SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Roden Dan M) "

Sökning: WFRF:(Roden Dan M)

  • Resultat 1-24 av 24
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Ntalla, Ioanna, et al. (författare)
  • Multi-ancestry GWAS of the electrocardiographic PR interval identifies 202 loci underlying cardiac conduction
  • 2020
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The electrocardiographic PR interval reflects atrioventricular conduction, and is associated with conduction abnormalities, pacemaker implantation, atrial fibrillation (AF), and cardiovascular mortality. Here we report a multi-ancestry (N=293,051) genome-wide association meta-analysis for the PR interval, discovering 202 loci of which 141 have not previously been reported. Variants at identified loci increase the percentage of heritability explained, from 33.5% to 62.6%. We observe enrichment for cardiac muscle developmental/contractile and cytoskeletal genes, highlighting key regulation processes for atrioventricular conduction. Additionally, 8 loci not previously reported harbor genes underlying inherited arrhythmic syndromes and/or cardiomyopathies suggesting a role for these genes in cardiovascular pathology in the general population. We show that polygenic predisposition to PR interval duration is an endophenotype for cardiovascular disease, including distal conduction disease, AF, and atrioventricular pre-excitation. These findings advance our understanding of the polygenic basis of cardiac conduction, and the genetic relationship between PR interval duration and cardiovascular disease. On the electrocardiogram, the PR interval reflects conduction from the atria to ventricles and also serves as risk indicator of cardiovascular morbidity and mortality. Here, the authors perform genome-wide meta-analyses for PR interval in multiple ancestries and identify 141 previously unreported genetic loci.
  •  
3.
  • Weinstock, Joshua S, et al. (författare)
  • Aberrant activation of TCL1A promotes stem cell expansion in clonal haematopoiesis.
  • 2023
  • Ingår i: Nature. - 1476-4687. ; 616:7958, s. 755-763
  • Tidskriftsartikel (refereegranskat)abstract
    • Mutations in a diverse set of driver genes increase the fitness of haematopoietic stem cells (HSCs), leading to clonal haematopoiesis1. These lesions are precursors for blood cancers2-6, but the basis of their fitness advantage remains largely unknown, partly owing to a paucity of large cohorts in which the clonal expansion rate has been assessed by longitudinal sampling. Here, to circumvent this limitation, we developed a method to infer the expansion rate from data from a single time point. We applied this method to 5,071 people with clonal haematopoiesis. A genome-wide association study revealed that a common inherited polymorphism in the TCL1A promoter was associated with a slower expansion rate in clonal haematopoiesis overall, but the effect varied by driver gene. Those carrying this protective allele exhibited markedly reduced growth rates or prevalence of clones with driver mutations in TET2, ASXL1, SF3B1 and SRSF2, butthis effect was not seen inclones withdriver mutations in DNMT3A. TCL1A was not expressed in normal or DNMT3A-mutated HSCs, but the introduction of mutations in TET2 or ASXL1 led to the expression of TCL1A protein and the expansion of HSCs in vitro. The protective allele restricted TCL1A expression and expansion of mutant HSCs, as did experimentalknockdown of TCL1A expression. Forced expression of TCL1A promoted the expansion of human HSCs in vitro and mouse HSCs in vivo. Our results indicate that the fitness advantage of several commonly mutated driver genes in clonal haematopoiesis may be mediated by TCL1A activation.
  •  
4.
  • Roselli, Carolina, et al. (författare)
  • Multi-ethnic genome-wide association study for atrial fibrillation
  • 2018
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 50:9, s. 1225-1233
  • Tidskriftsartikel (refereegranskat)abstract
    • Atrial fibrillation (AF) affects more than 33 million individuals worldwide(1) and has a complex heritability(2). We conducted the largest meta-analysis of genome-wide association studies (GWAS) for AF to date, consisting of more than half a million individuals, including 65,446 with AF. In total, we identified 97 loci significantly associated with AF, including 67 that were novel in a combined-ancestry analysis, and 3 that were novel in a European-specific analysis. We sought to identify AF-associated genes at the GWAS loci by performing RNA-sequencing and expression quantitative trait locus analyses in 101 left atrial samples, the most relevant tissue for AF. We also performed transcriptome-wide analyses that identified 57 AF-associated genes, 42 of which overlap with GWAS loci. The identified loci implicate genes enriched within cardiac developmental, electrophysiological, contractile and structural pathways. These results extend our understanding of the biological pathways underlying AF and may facilitate the development of therapeutics for AF.
  •  
5.
  • Ellinor, Patrick T., et al. (författare)
  • Meta-analysis identifies six new susceptibility loci for atrial fibrillation
  • 2012
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 44:6, s. 88-670
  • Tidskriftsartikel (refereegranskat)abstract
    • Atrial fibrillation is a highly prevalent arrhythmia and a major risk factor for stroke, heart failure and death(1). We conducted a genome-wide association study (GWAS) in individuals of European ancestry, including 6,707 with and 52,426 without atrial fibrillation. Six new atrial fibrillation susceptibility loci were identified and replicated in an additional sample of individuals of European ancestry, including 5,381 subjects with and 10,030 subjects without atrial fibrillation (P < 5 x 10(-8)). Four of the loci identified in Europeans were further replicated in silico in a GWAS of Japanese individuals, including 843 individuals with and 3,350 individuals without atrial fibrillation. The identified loci implicate candidate genes that encode transcription factors related to cardiopulmonary development, cardiac-expressed ion channels and cell signaling molecules.
  •  
6.
  • van Setten, Jessica, et al. (författare)
  • PR interval genome-wide association meta-analysis identifies 50 loci associated with atrial and atrioventricular electrical activity
  • 2018
  • Ingår i: Nature Communications. - : NATURE PUBLISHING GROUP. - 2041-1723. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Electrocardiographic PR interval measures atrio-ventricular depolarization and conduction, and abnormal PR interval is a risk factor for atrial fibrillation and heart block. Our genomewide association study of over 92,000 European-descent individuals identifies 44 PR interval loci (34 novel). Examination of these loci reveals known and previously not-yet-reported biological processes involved in cardiac atrial electrical activity. Genes in these loci are overrepresented in cardiac disease processes including heart block and atrial fibrillation. Variants in over half of the 44 loci were associated with atrial or blood transcript expression levels, or were in high linkage disequilibrium with missense variants. Six additional loci were identified either by meta-analysis of similar to 105,000 African and European-descent individuals and/or by pleiotropic analyses combining PR interval with heart rate, QRS interval, and atrial fibrillation. These findings implicate developmental pathways, and identify transcription factors, ionchannel genes, and cell-junction/cell-signaling proteins in atrio-ventricular conduction, identifying potential targets for drug development.
  •  
7.
  • Schmidt, Amand F., et al. (författare)
  • PCSK9 genetic variants and risk of type 2 diabetes : a mendelian randomisation study
  • 2017
  • Ingår i: The Lancet Diabetes and Endocrinology. - : ELSEVIER SCIENCE INC. - 2213-8587 .- 2213-8595. ; 5:2, s. 97-105
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Statin treatment and variants in the gene encoding HMG-CoA reductase are associated with reductions in both the concentration of LDL cholesterol and the risk of coronary heart disease, but also with modest hyperglycaemia, increased bodyweight, and modestly increased risk of type 2 diabetes, which in no way off sets their substantial benefi ts. We sought to investigate the associations of LDL cholesterol-lowering PCSK9 variants with type 2 diabetes and related biomarkers to gauge the likely eff ects of PCSK9 inhibitors on diabetes risk. Methods In this mendelian randomisation study, we used data from cohort studies, randomised controlled trials, case control studies, and genetic consortia to estimate associations of PCSK9 genetic variants with LDL cholesterol, fasting blood glucose, HbA 1c, fasting insulin, bodyweight, waist-to-hip ratio, BMI, and risk of type 2 diabetes, using a standardised analysis plan, meta-analyses, and weighted gene-centric scores. Findings Data were available for more than 550 000 individuals and 51 623 cases of type 2 diabetes. Combined analyses of four independent PCSK9 variants (rs11583680, rs11591147, rs2479409, and rs11206510) scaled to 1 mmol/L lower LDL cholesterol showed associations with increased fasting glucose (0.09 mmol/L, 95% CI 0.02 to 0.15), bodyweight (1.03 kg, 0.24 to 1.82), waist-to-hip ratio (0.006, 0.003 to 0.010), and an odds ratio for type diabetes of 1.29 (1.11 to 1.50). Based on the collected data, we did not identify associations with HbA 1c (0.03%, -0.01 to 0.08), fasting insulin (0.00%, -0.06 to 0.07), and BMI (0.11 kg/m(2), -0.09 to 0.30). Interpretation PCSK9 variants associated with lower LDL cholesterol were also associated with circulating higher fasting glucose concentration, bodyweight, and waist-to-hip ratio, and an increased risk of type 2 diabetes. In trials of PCSK9 inhibitor drugs, investigators should carefully assess these safety outcomes and quantify the risks and benefi ts of PCSK9 inhibitor treatment, as was previously done for statins.
  •  
8.
  • Schmidt, Amand F., et al. (författare)
  • Phenome-wide association analysis of LDL-cholesterol lowering genetic variants in PCSK9
  • 2019
  • Ingår i: BMC Cardiovascular Disorders. - : BMC. - 1471-2261 .- 1471-2261. ; 19:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: We characterised the phenotypic consequence of genetic variation at the PCSK9 locus and compared findings with recent trials of pharmacological inhibitors of PCSK9. Methods: Published and individual participant level data (300,000+ participants) were combined to construct a weighted PCSK9 gene-centric score (GS). Seventeen randomized placebo controlled PCSK9 inhibitor trials were included, providing data on 79,578 participants. Results were scaled to a one mmol/L lower LDL-C concentration. Results: The PCSK9 GS (comprising 4 SNPs) associations with plasma lipid and apolipoprotein levels were consistent in direction with treatment effects. The GS odds ratio (OR) for myocardial infarction (MI) was 0.53 (95% CI 0.42; 0.68), compared to a PCSK9 inhibitor effect of 0.90 (95% CI 0.86; 0.93). For ischemic stroke ORs were 0.84 (95% CI 0.57; 1.22) for the GS, compared to 0.85 (95% CI 0.78; 0.93) in the drug trials. ORs with type 2 diabetes mellitus (T2DM) were 1.29 (95% CI 1.11; 1.50) for the GS, as compared to 1.00 (95% CI 0.96; 1.04) for incident T2DM in PCSK9 inhibitor trials. No genetic associations were observed for cancer, heart failure, atrial fibrillation, chronic obstructive pulmonary disease, or Alzheimer's disease - outcomes for which large-scale trial data were unavailable. Conclusions: Genetic variation at the PCSK9 locus recapitulates the effects of therapeutic inhibition of PCSK9 on major blood lipid fractions and MI. While indicating an increased risk of T2DM, no other possible safety concerns were shown; although precision was moderate.
  •  
9.
  • Stitziel, Nathan O., et al. (författare)
  • Coding Variation in ANGPTL4, LPL, and SVEP1 and the Risk of Coronary Disease
  • 2016
  • Ingår i: New England Journal of Medicine. - 0028-4793 .- 1533-4406. ; 374:12, s. 1134-1144
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND The discovery of low-frequency coding variants affecting the risk of coronary artery disease has facilitated the identification of therapeutic targets. METHODS Through DNA genotyping, we tested 54,003 coding-sequence variants covering 13,715 human genes in up to 72,868 patients with coronary artery disease and 120,770 controls who did not have coronary artery disease. Through DNA sequencing, we studied the effects of loss-of-function mutations in selected genes. RESULTS We confirmed previously observed significant associations between coronary artery disease and low-frequency missense variants in the genes LPA and PCSK9. We also found significant associations between coronary artery disease and low-frequency missense variants in the genes SVEP1 (p.D2702G; minor-allele frequency, 3.60%; odds ratio for disease, 1.14; P = 4.2x10(-10)) and ANGPTL4 (p.E40K; minor-allele frequency, 2.01%; odds ratio, 0.86; P = 4.0x10(-8)), which encodes angiopoietin-like 4. Through sequencing of ANGPTL4, we identified 9 carriers of loss-of-function mutations among 6924 patients with myocardial infarction, as compared with 19 carriers among 6834 controls (odds ratio, 0.47; P = 0.04); carriers of ANGPTL4 loss-of-function alleles had triglyceride levels that were 35% lower than the levels among persons who did not carry a loss-of-function allele (P = 0.003). ANGPTL4 inhibits lipoprotein lipase; we therefore searched for mutations in LPL and identified a loss-of-function variant that was associated with an increased risk of coronary artery disease (p.D36N; minor-allele frequency, 1.9%; odds ratio, 1.13; P = 2.0x10(-4)) and a gain-of-function variant that was associated with protection from coronary artery disease (p.S447*; minor-allele frequency, 9.9%; odds ratio, 0.94; P = 2.5x10(-7)). CONCLUSIONS We found that carriers of loss-of-function mutations in ANGPTL4 had triglyceride levels that were lower than those among noncarriers; these mutations were also associated with protection from coronary artery disease.
  •  
10.
  • Webb, Thomas R., et al. (författare)
  • Systematic Evaluation of Pleiotropy Identifies 6 Further Loci Associated With Coronary Artery Disease
  • 2017
  • Ingår i: Journal of the American College of Cardiology. - : Elsevier BV. - 0735-1097 .- 1558-3597. ; 69:7, s. 823-836
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND Genome-wide association studies have so far identified 56 loci associated with risk of coronary artery disease (CAD). Many CAD loci show pleiotropy; that is, they are also associated with other diseases or traits.OBJECTIVES This study sought to systematically test if genetic variants identified for non-CAD diseases/traits also associate with CAD and to undertake a comprehensive analysis of the extent of pleiotropy of all CAD loci.METHODS In discovery analyses involving 42,335 CAD cases and 78,240 control subjects we tested the association of 29,383 common (minor allele frequency >5%) single nucleotide polymorphisms available on the exome array, which included a substantial proportion of known or suspected single nucleotide polymorphisms associated with common diseases or traits as of 2011. Suggestive association signals were replicated in an additional 30,533 cases and 42,530 control subjects. To evaluate pleiotropy, we tested CAD loci for association with cardiovascular risk factors (lipid traits, blood pressure phenotypes, body mass index, diabetes, and smoking behavior), as well as with other diseases/traits through interrogation of currently available genome-wide association study catalogs.RESULTS We identified 6 new loci associated with CAD at genome-wide significance: on 2q37 (KCNJ13-GIGYF2), 6p21 (C2), 11p15 (MRVI1-CTR9), 12q13 (LRP1), 12q24 (SCARB1), and 16q13 (CETP). Risk allele frequencies ranged from 0.15 to 0.86, and odds ratio per copy of the risk allele ranged from 1.04 to 1.09. Of 62 new and known CAD loci, 24 (38.7%) showed statistical association with a traditional cardiovascular risk factor, with some showing multiple associations, and 29 (47%) showed associations at p < 1 x 10(-4) with a range of other diseases/traits.CONCLUSIONS We identified 6 loci associated with CAD at genome-wide significance. Several CAD loci show substantial pleiotropy, which may help us understand the mechanisms by which these loci affect CAD risk.
  •  
11.
  • Weng, Lu Chen, et al. (författare)
  • Genetic Interactions with Age, Sex, Body Mass Index, and Hypertension in Relation to Atrial Fibrillation : The AFGen Consortium
  • 2017
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • It is unclear whether genetic markers interact with risk factors to influence atrial fibrillation (AF) risk. We performed genome-wide interaction analyses between genetic variants and age, sex, hypertension, and body mass index in the AFGen Consortium. Study-specific results were combined using meta-analysis (88,383 individuals of European descent, including 7,292 with AF). Variants with nominal interaction associations in the discovery analysis were tested for association in four independent studies (131,441 individuals, including 5,722 with AF). In the discovery analysis, the AF risk associated with the minor rs6817105 allele (at the PITX2 locus) was greater among subjects ≤ 65 years of age than among those > 65 years (interaction p-value = 4.0 × 10-5). The interaction p-value exceeded genome-wide significance in combined discovery and replication analyses (interaction p-value = 1.7 × 10-8). We observed one genome-wide significant interaction with body mass index and several suggestive interactions with age, sex, and body mass index in the discovery analysis. However, none was replicated in the independent sample. Our findings suggest that the pathogenesis of AF may differ according to age in individuals of European descent, but we did not observe evidence of statistically significant genetic interactions with sex, body mass index, or hypertension on AF risk.
  •  
12.
  • Cooper-DeHoff, Rhonda M., et al. (författare)
  • The Clinical Pharmacogenetics Implementation Consortium Guideline for SLCO1B1, ABCG2, and CYP2C9 genotypes and Statin-Associated Musculoskeletal Symptoms
  • 2022
  • Ingår i: Clinical Pharmacology and Therapeutics. - : John Wiley & Sons. - 0009-9236 .- 1532-6535. ; 111:5, s. 1007-1021
  • Tidskriftsartikel (refereegranskat)abstract
    • Statins reduce cholesterol, prevent cardiovascular disease, and are among the most commonly prescribed medications in the world. Statin-associated musculoskeletal symptoms (SAMS) impact statin adherence and ultimately can impede the long-term effectiveness of statin therapy. There are several identified pharmacogenetic variants that impact statin disposition and adverse events during statin therapy. SLCO1B1 encodes a transporter (SLCO1B1; alternative names include OATP1B1 or OATP-C) that facilitates the hepatic uptake of all statins. ABCG2 encodes an efflux transporter (BCRP) that modulates the absorption and disposition of rosuvastatin. CYP2C9 encodes a phase I drug metabolizing enzyme responsible for the oxidation of some statins. Genetic variation in each of these genes alters systemic exposure to statins (i.e., simvastatin, rosuvastatin, pravastatin, pitavastatin, atorvastatin, fluvastatin, lovastatin), which can increase the risk for SAMS. We summarize the literature supporting these associations and provide therapeutic recommendations for statins based on SLCO1B1, ABCG2, and CYP2C9 genotype with the goal of improving the overall safety, adherence, and effectiveness of statin therapy. This document replaces the 2012 and 2014 Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines for SLCO1B1 and simvastatin-induced myopathy.
  •  
13.
  • Lahrouchi, Najim, et al. (författare)
  • Transethnic Genome-Wide Association Study Provides Insights in the Genetic Architecture and Heritability of Long QT Syndrome
  • 2020
  • Ingår i: Circulation. - : Lippincott Williams & Wilkins. - 0009-7322 .- 1524-4539. ; 142:4, s. 324-338
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Long QT syndrome (LQTS) is a rare genetic disorder and a major preventable cause of sudden cardiac death in the young. A causal rare genetic variant with large effect size is identified in up to 80% of probands (genotype positive) and cascade family screening shows incomplete penetrance of genetic variants. Furthermore, a proportion of cases meeting diagnostic criteria for LQTS remain genetically elusive despite genetic testing of established genes (genotype negative). These observations raise the possibility that common genetic variants with small effect size contribute to the clinical picture of LQTS. This study aimed to characterize and quantify the contribution of common genetic variation to LQTS disease susceptibility. Methods: We conducted genome-wide association studies followed by transethnic meta-analysis in 1656 unrelated patients with LQTS of European or Japanese ancestry and 9890 controls to identify susceptibility single nucleotide polymorphisms. We estimated the common variant heritability of LQTS and tested the genetic correlation between LQTS susceptibility and other cardiac traits. Furthermore, we tested the aggregate effect of the 68 single nucleotide polymorphisms previously associated with the QT-interval in the general population using a polygenic risk score. Results: Genome-wide association analysis identified 3 loci associated with LQTS at genome-wide statistical significance (P<5x10(-8)) nearNOS1AP,KCNQ1, andKLF12, and 1 missense variant inKCNE1(p.Asp85Asn) at the suggestive threshold (P<10(-6)). Heritability analyses showed that approximate to 15% of variance in overall LQTS susceptibility was attributable to common genetic variation (h2SNP0.148; standard error 0.019). LQTS susceptibility showed a strong genome-wide genetic correlation with the QT-interval in the general population (r(g)=0.40;P=3.2x10(-3)). The polygenic risk score comprising common variants previously associated with the QT-interval in the general population was greater in LQTS cases compared with controls (P<10-13), and it is notable that, among patients with LQTS, this polygenic risk score was greater in patients who were genotype negative compared with those who were genotype positive (P<0.005). Conclusions: This work establishes an important role for common genetic variation in susceptibility to LQTS. We demonstrate overlap between genetic control of the QT-interval in the general population and genetic factors contributing to LQTS susceptibility. Using polygenic risk score analyses aggregating common genetic variants that modulate the QT-interval in the general population, we provide evidence for a polygenic architecture in genotype negative LQTS.
  •  
14.
  • Mosley, Jonathan D., et al. (författare)
  • Probing the Virtual Proteome to Identify Novel Disease Biomarkers
  • 2018
  • Ingår i: Circulation. - 1524-4539. ; 138:22, s. 2469-2481
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Proteomic approaches allow measurement of thousands of proteins in a single specimen, which can accelerate biomarker discovery. However, applying these technologies to massive biobanks is not currently feasible because of the practical barriers and costs of implementing such assays at scale. To overcome these challenges, we used a "virtual proteomic" approach, linking genetically predicted protein levels to clinical diagnoses in >40 000 individuals. METHODS: We used genome-wide association data from the Framingham Heart Study (n=759) to construct genetic predictors for 1129 plasma protein levels. We validated the genetic predictors for 268 proteins and used them to compute predicted protein levels in 41 288 genotyped individuals in the Electronic Medical Records and Genomics (eMERGE) cohort. We tested associations for each predicted protein with 1128 clinical phenotypes. Lead associations were validated with directly measured protein levels and either low-density lipoprotein cholesterol or subclinical atherosclerosis in the MDCS (Malmö Diet and Cancer Study; n=651). RESULTS: In the virtual proteomic analysis in eMERGE, 55 proteins were associated with 89 distinct diagnoses at a false discovery rate q<0.1. Among these, 13 associations involved lipid (n=7) or atherosclerosis (n=6) phenotypes. We tested each association for validation in MDCS using directly measured protein levels. At Bonferroni-adjusted significance thresholds, levels of apolipoprotein E isoforms were associated with hyperlipidemia, and circulating C-type lectin domain family 1 member B and platelet-derived growth factor receptor-β predicted subclinical atherosclerosis. Odds ratios for carotid atherosclerosis were 1.31 (95% CI, 1.08-1.58; P=0.006) per 1-SD increment in C-type lectin domain family 1 member B and 0.79 (0.66-0.94; P=0.008) per 1-SD increment in platelet-derived growth factor receptor-β. CONCLUSIONS: We demonstrate a biomarker discovery paradigm to identify candidate biomarkers of cardiovascular and other diseases.
  •  
15.
  • Walsh, Roddy, et al. (författare)
  • Enhancing rare variant interpretation in inherited arrhythmias through quantitative analysis of consortium disease cohorts and population controls
  • 2021
  • Ingår i: Genetics in Medicine. - : Nature Publishing Group. - 1098-3600 .- 1530-0366. ; 23:1, s. 47-58
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: Stringent variant interpretation guidelines can lead to high rates of variants of uncertain significance (VUS) for genetically heterogeneous disease like long QT syndrome (LQTS) and Brugada syndrome (BrS). Quantitative and disease-specific customization of American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) guidelines can address this false negative rate.Methods: We compared rare variant frequencies from 1847 LQTS (KCNQ1/KCNH2/SCN5A) and 3335 BrS (SCN5A) cases from the International LQTS/BrS Genetics Consortia to population-specific gnomAD data and developed disease-specific criteria for ACMG/AMP evidence classes-rarity (PM2/BS1 rules) and case enrichment of individual (PS4) and domain-specific (PM1) variants.Results: Rare SCN5A variant prevalence differed between European (20.8%) and Japanese (8.9%) BrS patients (p = 5.7 x 10(-18)) and diagnosis with spontaneous (28.7%) versus induced (15.8%) Brugada type 1 electrocardiogram (ECG) (p = 1.3 x 10(-13)). Ion channel transmembrane regions and specific N-terminus (KCNH2) and C-terminus (KCNQ1/KCNH2) domains were characterized by high enrichment of case variants and >95% probability of pathogenicity. Applying the customized rules, 17.4% of European BrS and 74.8% of European LQTS cases had (likely) pathogenic variants, compared with estimated diagnostic yields (case excess over gnomAD) of 19.2%/82.1%, reducing VUS prevalence to close to background rare variant frequency.Conclusion: Large case-control data sets enable quantitative implementation of ACMG/AMP guidelines and increased sensitivity for inherited arrhythmia genetic testing.
  •  
16.
  • Aragam, Krishna G., et al. (författare)
  • Phenotypic Refinement of Heart Failure in a National Biobank Facilitates Genetic Discovery
  • 2019
  • Ingår i: Circulation. - 0009-7322. ; 139:4, s. 489-501
  • Tidskriftsartikel (refereegranskat)abstract
    • Heart failure (HF) is a morbid and heritable disorder for which the biological mechanisms are incompletely understood. We therefore examined genetic associations with HF in a large national biobank, and assessed whether refined phenotypic classification would facilitate genetic discovery. Methods: We defined all-cause HF among 488 010 participants from the UK Biobank and performed a genome-wide association analysis. We refined the HF phenotype by classifying individuals with left ventricular dysfunction and without coronary artery disease as having nonischemic cardiomyopathy (NICM), and repeated a genetic association analysis. We then pursued replication of lead HF and NICM variants in independent cohorts, and performed adjusted association analyses to assess whether identified genetic associations were mediated through clinical HF risk factors. In addition, we tested rare, loss-of-function mutations in 24 known dilated cardiomyopathy genes for association with HF and NICM. Finally, we examined associations between lead variants and left ventricular structure and function among individuals without HF using cardiac magnetic resonance imaging (n=4158) and echocardiographic data (n=30 201). Results: We identified 7382 participants with all-cause HF in the UK Biobank. Genome-wide association analysis of all-cause HF identified several suggestive loci (P<1×10 -6 ), the majority linked to upstream HF risk factors, ie, coronary artery disease (CDKN2B-AS1 and MAP3K7CL) and atrial fibrillation (PITX2). Refining the HF phenotype yielded a subset of 2038 NICM cases. In contrast to all-cause HF, genetic analysis of NICM revealed suggestive loci that have been implicated in dilated cardiomyopathy (BAG3, CLCNKA-ZBTB17). Dilated cardiomyopathy signals arising from our NICM analysis replicated in independent cohorts, persisted after HF risk factor adjustment, and were associated with indices of left ventricular dysfunction in individuals without clinical HF. In addition, analyses of loss-of-function variants implicated BAG3 as a disease susceptibility gene for NICM (loss-of-function variant carrier frequency=0.01%; odds ratio,12.03; P=3.62×10 -5 ). Conclusions: We found several distinct genetic mechanisms of all-cause HF in a national biobank that reflect well-known HF risk factors. Phenotypic refinement to a NICM subtype appeared to facilitate the discovery of genetic signals that act independently of clinical HF risk facto rs and that are associated with subclinical left ventricular dysfunction.
  •  
17.
  • Bowman, Louise, et al. (författare)
  • Understanding the use of observational and randomized data in cardiovascular medicine
  • 2020
  • Ingår i: European Heart Journal. - : OXFORD UNIV PRESS. - 0195-668X .- 1522-9645. ; 41:27, s. 2571-2578
  • Tidskriftsartikel (refereegranskat)abstract
    • The availability of large datasets from multiple sources [e.g. registries, biobanks, electronic health records (EHRs), claims or billing databases, implantable devices, wearable sensors, and mobile apps], coupled with advances in computing and analytic technologies, have provided new opportunities for conducting innovative health research. Equally, improved digital access to health information has facilitated the conduct of efficient randomized controlled trials (RCTs) upon which clinical management decisions can be based, for instance, by permitting the identification of eligible patients for recruitment and/or linkage for follow-up via their EHRs. Given these advances in cardiovascular data science and the complexities they behold, it is important that health professionals have clarity on the appropriate use and interpretation of observational, so-called 'real-world', and randomized data in cardiovascular medicine. The Cardiovascular Roundtable of the European Society of Cardiology (ESC) held a workshop to explore the future of RCTs and the current and emerging opportunities for gathering and exploiting complex observational datasets in cardiovascular research. The aim of this article is to provide a perspective on the appropriate use of randomized and observational data and to outline the ESC plans for supporting the collection and availability of clinical data to monitor and improve the quality of care of patients with cardiovascular disease in Europe and provide an infrastructure for undertaking pragmatic RCTs. Moreover, the ESC continues to campaign for greater engagement amongst regulators, industry, patients, and health professionals in the development and application of a more efficient regulatory framework that is able to take maximal advantage of new opportunities for improving the design and efficiency of observational studies and RCT in patients with cardiovascular disease.
  •  
18.
  • Caudle, Kelly E, et al. (författare)
  • Incorporation of Pharmacogenomics into Routine Clinical Practice : the Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline Development Process
  • 2014
  • Ingår i: Current drug metabolism. - : Bentham Science Publishers Ltd.. - 1389-2002 .- 1875-5453. ; 15:2, s. 209-217
  • Tidskriftsartikel (refereegranskat)abstract
    • The Clinical Pharmacogenetics Implementation Consortium (CPIC) publishes genotype-based drug guidelines to help clinicians understand how available genetic test results could be used to optimize drug therapy. CPIC has focused initially on well-known examples of pharmacogenomic associations that have been implemented in selected clinical settings, publishing nine to date. Each CPIC guideline adheres to a standardized format and includes a standard system for grading levels of evidence linking genotypes to phenotypes and assigning a level of strength to each prescribing recommendation. CPIC guidelines contain the necessary information to help clinicians translate patient-specific diplotypes for each gene into clinical phenotypes or drug dosing groups. This paper reviews the development process of the CPIC guidelines and compares this process to the Institute of Medicine's Standards for Developing Trustworthy Clinical Practice Guidelines.
  •  
19.
  • Lubitz, Steven A, et al. (författare)
  • Genetic Risk Prediction of Atrial Fibrillation
  • 2017
  • Ingår i: Circulation. - 0009-7322. ; 135:14, s. 1311-1320
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND—: Atrial fibrillation (AF) has a substantial genetic basis. Identification of individuals at greatest AF risk could minimize the incidence of cardioembolic stroke. METHODS—: To determine whether genetic data can stratify risk for development of AF, we examined associations between AF genetic risk scores and incident AF in five prospective studies comprising 18,919 individuals of European ancestry. We examined associations between AF genetic risk scores and ischemic stroke in a separate study of 509 ischemic stroke cases (202 cardioembolic [40%]) and 3,028 referents. Scores were based on 11 to 719 common variants (≥5%) associated with AF at P-values ranging from <1x10 to <1x10 in a prior independent genetic association study. RESULTS—: Incident AF occurred in 1,032 (5.5%) individuals. AF genetic risk scores were associated with new-onset AF after adjusting for clinical risk factors. The pooled hazard ratio for incident AF for the highest versus lowest quartile of genetic risk scores ranged from 1.28 (719 variants; 95%CI, 1.13-1.46; P=1.5x10) to 1.67 (25 variants; 95%CI, 1.47-1.90; P=9.3x10). Discrimination of combined clinical and genetic risk scores varied across studies and scores (maximum C statistic, 0.629-0.811; maximum ΔC statistic from clinical score alone, 0.009-0.017). AF genetic risk was associated with stroke in age- and sex-adjusted models. For example, individuals in the highest versus lowest quartile of a 127-variant score had a 2.49-fold increased odds of cardioembolic stroke (95%CI, 1.39-4.58; P=2.7x10). The effect persisted after excluding individuals (n=70) with known AF (odds ratio, 2.25; 95%CI, 1.20-4.40; P=0.01). CONCLUSIONS—: Comprehensive AF genetic risk scores were associated with incident AF beyond associations for clinical AF risk factors, though offered small improvements in discrimination. AF genetic risk was also associated with cardioembolic stroke in age- and sex-adjusted analyses. Efforts are warranted to determine whether AF genetic risk may improve identification of subclinical AF or help distinguish between stroke mechanisms.
  •  
20.
  • Perera, Minoli A., et al. (författare)
  • Genetic variants associated with warfarin dose in African-American individuals : a genome-wide association study
  • 2013
  • Ingår i: The Lancet. - 0140-6736 .- 1474-547X. ; 382:9894, s. 790-796
  • Tidskriftsartikel (refereegranskat)abstract
    • Background VKORC1 and CYP2C9 are important contributors to warfarin dose variability, but explain less variability for individuals of African descent than for those of European or Asian descent. We aimed to identify additional variants contributing to warfarin dose requirements in African Americans. Methods We did a genome-wide association study of discovery and replication cohorts. Samples from African-American adults (aged >= 18 years) who were taking a stable maintenance dose of warfarin were obtained at International Warfarin Pharmacogenetics Consortium (IWPC) sites and the University of Alabama at Birmingham (Birmingham, AL, USA). Patients enrolled at IWPC sites but who were not used for discovery made up the independent replication cohort. All participants were genotyped. We did a stepwise conditional analysis, conditioning first for VKORC1 -1639G -> A, followed by the composite genotype of CYP2C9*2 and CYP2C9*3. We prespecified a genome-wide significance threshold of p<5x10(-8) in the discovery cohort and p<0.0038 in the replication cohort. Findings The discovery cohort contained 533 participants and the replication cohort 432 participants. After the prespecified conditioning in the discovery cohort, we identified an association between a novel single nucleotide polymorphism in the CYP2C cluster on chromosome 10 (rs12777823) and warfarin dose requirement that reached genome-wide significance (p=1.51x10(-8)). This association was confirmed in the replication cohort (p=5.04x10(-5)); analysis of the two cohorts together produced a p value of 4.5x10(-12). Individuals heterozygous for the rs12777823 A allele need a dose reduction of 6.92 mg/week and those homozygous 9.34 mg/week. Regression analysis showed that the inclusion of rs12777823 significantly improves warfarin dose variability explained by the IWPC dosing algorithm (21% relative improvement). Interpretation A novel CYP2C single nucleotide polymorphism exerts a clinically relevant effect on warfarin dose in African Americans, independent of CYP2C9*2 and CYP2C9*3. Incorporation of this variant into pharmacogenetic dosing algorithms could improve warfarin dose prediction in this population.
  •  
21.
  • Wells, Quinn S., et al. (författare)
  • Accelerating Biomarker Discovery Through Electronic Health Records, Automated Biobanking, and Proteomics
  • 2019
  • Ingår i: Journal of the American College of Cardiology. - : Elsevier BV. - 0735-1097. ; 73:17, s. 2195-2205
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Circulating biomarkers can facilitate diagnosis and risk stratification for complex conditions such as heart failure (HF). Newer molecular platforms can accelerate biomarker discovery, but they require significant resources for data and sample acquisition. Objectives: The purpose of this study was to test a pragmatic biomarker discovery strategy integrating automated clinical biobanking with proteomics. Methods: Using the electronic health record, the authors identified patients with and without HF, retrieved their discarded plasma samples, and screened these specimens using a DNA aptamer-based proteomic platform (1,129 proteins). Candidate biomarkers were validated in 3 different prospective cohorts. Results: In an automated manner, plasma samples from 1,315 patients (31% with HF) were collected. Proteomic analysis of a 96-patient subset identified 9 candidate biomarkers (p < 4.42 × 10 −5 ). Two proteins, angiopoietin-2 and thrombospondin-2, were associated with HF in 3 separate validation cohorts. In an emergency department–based registry of 852 dyspneic patients, the 2 biomarkers improved discrimination of acute HF compared with a clinical score (p < 0.0001) or clinical score plus B-type natriuretic peptide (p = 0.02). In a community-based cohort (n = 768), both biomarkers predicted incident HF independent of traditional risk factors and N-terminal pro–B-type natriuretic peptide (hazard ratio per SD increment: 1.35 [95% confidence interval: 1.14 to 1.61; p = 0.0007] for angiopoietin-2, and 1.37 [95% confidence interval: 1.06 to 1.79; p = 0.02] for thrombospondin-2). Among 30 advanced HF patients, concentrations of both biomarkers declined (80% to 84%) following cardiac transplant (p < 0.001 for both). Conclusions: A novel strategy integrating electronic health records, discarded clinical specimens, and proteomics identified 2 biomarkers that robustly predict HF across diverse clinical settings. This approach could accelerate biomarker discovery for many diseases.
  •  
22.
  • Husser, Daniela, et al. (författare)
  • A Genotype-Dependent Intermediate ECG Phenotype in Patients With Persistent Lone Atrial Fibrillation Genotype ECG-Phenotype Correlation in Atrial Fibrillation
  • 2009
  • Ingår i: Circulation: Arrhythmia and Electrophysiology. - 1941-3149 .- 1941-3084. ; 2:1, s. 24-28
  • Konferensbidrag (refereegranskat)abstract
    • Background-Atrial fibrillation (AF) is heterogeneous at the clinical and molecular levels. Association studies have reported that common single-nucleotide polymorphisms in KCNE1 and SCN5A may predispose to AF In this study, we tested the hypothesis that specific AF-associated genotypes confer variation on the appearance of AF assessed by analysis of fibrillatory rate of the atria. Methods and Results-Twenty-six nonrelated patients (21 males, mean age 55 +/- 12 years) with persistent lone AF (median AF duration 5 weeks) not taking class I or III antiarrhythmic drugs were studied. Fibrillatory rate was obtained by spatiotemporal QRST cancellation and time-frequency analysis of the index surface ECG. Genotypes at the AF-associated loci in KCNE1 (S38G) and SCN5A (H558R) were determined by direct DNA sequencing. The atrial fibrillatory rate was 418 +/- 50 fibrillations per minute (range, 336 to 521) in the study cohort. Carriers of the 38 GG KCNE1 genotype (n=13) had significantly lower fibrillatory rates (392 +/- 36 versus 443 +/- 49 fibrillations per minute, P=0.006) compared to those with GS or SS genotype (n=13). Six patients (23%) with fibrillatory rates >450 fibrillations per minute, all had either the GS or SS genotype (chi(2) P=0.008). In contrast, both the heterozygeous and homozygeous SCN5A H558R polymorphism had no effect on fibrillatory rate. There were no significant associations between fibrillatory rate and clinical (age, gender, AF duration, drug treatment) or echocardiographic (left atrial diameter, left ventricular ejection fraction) variables. In multivariable regression analysis, the KCNE1 S38G genotype (SS/GS coded 0, GG coded 1) was the only independent predictor of fibrillatory rate (beta = -0.437, P=0.006) with a SE of the estimate of 44 fibrillations per minute. Conclusions-This study suggests that atrial fibrillatory rate obtained from the surface ECG is at least in part determined by KCNE1 (S38G) genotype, implying that this variant exerts functional effects on atrial electrophysiology. This intermediate ECG phenotype may be useful for elaborating genetic influences on AF mechanisms and identifying subsets of patients for variability in AF susceptibility or response to therapies. (Circ Arrhythmia Electrophysiol. 2009;2:24-28.)
  •  
23.
  • Perry, John R. B., et al. (författare)
  • Stratifying Type 2 Diabetes Cases by BMI Identifies Genetic Risk Variants in LAMA1 and Enrichment for Risk Variants in Lean Compared to Obese Cases
  • 2012
  • Ingår i: PLoS Genetics. - : Public Library of Science (PLoS). - 1553-7404. ; 8:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Common diseases such as type 2 diabetes are phenotypically heterogeneous. Obesity is a major risk factor for type 2 diabetes, but patients vary appreciably in body mass index. We hypothesized that the genetic predisposition to the disease may be different in lean (BMI<25 Kg/m(2)) compared to obese cases (BMI >= 30 Kg/m(2)). We performed two case-control genome-wide studies using two accepted cut-offs for defining individuals as overweight or obese. We used 2,112 lean type 2 diabetes cases (BMI<25 kg/m(2)) or 4,123 obese cases (BMI >= 30 kg/m(2)), and 54,412 un-stratified controls. Replication was performed in 2,881 lean cases or 8,702 obese cases, and 18,957 un-stratified controls. To assess the effects of known signals, we tested the individual and combined effects of SNPs representing 36 type 2 diabetes loci. After combining data from discovery and replication datasets, we identified two signals not previously reported in Europeans. A variant (rs8090011) in the LAMA1 gene was associated with type 2 diabetes in lean cases (P = 8.4610 29, OR = 1.13 [95% CI 1.09-1.18]), and this association was stronger than that in obese cases (P = 0.04, OR = 1.03 [95% CI 1.00-1.06]). A variant in HMG20A-previously identified in South Asians but not Europeans-was associated with type 2 diabetes in obese cases (P = 1.3 x 10(-8), OR= 1.11 [95% CI 1.07-1.15]), although this association was not significantly stronger than that in lean cases (P = 0.02, OR = 1.09 [95% CI 1.02-1.17]). For 36 known type 2 diabetes loci, 29 had a larger odds ratio in the lean compared to obese (binomial P = 0.0002). In the lean analysis, we observed a weighted per-risk allele OR = 1.13 [95% CI 1.10-1.17], P = 3.2 x 10(-14). This was larger than the same model fitted in the obese analysis where the OR = 1.06 [95% CI 1.05-1.08], P = 2.2 x 10(-16). This study provides evidence that stratification of type 2 diabetes cases by BMI may help identify additional risk variants and that lean cases may have a stronger genetic predisposition to type 2 diabetes.
  •  
24.
  • Zaharia, Oana P., et al. (författare)
  • Risk of diabetes-associated diseases in subgroups of patients with recent-onset diabetes : a 5-year follow-up study
  • 2019
  • Ingår i: The Lancet Diabetes and Endocrinology. - 2213-8587. ; 7:9, s. 684-694
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Cluster analyses have proposed different diabetes phenotypes using age, BMI, glycaemia, homoeostasis model estimates, and islet autoantibodies. We tested whether comprehensive phenotyping validates and further characterises these clusters at diagnosis and whether relevant diabetes-related complications differ among these clusters, during 5-years of follow-up. Methods: Patients with newly diagnosed type 1 or type 2 diabetes in the German Diabetes Study underwent comprehensive phenotyping and assessment of laboratory variables. Insulin sensitivity was assessed using hyperinsulinaemic-euglycaemic clamps, hepatocellular lipid content using magnetic resonance spectroscopy, hepatic fibrosis using non-invasive scores, and peripheral and autonomic neuropathy using functional and clinical criteria. Patients were reassessed after 5 years. The German Diabetes Study is registered with ClinicalTrials.gov, number NCT01055093, and is ongoing. Findings: 1105 patients were classified at baseline into five clusters, with 386 (35%) assigned to mild age-related diabetes (MARD), 323 (29%) to mild obesity-related diabetes (MOD), 247 (22%) to severe autoimmune diabetes (SAID), 121 (11%) to severe insulin-resistant diabetes (SIRD), and 28 (3%) to severe insulin-deficient diabetes (SIDD). At 5-year follow-up, 367 patients were reassessed, 128 (35%) with MARD, 106 (29%) with MOD, 88 (24%) with SAID, 35 (10%) with SIRD, and ten (3%) with SIDD. Whole-body insulin sensitivity was lowest in patients with SIRD at baseline (mean 4·3 mg/kg per min [SD 2·0]) compared with those with SAID (8·4 mg/kg per min [3·2]; p<0·0001), MARD (7·5 mg/kg per min [2·5]; p<0·0001), MOD (6·6 mg/kg per min [2·6]; p=0·0011), and SIDD (5·5 mg/kg per min [2·4]; p=0·0035). The fasting adipose-tissue insulin resistance index at baseline was highest in patients with SIRD (median 15·6 [IQR 9·3–20·9]) and MOD (11·6 [7·4–17·9]) compared with those with MARD (6·0 [3·9–10·3]; both p<0·0001) and SAID (6·0 [3·0–9·5]; both p<0·0001). In patients with newly diagnosed diabetes, hepatocellular lipid content was highest at baseline in patients assigned to the SIRD cluster (median 19% [IQR 11–22]) compared with all other clusters (7% [2–15] for MOD, p=0·00052; 5% [2–11] for MARD, p<0·0001; 2% [0–13] for SIDD, p=0·0083; and 1% [0–3] for SAID, p<0·0001), even after adjustments for baseline medication. Accordingly, hepatic fibrosis at 5-year follow-up was more prevalent in patients with SIRD (n=7 [26%]) than in patients with SAID (n=5 [7%], p=0·0011), MARD (n=12 [12%], p=0·012), MOD (n=13 [15%], p=0·050), and SIDD (n=0 [0%], p value not available). Confirmed diabetic sensorimotor polyneuropathy was more prevalent at baseline in patients with SIDD (n=9 [36%]) compared with patients with SAID (n=10 [5%], p<0·0001), MARD (n=39 [15%], p=0·00066), MOD (n=26 [11%], p<0·0001), and SIRD (n=10 [17%], p<0·0001). Interpretation: Cluster analysis can characterise cohorts with different degrees of whole-body and adipose-tissue insulin resistance. Specific diabetes clusters show different prevalence of diabetes complications at early stages of non-alcoholic fatty liver disease and diabetic neuropathy. These findings could help improve targeted prevention and treatment and enable precision medicine for diabetes and its comorbidities. Funding: German Diabetes Center, German Federal Ministry of Health, Ministry of Culture and Science of the state of North Rhine-Westphalia, German Federal Ministry of Education and Research, German Diabetes Association, German Center for Diabetes Research, Research Network SFB 1116 of the German Research Foundation, and Schmutzler Stiftung.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-24 av 24
Typ av publikation
tidskriftsartikel (23)
konferensbidrag (1)
Typ av innehåll
refereegranskat (24)
Författare/redaktör
Roden, Dan M. (20)
Lubitz, Steven A. (10)
Ellinor, Patrick T. (9)
van der Harst, Pim (8)
Ford, Ian (8)
Melander, Olle (7)
visa fler...
Verweij, Niek (7)
Rotter, Jerome I. (7)
Heckbert, Susan R (7)
Psaty, Bruce M (7)
Mueller-Nurasyid, Ma ... (7)
Jukema, J. Wouter (7)
Chasman, Daniel I. (6)
Mahajan, Anubha (6)
Meitinger, Thomas (6)
Shoemaker, M. Benjam ... (6)
Kathiresan, Sekar (6)
Loos, Ruth J F (6)
Arking, Dan E. (6)
Sotoodehnia, Nona (6)
Boerwinkle, Eric (6)
Soliman, Elsayed Z. (6)
Benjamin, Emelia J. (6)
Alonso, Alvaro (6)
Voelker, Uwe (6)
Doerr, Marcus (6)
Sinner, Moritz F. (6)
Lind, Lars (5)
Smith, J Gustav (5)
Wareham, Nicholas J. (5)
Waldenberger, Melani ... (5)
Padmanabhan, Sandosh (5)
Weng, Lu Chen (5)
Harris, Tamara B (5)
Launer, Lenore J (5)
Hofman, Albert (5)
Uitterlinden, André ... (5)
Gudnason, Vilmundur (5)
Asselbergs, Folkert ... (5)
Lunetta, Kathryn L (5)
Smith, Albert V (5)
Teumer, Alexander (5)
Bis, Joshua C. (5)
Taylor, Kent D. (5)
Trompet, Stella (5)
Kaeaeb, Stefan (5)
Weeke, Peter E. (5)
Guo, Xiuqing (5)
Felix, Stephan B (5)
Ritchie, Marylyn D. (5)
visa färre...
Lärosäte
Lunds universitet (17)
Uppsala universitet (11)
Umeå universitet (5)
Karolinska Institutet (3)
Göteborgs universitet (2)
Språk
Engelska (24)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (23)
Naturvetenskap (1)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy