. The impact of SO2 for both new particle formation and growth over Europe may be expected to be somewhat higher during the simulated period with high photochemical activity than during times of the year with less incoming solar radiation. The predicted reductions in both N-tot and N-100 between 2008 and 2030 in this study will likely reduce both the aerosol direct and indirect effects, and limit the damaging effects of aerosol particles on human health in Europe
  •  
6.
  • Almeida, Joao, et al. (författare)
  • Molecular understanding of sulphuric acid-amine particle nucleation in the atmosphere
  • 2013
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 502:7471, s. 359-
  • Tidskriftsartikel (refereegranskat)abstract
    • Nucleation of aerosol particles from trace atmospheric vapours is thought to provide up to half of global cloud condensation nuclei(1). Aerosols can cause a net cooling of climate by scattering sunlight and by leading to smaller but more numerous cloud droplets, which makes clouds brighter and extends their lifetimes(2). Atmospheric aerosols derived from human activities are thought to have compensated for a large fraction of the warming caused by greenhouse gases(2). However, despite its importance for climate, atmospheric nucleation is poorly understood. Recently, it has been shown that sulphuric acid and ammonia cannot explain particle formation rates observed in the lower atmosphere(3). It is thought that amines may enhance nucleation(4-16), but until now there has been no direct evidence for amine ternary nucleation under atmospheric conditions. Here we use the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber at CERN and find that dimethylamine above three parts per trillion by volume can enhance particle formation rates more than 1,000-fold compared with ammonia, sufficient to account for the particle formation rates observed in the atmosphere. Molecular analysis of the clusters reveals that the faster nucleation is explained by a base-stabilization mechanism involving acid-amine pairs, which strongly decrease evaporation. The ion-induced contribution is generally small, reflecting the high stability of sulphuric acid-dimethylamine clusters and indicating that galactic cosmic rays exert only a small influence on their formation, except at low overall formation rates. Our experimental measurements are well reproduced by a dynamical model based on quantum chemical calculations of binding energies of molecular clusters, without any fitted parameters. These results show that, in regions of the atmosphere near amine sources, both amines and sulphur dioxide should be considered when assessing the impact of anthropogenic activities on particle formation.
  •  
7.
  • Artaxo, Paulo, et al. (författare)
  • Tropical and Boreal Forest – Atmosphere Interactions : A Review
  • 2022
  • Ingår i: Tellus. Series B, Chemical and physical meteorology. - : Stockholm University Press. - 0280-6509 .- 1600-0889. ; 74:1, s. 24-163
  • Forskningsöversikt (refereegranskat)abstract
    • This review presents how the boreal and the tropical forests affect the atmosphere, its chemical composition, its function, and further how that affects the climate and, in return, the ecosystems through feedback processes. Observations from key tower sites standing out due to their long-term comprehensive observations: The Amazon Tall Tower Observatory in Central Amazonia, the Zotino Tall Tower Observatory in Siberia, and the Station to Measure Ecosystem-Atmosphere Relations at Hyytiäla in Finland. The review is complemented by short-term observations from networks and large experiments.The review discusses atmospheric chemistry observations, aerosol formation and processing, physiochemical aerosol, and cloud condensation nuclei properties and finds surprising similarities and important differences in the two ecosystems. The aerosol concentrations and chemistry are similar, particularly concerning the main chemical components, both dominated by an organic fraction, while the boreal ecosystem has generally higher concentrations of inorganics, due to higher influence of long-range transported air pollution. The emissions of biogenic volatile organic compounds are dominated by isoprene and monoterpene in the tropical and boreal regions, respectively, being the main precursors of the organic aerosol fraction.Observations and modeling studies show that climate change and deforestation affect the ecosystems such that the carbon and hydrological cycles in Amazonia are changing to carbon neutrality and affect precipitation downwind. In Africa, the tropical forests are so far maintaining their carbon sink.It is urgent to better understand the interaction between these major ecosystems, the atmosphere, and climate, which calls for more observation sites, providing long-term data on water, carbon, and other biogeochemical cycles. This is essential in finding a sustainable balance between forest preservation and reforestation versus a potential increase in food production and biofuels, which are critical in maintaining ecosystem services and global climate stability. Reducing global warming and deforestation is vital for tropical forests.
  •  
8.
  • Bannan, Thomas J., et al. (författare)
  • Measured Saturation Vapor Pressures of Phenolic and Nitro-aromatic Compounds
  • 2017
  • Ingår i: Environmental Science and Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 51:7, s. 3922-3928
  • Tidskriftsartikel (refereegranskat)abstract
    • Phenolic and nitro-aromatic compounds are extremely toxic components of atmospheric aerosol that are currently not well understood. In this Article, solid and subcooled-liquid-state saturation vapor pressures of phenolic and nitro-aromatic compounds are measured using Knudsen Effusion Mass Spectrometry (KEMS) over a range of temperatures (298-318 K). Vapor pressure estimation methods, assessed in this study, do not replicate the observed dependency on the relative positions of functional groups. With a few exceptions, the estimates are biased toward predicting saturation vapor pressures that are too high, by 5-6 orders of magnitude in some cases. Basic partitioning theory comparisons indicate that overestimation of vapor pressures in such cases would cause us to expect these compounds to be present in the gas state, whereas measurements in this study suggest these phenolic and nitro-aromatic will partition into the condensed state for a wide range of ambient conditions if absorptive partitioning plays a dominant role. While these techniques might have both structural and parametric uncertainties, the new data presented here should support studies trying to ascertain the role of nitrogen containing organics on aerosol growth and human health impacts.
  •  
9.
  • Baranizadeh, Elham, et al. (författare)
  • Implementation of state-of-the-art ternary new-particle formation scheme to the regional chemical transport model PMCAMx-UF in Europe
  • 2016
  • Ingår i: Geoscientific Model Development. - : Copernicus GmbH. - 1991-959X .- 1991-9603. ; 9:8, s. 2741-2754
  • Tidskriftsartikel (refereegranskat)abstract
    • The particle formation scheme within PMCAMx-UF, a three-dimensional chemical transport model, was updated with particle formation rates for the ternary H2SO4-NH3-H2O pathway simulated by the Atmospheric Cluster Dynamics Code (ACDC) using quantum chemical input data. The model was applied over Europe for May 2008, during which the EUCAARI-LONGREX (European Aerosol Cloud Climate and Air Quality Interactions-Long-Range Experiment) campaign was carried out, providing aircraft vertical profiles of aerosol number concentrations. The updated model reproduces the observed number concentrations of particles larger than 4 nm within 1 order of magnitude throughout the atmospheric column. This agreement is encouraging considering the fact that no semi-empirical fitting was needed to obtain realistic particle formation rates. The cloud adjustment scheme for modifying the photolysis rate profiles within PMCAMx-UF was also updated with the TUV (Tropospheric Ultraviolet and Visible) radiative-transfer model. Results show that, although the effect of the new cloud adjustment scheme on total number concentrations is small, enhanced new-particle formation is predicted near cloudy regions. This is due to the enhanced radiation above and in the vicinity of the clouds, which in turn leads to higher production of sulfuric acid. The sensitivity of the results to including emissions from natural sources is also discussed.
  •  
10.
  • Bardakov, Roman, et al. (författare)
  • A Novel Framework to Study Trace Gas Transport in Deep Convective Clouds
  • 2020
  • Ingår i: Journal of Advances in Modeling Earth Systems. - 1942-2466. ; 12:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Deep convective clouds reach the upper troposphere (8-15 km height). In addition to moisture and aerosol particles, they can bring aerosol precursor gases and other reactive trace gases from the planetary boundary layer to the cloud top. In this paper, we present a method to estimate trace gas transport based on the analysis of individual air parcel trajectories. Large eddy simulation of an idealized deep convective cloud was used to provide realistic environmental input to a parcel model. For a buoyant parcel, we found that the trace gas transport approximately follows one out of three scenarios, determined by a combination of the equilibrium vapor pressure (containing information about water-solubility and pure component saturation vapor pressure) and the enthalpy of vaporization. In one extreme, the trace gas will eventually be completely removed by precipitation. In the other extreme, there is almost no vapor condensation on hydrometeors and most of the gas is transported to the top of the cloud. The scenario in between these two extremes is also characterized by strong gas condensation, but a small fraction of the trace gas may still be transported aloft. This approach confirms previously suggested patterns of inert trace gas behavior in deep convective clouds, agrees with observational data, and allows estimating transport in analytically simple and computationally efficient way compared to explicit cloud-resolving model calculations.
  •  
11.
  • Bardakov, Roman, 1992-, et al. (författare)
  • The Role of Convective Up- and Downdrafts in the Transport of Trace Gases in the Amazon
  • 2022
  • Ingår i: Journal of Geophysical Research - Atmospheres. - : American Geophysical Union (AGU). - 2169-897X .- 2169-8996. ; 127:18
  • Tidskriftsartikel (refereegranskat)abstract
    • Deep convective clouds can redistribute gaseous species and particulate matter among different layers of the troposphere with important implications for atmospheric chemistry and climate. The large number of atmospheric trace gases of different volatility makes it challenging to predict their partitioning between hydrometeors and gas phase inside highly dynamic deep convective clouds. In this study, we use an ensemble of 51,200 trajectories simulated with a cloud-resolving model to characterize up- and downdrafts within Amazonian deep convective clouds. We also estimate the transport of a set of hypothetical non-reactive gases of different volatility, within the up- and downdrafts. We find that convective air parcels originating from the boundary layer (i.e., originating at 0.5 km altitude), can transport up to 25% of an intermediate volatility gas species (e.g., methyl hydrogen peroxide) and up to 60% of high volatility gas species (e.g., n-butane) to the cloud outflow above 10 km through the mean convective updraft. At the same time, the same type of gases can be transported to the boundary layer from the middle troposphere (i.e., originating at 5 km) within the mean convective downdraft with an efficiency close to 100%. Low volatility gases (e.g., nitric acid) are not efficiently transported, neither by the updrafts nor downdrafts, if the gas is assumed to be fully retained in a droplet upon freezing. The derived properties of the mean up- and downdraft can be used in future studies for investigating convective transport of a larger set of reactive trace gases.
  •  
12.
  • Bardakov, Roman, et al. (författare)
  • Transport and chemistry of isoprene and its oxidation products in deep convective clouds
  • 2021
  • Ingår i: Tellus. Series B, Chemical and physical meteorology. - : Stockholm University Press. - 0280-6509 .- 1600-0889. ; 73:1, s. 1-21
  • Tidskriftsartikel (refereegranskat)abstract
    • Deep convective clouds can transport trace gases from the planetary boundary layer into the upper troposphere where subsequent chemistry may impact aerosol particle formation and growth. In this modelling study, we investigate processes that affect isoprene and its oxidation products injected into the upper troposphere by an isolated deep convective cloud in the Amazon. We run a photochemical box model with coupled cloud microphysics along hundreds of individual air parcel trajectories sampled from a cloud-resolving model simulation of a convective event. The box model simulates gas-phase chemical reactions, gas scavenging by liquid and ice hydrometeors, and turbulent dilution inside a deep convective cloud. The results illustrate the potential importance of gas uptake to anvil ice in regulating the intensity of the isoprene oxidation and associated low volatility organic vapour concentrations in the outflow. Isoprene transport and fate also depends on the abundance of lightning-generated nitrogen oxide radicals (NOx = NO + NO2). If gas uptake on ice is efficient and lightning activity is low, around 30% of the boundary layer isoprene will survive to the cloud outflow after approximately one hour of transport, while all the low volatile oxidation products will be scavenged by the cloud hydrometeors. If lightning NOx is abundant and gas uptake by ice is inefficient, then all isoprene will be oxidised during transport or in the immediate outflow region, while several low volatility isoprene oxidation products will have elevated concentrations in the cloud outflow. Reducing uncertainties associated with the uptake of vapours on ice hydrometeors, especially HO2 and oxygenated organics, is essential to improve predictions of isoprene and its oxidation products in deep convective outflows and their potential contribution to new particle formation and growth.
  •  
13.
  •  
14.
  • Bell, David M., et al. (författare)
  • Particle-phase processing of α-pinene NO3 secondary organic aerosol in the dark
  • 2022
  • Ingår i: Atmospheric Chemistry and Physics. - 1680-7316 .- 1680-7324. ; 22, s. 13167-13182
  • Tidskriftsartikel (refereegranskat)abstract
    • The NO3 radical represents a significant nighttime oxidant which is present downstream of polluted environments. Existing studies have investigated the formation of secondary organic aerosol (SOA) from NO3 radicals, focusing on the yields, general composition, and hydrolysis of organonitrates; however, there is limited knowledge about how the composition of NO3-derived SOA evolves as a result of particle-phase reactions. Here, SOA was formed from the reaction of α-pinene with NO3 radicals generated from N2O5, and the resulting SOA was aged in the dark. The initial composition of NO3-derived α-pinene SOA was slightly dependent upon the concentration of N2O5 injected (excess of NO3 or excess of α-pinene) but was largely dominated by dimer dinitrates (C20H32N2O8-13). Oxidation reactions (e.g., C20H32N2O8 → C20H32N2O9 → C20H32N2O10) accounted for 60 %-70 % of the particle-phase reactions observed. Fragmentation reactions and dimer degradation pathways made up the remainder of the particle-phase processes occurring. The exact oxidant is not known, although suggestions are offered (e.g., N2O5, organic peroxides, or peroxynitrates). Hydrolysis of -ONO2 functional groups was not an important loss term during dark aging under the relative humidity conditions of our experiments (58 %-62 %), and changes in the bulk organonitrate composition were likely driven by evaporation of highly nitrogenated molecules. Overall, 25 %-30 % of the particle-phase composition changes as a function of particle-phase reactions during dark aging, representing an important atmospheric aging pathway.
  •  
15.
  • Bell, David M., et al. (författare)
  • Particle-phase processing of α-pinene NO3 secondary organic aerosol in the dark
  • 2022
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 22:19, s. 13167-13182
  • Tidskriftsartikel (refereegranskat)abstract
    • The NO3 radical represents a significant night-time oxidant present in or downstream of polluted environments. There are studies that investigated the formation of secondary organic aerosol (SOA) from NO3 radicals focusing on yields, general composition, and hydrolysis of organonitrates. However, there is limited knowledge about how the composition of NO3-derived SOA evolves as a result of particle phase reactions. Here, SOA was formed from the reaction of α-pinene with NO3 radicals generated from N2O5, and the resulting SOA aged in the absence of external stimuli. The initial composition of NO3-derived α-pinene SOA was slightly dependent upon the concentration of N2O5 injected (excess of NO3 or excess of α-pinene), but was largely dominated by dimer dinitrates (C20H32N2O8-13). Oxidation reactions (e.g. C20H32N2O8 → C20H32N2O9 → C20H32N2O10 etc...) accounted for 60–70 % of the particle phase reactions observed. Fragmentation reactions and dimer degradation pathways made up the remainder of the particle-phase processes occurring. The exact oxidant is not known, though suggestions are offered (e.g. N2O5, organic peroxides, or peroxy-nitrates). Hydrolysis of −ONO2 functional groups was not an important loss term during dark aging under the relative humidity conditions of our experiments (58–62 %), and changes in the bulk organonitrate composition were likely driven by evaporation of highly nitrogenated molecules. Overall, 25–30 % of the particle-phase composition changes as a function of particle-phase reactions during dark aging representing an important atmospheric aging pathway.
  •  
16.
  • Bilde, M., et al. (författare)
  • Saturation Vapor Pressures and Transition Enthalpies of Low-Volatility Organic Molecules of Atmospheric Relevance: From Dicarboxylic Acids to Complex Mixtures
  • 2015
  • Ingår i: Chemical Reviews. - : American Chemical Society (ACS). - 0009-2665 .- 1520-6890. ; 115:10, s. 4115-4156
  • Forskningsöversikt (refereegranskat)abstract
    • There are a number of techniques that can be used that differ in terms of whether they fundamentally probe the equilibrium and the temperature range over which they can be applied. The series of homologous, straight-chain dicarboxylic acids have received much attention over the past decade given their atmospheric relevance, commercial availability, and low saturation vapor pressures, thus making them ideal test compounds. Uncertainties in the solid-state saturation vapor pressures obtained from individual methodologies are typically on the order of 50-100%, but the differences between saturation vapor pressures obtained with different methods are approximately 1-4 orders of magnitude, with the spread tending to increase as the saturation vapor pressure decreases. Some of the dicarboxylic acids can exist with multiple solid-state structures that have distinct saturation vapor pressures. Furthermore, the samples on which measurements are performed may actually exist as amorphous subcooled liquids rather than solid crystalline compounds, again with consequences for the measured saturation vapor pressures, since the subcooled liquid phase will have a higher saturation vapor pressure than the crystalline solid phase. Compounds with equilibrium vapor pressures in this range will exhibit the greatest sensitivities in terms of their gas to particle partitioning to uncertainties in their saturation vapor pressures, with consequent impacts on the ability of explicit and semiexplicit chemical models to simulate secondary organic aerosol formation.
  •  
17.
  • Blichner, Sara M., 1989-, et al. (författare)
  • Process-evaluation of forest aerosol-cloud-climate feedback shows clear evidence from observations and large uncertainty in models
  • 2024
  • Ingår i: Nature Communications. - 2041-1723. ; 15
  • Tidskriftsartikel (refereegranskat)abstract
    • Natural aerosol feedbacks are expected to become more important in the future, as anthropogenic aerosol emissions decrease due to air quality policy. One such feedback is initiated by the increase in biogenic volatile organic compound (BVOC) emissions with higher temperatures, leading to higher secondary organic aerosol (SOA) production and a cooling of the surface via impacts on cloud radiative properties. Motivated by the considerable spread in feedback strength in Earth System Models (ESMs), we here use two long-term observational datasets from boreal and tropical forests, together with satellite data, for a process-based evaluation of the BVOC-aerosol-cloud feedback in four ESMs. The model evaluation shows that the weakest modelled feedback estimates can likely be excluded, but highlights compensating errors making it difficult to draw conclusions of the strongest estimates. Overall, the method of evaluating along process chains shows promise in pin-pointing sources of uncertainty and constraining modelled aerosol feedbacks.
  •  
18.
  • Booth, A. Murray, et al. (författare)
  • Connecting Bulk Viscosity Measurements to Kinetic Limitations on Attaining Equilibrium for a Model Aerosol Composition
  • 2014
  • Ingår i: Environmental Science and Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 48:16, s. 9298-9305
  • Tidskriftsartikel (refereegranskat)abstract
    • The growth, composition, and evolution of secondary organic aerosol (SOA) are governed by properties of individual compounds and ensemble mixtures that affect partitioning between the vapor and condensed phase. There has been considerable recent interest in the idea that SOA can form highly viscous particles where the diffusion of either water or semivolatile organics within the particle is sufficiently hindered to affect evaporation and growth. Despite numerous indirect inferences of viscous behavior from SOA evaporation or bounce within aerosol instruments, there have been no bulk measurements of the viscosity of well-constrained model aerosol systems of atmospheric significance. Here the viscous behavior of a well-defined model system of 9 dicarboxylic acids is investigated directly with complementary measurements and model predictions used to infer phase state. Results not only allow us to discuss the atmospheric implications for SOA formation through this representative mixture, but also the potential impact of current methodologies used for probing this affect in both the laboratory and from a modeling perspective. We show, quantitatively, that the physical state transformation from liquid-like to amorphous semisolid can substantially increase the importance of mass transfer limitations within particles by 7 orders of magnitude for 100 nm diameter particles. Recommendations for future research directions are given.
  •  
19.
  • Bourgeois, Quentin, et al. (författare)
  • How much of the global aerosol optical depth is found in the boundary layer and free troposphere?
  • 2018
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 18:10, s. 7709-7720
  • Tidskriftsartikel (refereegranskat)abstract
    • The global aerosol extinction from the CALIOP space lidar was used to compute aerosol optical depth (AOD) over a 9-year period (2007-2015) and partitioned between the boundary layer (BL) and the free troposphere (FT) using BL heights obtained from the ERA-Interim archive. The results show that the vertical distribution of AOD does not follow the diurnal cycle of the BL but remains similar between day and night highlighting the presence of a residual layer during night. The BL and FT contribute 69 and 31 %, respectively, to the global tropospheric AOD during daytime in line with observations obtained in Aire sur l'Adour (France) using the Light Optical Aerosol Counter (LOAC) instrument. The FT AOD contribution is larger in the tropics than at mid-latitudes which indicates that convective transport largely controls the vertical profile of aerosols. Over oceans, the FT AOD contribution is mainly governed by long-range transport of aerosols from emission sources located within neighboring continents. According to the CALIOP aerosol classification, dust and smoke particles are the main aerosol types transported into the FT. Overall, the study shows that the fraction of AOD in the FT - and thus potentially located above low-level clouds - is substantial and deserves more attention when evaluating the radiative effect of aerosols in climate models. More generally, the results have implications for processes determining the overall budgets, sources, sinks and transport of aerosol particles and their description in atmospheric models.
  •  
20.
  • Boy, M., et al. (författare)
  • Interactions between the atmosphere, cryosphere, and ecosystems at northern high latitudes
  • 2019
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 19:3, s. 2015-2061
  • Tidskriftsartikel (refereegranskat)abstract
    • The Nordic Centre of Excellence CRAICC (Cryosphere-Atmosphere Interactions in a Changing Arctic Climate), funded by NordForsk in the years 2011-2016, is the largest joint Nordic research and innovation initiative to date, aiming to strengthen research and innovation regarding climate change issues in the Nordic region. CRAICC gathered more than 100 scientists from all Nordic countries in a virtual centre with the objectives of identifying and quantifying the major processes controlling Arctic warming and related feedback mechanisms, outlining strategies to mitigate Arctic warming, and developing Nordic Earth system modelling with a focus on short-lived climate forcers (SLCFs), including natural and anthropogenic aerosols. The outcome of CRAICC is reflected in more than 150 peer-reviewed scientific publications, most of which are in the CRAICC special issue of the journal Atmospheric Chemistry and Physics. This paper presents an overview of the main scientific topics investigated in the centre and provides the reader with a state-of-the-art comprehensive summary of what has been achieved in CRAICC with links to the particular publications for further detail. Faced with a vast amount of scientific discovery, we do not claim to completely summarize the results from CRAICC within this paper, but rather concentrate here on the main results which are related to feedback loops in climate change-cryosphere interactions that affect Arctic amplification.
  •  
21.
  • Bulatovic, Ines, et al. (författare)
  • Aerosol Indirect Effects in Marine Stratocumulus : The Importance of Explicitly Predicting Cloud Droplet Activation
  • 2019
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 46:6, s. 3473-3481
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate models generally simulate a unidirectional, positive liquid water path (LWP) response to increasing aerosol number concentration. However, satellite observations and large-eddy simulations show that the LWP may either increase or decrease with increasing aerosol concentration, influencing the overall magnitude of the aerosol indirect effect (AIE). We use large-eddy simulation to investigate the LWP response of a marine stratocumulus cloud and its dependence on different parameterizations for obtaining cloud droplet number concentration (CDNC). The simulations confirm that the LWP response is not always positiveregardless of CDNC treatment. However, the AIE simulated with the model version with prescribed CDNC is almost 3 times larger compared to the version with prognostic CDNC. The reason is that the CDNC in the prognostic scheme varies in time due to supersaturation fluctuations, collection, and other microphysical processes. A substantial spread in simulated AIE may thus arise simply due to the CDNC treatment. Plain Language Summary Our poor understanding of aerosol-cloud-radiation interactions (aerosol indirect effects) results in a major uncertainty in estimates of anthropogenic aerosol forcing. In climate models, the cloud water response to an increased aerosol number concentration may be especially uncertain as models simplify, or do not account for, processes that affect the cloud droplet number concentration and the total amount of cloud water. In this study, we employ large-eddy simulation to explore how different model descriptions for obtaining the number concentration of cloud droplets influences the cloud water response of a marine stratocumulus cloud and thus the simulated aerosol indirect effect. Our simulations show a qualitatively similar cloud water response regardless of model description: the total amount of cloud water increases first and then decreases with increasing aerosol concentration. However, the simulated aerosol indirect effect is almost 3 times as large when the number concentration of cloud droplets is prescribed compared to when it is dependent on the calculated supersaturation and other microphysical processes such as collisions between cloud droplets. Our findings show that a relatively simple difference in the treatment of the number concentration of cloud droplets in climate models may result in a significant spread in the simulated aerosol indirect effect.
  •  
22.
  • Bulatovic, Ines (författare)
  • Investigating aerosol effects on stratocumulus clouds through large-eddy simulation
  • 2022
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Clouds have a large impact on Earth’s radiative budget by reflecting, absorbing and re-emitting radiation. They thus play a critical role in the climate system. Nevertheless, cloud radiative effects in a changing climate are highly uncertain. Atmospheric aerosol particles are another factor affecting Earth’s climate but the magnitude of their influence is also associated with high uncertainty. Therefore, an accurate representation of aerosol-cloud interactions in models is critical for having confidence in future climate projections. This thesis investigates aerosol impacts on cloud microphysical and radiative properties through numerical modelling, more specifically large-eddy simulation (LES). Moreover, the thesis investigates how the simulated cloud response to changes in the aerosol population depends on the model description of different processes. Mixed-phase stratocumulus (MPS) clouds are especially problematic to simulate for models on all scales. These clouds consist of a mixture of supercooled water and ice in the same volume and are therefore potentially thermodynamically unstable. MPS clouds over the central (north of 80° N) Arctic Ocean are particularly sensitive to aerosol changes due to the relatively clean atmospheric conditions in this region. At the same time, the clouds also have an important impact on the Arctic surface radiative budget. Therefore, this thesis mostly focuses on Arctic MPS clouds.Simulations of a typical subtropical marine stratocumulus cloud showed that the aerosol-cloud forcing depends on the model treatment for calculating the cloud droplet number concentration (CDNC). The simulated change in the top of the atmosphere shortwave radiation due to increased aerosol number concentrations was almost three times as large when the CDNC was prescribed compared to when the CDNC was prognostic. Simulations of a central Arctic summertime low-level MPS cloud confirmed that the chemical composition and the size of aerosol particles both can play an important role in determining the efficiency of an aerosol to act as cloud condensation nuclei - and thus influence cloud properties. However, the hygroscopicity of the aerosol particle was only important if the particles were small in size (i.e., if they correspond to the Aitken mode size) or if they were close to hydrophobic. Further, it was also found that Aitken mode particles can significantly change microphysical and radiative properties of central Arctic MPS if the concentration of larger particles (i.e., corresponding to the accumulation mode) is less than approximately 10-20 cm-3. One of the most recent research expeditions in the central Arctic (in the summer of 2018) was characterized by a high occurrence of multiple cloud layers. Namely, the boundary layer structure consisted of two MPS, one located close to the surface and one at the top of the boundary layer. Large-eddy simulations of an observed case with this particular cloud structure showed that the two-layer boundary-layer clouds are persistent unless the aerosol number concentrations are low (< 5 cm-3) or the wind speed is high (≥ 8.5 m s-1). In the model, low aerosol numbers led to a dissipation of the upper cloud layer while the lower cloud layer dissipated if the wind speed was strong. Changes in the optical thickness and cloud emissivity of each individual cloud layer of the two-layer cloud structure were found to substantially impact the surface radiative fluxes.
  •  
23.
  • Bulatovic, Ines, et al. (författare)
  • The importance of Aitken mode aerosol particles for cloud sustenance in the summertime high Arctic - a simulation study supported by observational data
  • 2021
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 21:5, s. 3871-3897
  • Tidskriftsartikel (refereegranskat)abstract
    • The potential importance of Aitken mode particles (diameters similar to 25-80 nm) for stratiform mixed-phase clouds in the summertime high Arctic (> 80 degrees N) has been investigated using two large-eddy simulation models. We find that, in both models, Aitken mode particles significantly affect the simulated microphysical and radiative properties of the cloud and can help sustain the cloud when accumulation mode concentrations are low (< 10-20 cm(-3)), even when the particles have low hygroscopicity (hygroscopicity parameter - kappa = 0.1). However, the influence of the Aitken mode decreases if the overall liquid water content of the cloud is low, either due to a higher ice fraction or due to low radiative cooling rates. An analysis of the simulated supersaturation (ss) statistics shows that the ss frequently reaches 0.5 % and sometimes even exceeds 1 %, which confirms that Aitken mode particles can be activated. The modelling results are in qualitative agreement with observations of the Hoppel minimum obtained from four different expeditions in the high Arctic. Our findings highlight the importance of better understanding Aitken mode particle formation, chemical properties and emissions, particularly in clean environments such as the high Arctic.
  •  
24.
  • Cremer, Roxana, 1993-, et al. (författare)
  • Investigating the role of air mass history on the diversity of GCMestimates of atmospheric black carbon in the Arctic
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Black Carbon (BC) aerosols are known to play an important role in the Arctic, yet their exact contribution to thechanging of the Earth’s climate and Arctic amplification remains unclear. To reduce these uncertainties, the life cycle of BCneeds to be accurately described in general circulation models (GCMs). In this study, four GCMs (ECHAM6.3-HAM2.3,ECHAM6.3-HAM2.3-P3, ECHAM6.3-HAM2.3-SALSA2 and UKESM1.0) are compared in terms of their representation ofBC in the Arctic. A new Lagrangian framework is applied to investigate the history of airmasses reaching the Arctic observationalsite Zeppelin on Svalbard, and compared to the corresponding transport simulated by the GCMs, which are allnudged to reanalysis data from ERA-Interim. Aerosol processes along the trajectories are then compared between the models.ECHAM6.3-HAM2.3-P3 simulates the highest and UKESM1.0 the lowest BC loadings both globally and within the Arcticand ECHAM6.3-HAM2.3-SALSA2 is the GCM that reproduces the observations from Zeppelin station most faithfully. The BC concentration in the Arctic is largely controlled by the wet removal processes described in the models, but dry depositionalso plays a role in explaining some of the inter-model diversity. ECHAM6.3-HAM2.3-P3 is less efficient in wet removal thanthe other models, which is likely a result of an adjusted representation of ice processes compared with the other two ECHAMvariants. UKESM1.0 is the most efficient model in removing BC from the atmosphere, in large part due to more efficient dryremoval than with the ECHAM models. The Lagrangian analysis reveals that the BC concentrations at the Zeppelin station are largely determined by concentrations in airmasses older than the length of our back trajectories, i.e. ten days, highlighting theimportance of remote emissions to local BC concentrations in the Arctic. This further suggests a longer BC lifetime within theArctic as compared with the global average. Our results underline the importance of accurate descriptions of cloud and precipitation microphysics, along with realistic dry and wet scavenging schemes for improved descriptions of BC and its climateimpacts in the Arctic within GCMs.
  •  
25.
  • Cremer, Roxana S., 1993- (författare)
  • Lifecycle of Black Carbon in the Arctic
  • 2023
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This PhD thesis investigates the atmospheric life cycle of Black Carbon (BC) in the Arctic. The Arctic region has been rapidly changing in the last decades and the role of BC aerosols in this is still uncertain. BC aerosols are mainly produced by incomplete combustion of biomass burning and fossil fuel and stand out from other aerosol species due to their strong ability to absorb solar radiation. The impact of BC on the Earth’s radiation budget is estimated to be overall warming. While the indirect effect, interactions with clouds, is estimated to be negative, the direct radiation effect is positive because of the absorption ability of the BC. These estimates are uncertain, especially for aerosol-cloud interactions. To estimate the role of BC in the Arctic, it is necessary to know the size distribution of BC, the transport pattern and the loss processes that affect the BC concentration. In this thesis, in-situ observations from the Zeppelin observatory in the Arctic, as well as global modelling tools, are used to answer the following research questions: 1. What kind of new insights about BC size distributions can be gained from simultaneous long-term measurements of absorption and aerosol number size distributions? 2. How do source regions impact BC size distributions measured at Zeppelin? 3. How are observations of biomass burning tracers at Zeppelin connected to transport from source regions with active fires? 4. How do emissions, as well as, wet and dry removal pathways drive the diversity of the BC life cycle in General Circulation Models (GCMs)?A statistical method to derive BC size distributions from filter-based absorption measurements was developed and applied to long-term data from the Arctic measurement station Zeppelin on Svalbard. Promising results were obtained for inferring BC number size distributions from absorption and size distribution data, except for the most polluted conditions with the air masses arriving from Northern Eurasia and Russia - as identified from an analysis using back trajectories. Trajectory analysis was also used to link events with elevated biomass burning tracers and BC at Zeppelin to fire activity measured by satellites on the continents around the Arctic. To investigate the interplay of emissions and removal processes of BC in models and to understand the diversity in model representation of BC in the Arctic, a detailed analysis of processes in four GCMs was performed. The BC concentrations in the Arctic were compared and their response to removal processes during long-range transport to Zeppelin. The results underline the importance of BC sources and processing far away from the Arctic.The knowledge gained about the BC life cycle will facilitate a better assessment of the large-scale influence of BC on the Arctic climate and environment.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 138
Typ av publikation
tidskriftsartikel (108)
konferensbidrag (9)
doktorsavhandling (9)
forskningsöversikt (5)
annan publikation (4)
licentiatavhandling (2)
visa fler...
bokkapitel (1)
visa färre...
Typ av innehåll
refereegranskat (121)
övrigt vetenskapligt/konstnärligt (16)
populärvet., debatt m.m. (1)
Författare/redaktör
Riipinen, Ilona (119)
Kulmala, Markku (31)
Ekman, Annica M. L. (19)
Donahue, Neil M. (17)
Baltensperger, Urs (17)
Lehtipalo, Katrianne (16)
visa fler...
Worsnop, Douglas R. (16)
Virtanen, Annele (15)
Kulmala, M (14)
Krejci, Radovan (14)
Olenius, Tinja (14)
Petäjä, Tuukka (14)
Duplissy, Jonathan (12)
Mohr, Claudia (12)
Hansel, Armin (11)
Zieger, Paul (10)
Laaksonen, Ari (10)
Nieminen, Tuomo (10)
Simon, Mario (10)
Yli-Juuti, Taina (10)
Kirkby, Jasper (10)
Kerminen, Veli-Matti (10)
Vehkamäki, Hanna (10)
El Haddad, Imad (10)
Petaja, T. (9)
Julin, Jan (9)
Schobesberger, Siegf ... (9)
Flagan, Richard C. (9)
Petaja, Tuukka (9)
Tome, Antonio (9)
Curtius, Joachim (9)
Amorim, Antonio (8)
Jokinen, Tuija (8)
Junninen, Heikki (8)
Kurten, Theo (8)
Mathot, Serge (8)
Onnela, Antti (8)
Kontkanen, Jenni (8)
Swietlicki, Erik (7)
Ahlm, Lars (7)
Virtanen, A. (7)
Ortega, Ismael K. (7)
Dommen, Josef (7)
Guida, Roberto (7)
Kangasluoma, Juha (7)
Sarnela, Nina (7)
Sipila, Mikko (7)
Nieminen, T. (7)
Pandis, Spyros N. (7)
Bell, David M. (7)
visa färre...
Lärosäte
Stockholms universitet (135)
Lunds universitet (16)
Göteborgs universitet (7)
Uppsala universitet (5)
Sveriges Lantbruksuniversitet (4)
Kungliga Tekniska Högskolan (1)
visa fler...
Linköpings universitet (1)
Chalmers tekniska högskola (1)
visa färre...
Språk
Engelska (138)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (134)
Teknik (5)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy