SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rodrigues De Miranda Joachim) "

Sökning: WFRF:(Rodrigues De Miranda Joachim)

  • Resultat 1-25 av 111
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bottero, Irene, et al. (författare)
  • Impact of landscape configuration and composition on pollinator communities across different European biogeographic regions
  • 2023
  • Ingår i: Frontiers in Ecology and Evolution. - 2296-701X. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Heterogeneity in composition and spatial configuration of landscape elements support diversity and abundance of flower-visiting insects, but this is likely dependent on taxonomic group, spatial scale, weather and climatic conditions, and is particularly impacted by agricultural intensification. Here, we analyzed the impacts of both aspects of landscape heterogeneity and the role of climatic and weather conditions on pollinating insect communities in two economically important mass-flowering crops across Europe. Methods: Using a standardized approach, we collected data on the abundance of five insect groups (honey bees, bumble bees, other bees, hover flies and butterflies) in eight oilseed rape and eight apple orchard sites (in crops and adjacent crop margins), across eight European countries (128 sites in total) encompassing four biogeographic regions, and quantified habitat heterogeneity by calculating relevant landscape metrics for composition (proportion and diversity of land-use types) and configuration (the aggregation and isolation of land-use patches). Results: We found that flower-visiting insects responded to landscape and climate parameters in taxon- and crop-specific ways. For example, landscape diversity was positively correlated with honey bee and solitary bee abundance in oilseed rape fields, and hover fly abundance in apple orchards. In apple sites, the total abundance of all pollinators, and particularly bumble bees and solitary bees, decreased with an increasing proportion of orchards in the surrounding landscape. In oilseed rape sites, less-intensively managed habitats (i.e., woodland, grassland, meadows, and hedgerows) positively influenced all pollinators, particularly bumble bees and butterflies. Additionally, our data showed that daily and annual temperature, as well as annual precipitation and precipitation seasonality, affects the abundance of flower-visiting insects, although, again, these impacts appeared to be taxon- or crop-specific. Discussion: Thus, in the context of global change, our findings emphasize the importance of understanding the role of taxon-specific responses to both changes in land use and climate, to ensure continued delivery of pollination services to pollinator-dependent crops.
  •  
2.
  • Hodge, Simon, et al. (författare)
  • Design and Planning of a Transdisciplinary Investigation into Farmland Pollinators : Rationale, Co-Design, and Lessons Learned
  • 2022
  • Ingår i: Sustainability (Switzerland). - : MDPI AG. - 2071-1050. ; 14:17
  • Tidskriftsartikel (refereegranskat)abstract
    • To provide a complete portrayal of the multiple factors negatively impacting insects in agricultural landscapes it is necessary to assess the concurrent incidence, magnitude, and interactions among multiple stressors over substantial biogeographical scales. Trans-national ecological field investigations with wide-ranging stakeholders typically encounter numerous challenges during the design planning stages, not least that the scientific soundness of a spatially replicated study design must account for the substantial geographic and climatic variation among distant sites. ‘PoshBee’ (Pan-European assessment, monitoring, and mitigation of Stressors on the Health of Bees) is a multi-partner transdisciplinary agroecological project established to investigate the suite of stressors typically encountered by pollinating insects in European agricultural landscapes. To do this, PoshBee established a network of 128 study sites across eight European countries and collected over 50 measurements and samples relating to the nutritional, toxicological, pathogenic, and landscape components of the bees’ environment. This paper describes the development process, rationale, and end-result of each aspect of the of the PoshBee field investigation. We describe the main issues and challenges encountered during the design stages and highlight a number of actions or processes that may benefit other multi-partner research consortia planning similar large-scale studies. It was soon identified that in a multi-component study design process, the development of interaction and communication networks involving all collaborators and stakeholders requires considerable time and resources. It was also necessary at each planning stage to be mindful of the needs and objectives of all stakeholders and partners, and further challenges inevitably arose when practical limitations, such as time restrictions and labour constraints, were superimposed upon prototype study designs. To promote clarity for all stakeholders, for each sub-component of the study, there should be a clear record of the rationale and reasoning that outlines how the final design transpired, what compromises were made, and how the requirements of different stakeholders were accomplished. Ultimately, multi-national agroecological field studies such as PoshBee benefit greatly from the involvement of diverse stakeholders and partners, ranging from field ecologists, project managers, policy legislators, mathematical modelers, and farmer organisations. While the execution of the study highlighted the advantages and benefits of large-scale transdisciplinary projects, the long planning period emphasized the need to formally describe a design framework that could facilitate the design process of future multi-partner collaborations.
  •  
3.
  • Nicholson, Charlie C, et al. (författare)
  • Pesticide use negatively affects bumble bees across European landscapes
  • 2024
  • Ingår i: Nature. - 0028-0836 .- 1476-4687.
  • Tidskriftsartikel (refereegranskat)abstract
    • Sustainable agriculture requires balancing crop yields with the effects of pesticides on non-target organisms, such as bees and other crop pollinators. Field studies demonstrated that agricultural use of neonicotinoid insecticides can negatively affect wild bee species 1,2, leading to restrictions on these compounds 3. However, besides neonicotinoids, field-based evidence of the effects of landscape pesticide exposure on wild bees is lacking. Bees encounter many pesticides in agricultural landscapes 4-9 and the effects of this landscape exposure on colony growth and development of any bee species remains unknown. Here we show that the many pesticides found in bumble bee-collected pollen are associated with reduced colony performance during crop bloom, especially in simplified landscapes with intensive agricultural practices. Our results from 316 Bombus terrestris colonies at 106 agricultural sites across eight European countries confirm that the regulatory system fails to sufficiently prevent pesticide-related impacts on non-target organisms, even for a eusocial pollinator species in which colony size may buffer against such impacts 10,11. These findings support the need for postapproval monitoring of both pesticide exposure and effects to confirm that the regulatory process is sufficiently protective in limiting the collateral environmental damage of agricultural pesticide use.
  •  
4.
  • Rodrigues De Miranda, Joachim, et al. (författare)
  • Cold case : The disappearance of Egypt bee virus, a fourth distinct master strain of deformed wing virus linked to honeybee mortality in 1970's Egypt
  • 2022
  • Ingår i: Virology Journal. - : BioMed Central (BMC). - 1743-422X. ; 19:1
  • Tidskriftsartikel (refereegranskat)abstract
    • In 1977, a sample of diseased adult honeybees (Apis mellifera) from Egypt was found to contain large amounts of a previously unknown virus, Egypt bee virus, which was subsequently shown to be serologically related to deformed wing virus (DWV). By sequencing the original isolate, we demonstrate that Egypt bee virus is in fact a fourth unique, major variant of DWV (DWV-D): more closely related to DWV-C than to either DWV-A or DWV-B. DWV-A and DWV-B are the most common DWV variants worldwide due to their close relationship and transmission by Varroa destructor. However, we could not find any trace of DWV-D in several hundred RNA sequencing libraries from a worldwide selection of honeybee, varroa and bumblebee samples. This means that DWV-D has either become extinct, been replaced by other DWV variants better adapted to varroa-mediated transmission, or persists only in a narrow geographic or host range, isolated from common bee and beekeeping trade routes.
  •  
5.
  • Engel, Philipp, et al. (författare)
  • The Bee Microbiome: Impact on Bee Health and Model for Evolution and Ecology of Host-Microbe Interactions
  • 2016
  • Ingår i: mBio. - : American Society for Microbiology. - 2161-2129 .- 2150-7511. ; 7:2
  • Forskningsöversikt (refereegranskat)abstract
    • As pollinators, bees are cornerstones for terrestrial ecosystem stability and key components in agricultural productivity. All animals, including bees, are associated with a diverse community of microbes, commonly referred to as the micro biome. The bee micro biome is likely to be a crucial factor affecting host health. However, with the exception of a few pathogens, the impacts of most members of the bee microbiome on host health are poorly understood. Further, the evolutionary and ecological forces that shape and change the microbiome are unclear. Here, we discuss recent progress in our understanding of the bee microbiome, and we present challenges associated with its investigation. We conclude that global coordination of research efforts is needed to fully understand the complex and highly dynamic nature of the interplay between the bee micro biome, its host, and the environment. High-throughput sequencing technologies are ideal for exploring complex biological systems, including host-microbe interactions. To maximize their value and to improve assessment of the factors affecting bee health, sequence data should be archived, curated, and analyzed in ways that promote the synthesis of different studies. To this end, the BeeBiome consortium aims to develop an online database which would provide reference sequences, archive metadata, and host analytical resources. The goal would be to support applied and fundamental research on bees and their associated microbes and to provide a collaborative framework for sharing primary data from different research programs, thus furthering our understanding of the bee microbiome and its impact on pollinator health.
  •  
6.
  •  
7.
  •  
8.
  • Forsgren, Eva, et al. (författare)
  • Sample preservation, transport and processing strategies for honeybee RNA extraction: Influence on RNA yield, quality, target quantification and data normalization
  • 2017
  • Ingår i: Journal of Virological Methods. - : Elsevier BV. - 0166-0934 .- 1879-0984. ; 246, s. 81-89
  • Tidskriftsartikel (refereegranskat)abstract
    • Viral infections in managed honey bees are numerous, and most of them are caused by viruses with an RNA genome. Since RNA degrades rapidly, appropriate sample management and RNA extraction methods are imperative to get high quality RNA for downstream assays. This study evaluated the effect of various sampling transport scenarios (combinations of temperature, RNA stabilizers, and duration) of transport on six RNA quality parameters; yield, purity, integrity, cDNA synthesis efficiency, target detection and quantification. The use of water and extraction buffer were also compared for a primary bee tissue homogenate prior to RNA extraction. The strategy least affected by time was preservation of samples at -80 degrees C. All other regimens turned out to be poor alternatives unless the samples were frozen or processed within 24 h. Chemical stabilizers have the greatest impact on RNA quality and adding an extra homogenization step (a QIAshredder (TM) homogenizer) to the extraction protocol significantly improves the RNA yield and chemical purity. This study confirms that RIN values (RNA Integrity Number), should be used cautiously with bee RNA. Using water for the primary homogenate has no negative effect on RNA quality as long as this step is no longer than 15 min.
  •  
9.
  • Forsgren, Eva, et al. (författare)
  • SLU:s verksamhet med bin
  • 2016
  • Ingår i: Bitidningen. - 0006-3886. ; , s. 11-15
  • Tidskriftsartikel (populärvet., debatt m.m.)
  •  
10.
  • Fries, Ingemar, et al. (författare)
  • The principal parasites and pathogens of honeybees
  • 2011
  • Ingår i: Bees in Europe and sustainable honey production (BEE SHOP) : results of a pan-european research network. - 9781612093369 ; , s. 49-105
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)
  •  
11.
  • Fries, Ingemar, et al. (författare)
  • Verksamhet med bin 2010 vid SLU
  • 2011
  • Ingår i: Bitidningen. - 0006-3886. ; 109, s. 10-14
  • Tidskriftsartikel (populärvet., debatt m.m.)
  •  
12.
  • Fries, Ingemar, et al. (författare)
  • Verksamhet med bin vid SLU 2011.
  • 2012
  • Ingår i: Bitidningen. - 0006-3886. ; 111, s. 12-16
  • Tidskriftsartikel (populärvet., debatt m.m.)
  •  
13.
  • Fries, Ingemar, et al. (författare)
  • Verksamhet med bin vid SLU 2013
  • 2014
  • Ingår i: Bitidningen. - 0006-3886. ; 113, s. 16-19
  • Tidskriftsartikel (populärvet., debatt m.m.)
  •  
14.
  • Fries, Ingemar, et al. (författare)
  • Är GMO-grödor farliga för bin?
  • 2014
  • Ingår i: Bitidningen. - 0006-3886. ; , s. 32-33
  • Tidskriftsartikel (populärvet., debatt m.m.)
  •  
15.
  • Jagadish, Anupama, et al. (författare)
  • Development and optimization of a TaqMan assay for Nosema bombycis, causative agent of pebrine disease in Bombyx mori silkworm, based on the β-tubulin gene
  • 2021
  • Ingår i: Journal of Microbiological Methods. - : Elsevier BV. - 0167-7012 .- 1872-8359. ; 186
  • Tidskriftsartikel (refereegranskat)abstract
    • “Pébrine” is a devastating disease of Bombyx mori silkworms that is highly contagious and can completely destroy an entire crop of silkworms and is thus a serious threat for the viability and profitability of sericulture. The disease is most commonly attributed to microsporidians of the genus Nosema, which are obligate intracellular parasites that are transmitted through spores. Nosema infections in silkworms are diagnosed primarily through light microscopy, which is labour intensive and less reliable, sensitive, and specific than PCR-based techniques. Here, we present the development and optimization of a new TaqMan based assay targeting the β-tubulin gene in the pébrine disease causing agent Nosema bombycis in silkworms. The assay displayed excellent quantification linearity over multiple orders of magnitude of target amounts and a limit of detection (LOD) of 6.9 × 102 copies of target per reaction. The method is highly specific to N. bombycis with no cross-reactivity to other Nosema species commonly infecting wild silkworms. This specificity was due to three nucleotides in the probe-binding region unique to N. bombycis. The assay demonstrated a high reliability with a Coefficient of variation (CV) <5% for both intra-assay and inter-assay variability. The assay was used to trace experimental N. bombycis infection of silkworm larvae, in the fat body, midgut and ovary tissues, through pupation and metamorphosis to the emerging female moth, and her larval off-spring, confirming the vertical transmission of N. bombycis in silkworms. The TaqMan assay revealed a gradual increase in infection levels in the post-infection samples. The assay is reliable and simple to implement and can be a suitable complement to microscopy for routine diagnostics and surveillance in silkworm egg production centres with appropriate infrastructure.
  •  
16.
  • Kardum Hjort, Cecilia, et al. (författare)
  • Genomic divergence and a lack of recent introgression between commercial and wild bumblebees (Bombus terrestris)
  • 2022
  • Ingår i: Evolutionary Applications. - : Wiley. - 1752-4571. ; 15:3, s. 365-382
  • Tidskriftsartikel (refereegranskat)abstract
    • The global movement of bees for agricultural pollination services can affect local pollinator populations via hybridization. When commercial bumblebees are of the same species but of different geographic origin, intraspecific hybridization may result in beneficial integration of new genetic variation, or alternatively may disrupt locally adapted gene complexes. However, neither the existence nor the extent of genomic introgression and evolutionary divergence between wild and commercial bumblebees is fully understood. We obtained whole-genome sequencing data from wild and commercial Bombus terrestris collected from sites in Southern Sweden with and without long-term use of commercially imported B. terrestris. We search for evidence of introgression, dispersal and genome-wide differentiation in a comparative genomic analysis of wild and commercial bumblebees. Commercial B. terrestris were found in natural environments near sites where commercial bumblebees were used, as well as drifting wild B. terrestris in commercial bumblebee colonies. However, we found no evidence for widespread, recent genomic introgression of commercial B. terrestris into local wild conspecific populations. We found that wild B. terrestris had significantly higher nucleotide diversity (Nei's pi, π), while the number of segregating sites (Watterson's theta, θw) was higher in commercial B. terrestris. A highly divergent region on chromosome 11 was identified in commercial B. terrestris and found to be enriched with structural variants. The genes present in this region are involved in flight muscle contraction and structure and pathogen immune response, providing evidence for differing evolutionary processes operating in wild and commercial B. terrestris. We did not find evidence for recent introgression, suggesting that co-occurring commercial B. terrestris have not disrupted evolutionary processes in wild B. terrestris populations.
  •  
17.
  • Kawakami, Takeshi, et al. (författare)
  • Substantial Heritable Variation in Recombination Rate on Multiple Scales in Honeybees and Bumblebees
  • 2019
  • Ingår i: Genetics. - : GENETICS SOCIETY AMERICA. - 0016-6731 .- 1943-2631. ; 212:4, s. 1101-1119
  • Tidskriftsartikel (refereegranskat)abstract
    • Meiotic recombination shuffles genetic variation and promotes correct segregation of chromosomes. Rates of recombination vary on several scales, both within genomes and between individuals, and this variation is affected by both genetic and environmental factors. Social insects have extremely high rates of recombination, although the evolutionary causes of this are not known. Here, we estimate rates of crossovers and gene conversions in 22 colonies of the honeybee, Apis mellifera, and 9 colonies of the bumblebee, Bombus terrestris, using direct sequencing of 299 haploid drone offspring. We confirm that both species have extremely elevated crossover rates, with higher rates measured in the highly eusocial honeybee than the primitively social bumblebee. There are also significant differences in recombination rate between subspecies of honeybee. There is substantial variation in genome-wide recombination rate between individuals of both A. mellifera and B. terrestris and the distribution of these rates overlap between species. A large proportion of interindividual variation in recombination rate is heritable, which indicates the presence of variation in trans-acting factors that influence recombination genome-wide. We infer that levels of crossover interference are significantly lower in honeybees compared to bumblebees, which may be one mechanism that contributes to higher recombination rates in honeybees. We also find a significant increase in recombination rate with distance from the centromere, mirrored by methylation differences. We detect a strong transmission bias due to GC-biased gene conversion associated with noncrossover gene conversions. Our results shed light on the mechanistic causes of extreme rates of recombination in social insects and the genetic architecture of recombination rate variation.
  •  
18.
  • Knapp, Jessica L, et al. (författare)
  • Ecological traits interact with landscape context to determine bees' pesticide risk
  • 2023
  • Ingår i: Nature Ecology and Evolution. - : Springer Science and Business Media LLC. - 2397-334X. ; 7, s. 547-556
  • Tidskriftsartikel (refereegranskat)abstract
    • Widespread contamination of ecosystems with pesticides threatens non-target organisms. However, the extent to which life-history traits affect pesticide exposure and resulting risk in different landscape contexts remains poorly understood. We address this for bees across an agricultural land-use gradient based on pesticide assays of pollen and nectar collected by Apis mellifera, Bombus terrestris and Osmia bicornis, representing extensive, intermediate and limited foraging traits. We found that extensive foragers (A. mellifera) experienced the highest pesticide risk-additive toxicity-weighted concentrations. However, only intermediate (B. terrestris) and limited foragers (O. bicornis) responded to landscape context-experiencing lower pesticide risk with less agricultural land. Pesticide risk correlated among bee species and between food sources and was greatest in A. mellifera-collected pollen-useful information for future postapproval pesticide monitoring. We provide foraging trait- and landscape-dependent information on the occurrence, concentration and identity of pesticides that bees encounter to estimate pesticide risk, which is necessary for more realistic risk assessment and essential information for tracking policy goals to reduce pesticide risk.
  •  
19.
  • Lamei, Sepideh, et al. (författare)
  • Feeding Honeybee Colonies with Honeybee-Specific Lactic Acid Bacteria (Hbs-LAB) Does Not Affect Colony-Level Hbs-LAB Composition or Paenibacillus larvae Spore Levels, Although American Foulbrood Affected Colonies Harbor a More Diverse Hbs-LAB Community
  • 2020
  • Ingår i: Microbial Ecology. - : Springer Science and Business Media LLC. - 0095-3628 .- 1432-184X. ; 79:3, s. 743-755
  • Tidskriftsartikel (refereegranskat)abstract
    • The main current methods for controlling American Foulbrood (AFB) in honeybees, caused by the bacterial pathogen Paenibacillus larvae, are enforced incineration or prophylactic antibiotic treatment, neither of which is fully satisfactory. This has led to an increased interest in the natural relationships between the pathogenic and mutualistic microorganisms of the honeybee microbiome, in particular, the antagonistic effects of Honeybee-Specific Lactic Acid Bacteria (hbs-LAB) against P. larvae. We investigated whether supplemental administration of these bacteria affected P. larvae infection at colony level over an entire flowering season. Over the season, the supplements affected neither colony-level hbs-LAB composition nor naturally subclinical or clinical P. larvae spore levels. The composition of hbs-LAB in colonies was, however, more diverse in apiaries with a history of clinical AFB, although this was also unrelated to P. larvae spore levels. During the experiments, we also showed that qPCR could detect a wider range of hbs-LAB, with higher specificity and sensitivity than mass spectrometry. Honeybee colonies are complex super-organisms where social immune defenses, natural homeostatic mechanisms, and microbiome diversity and function play a major role in disease resistance. This means that observations made at the individual bee level cannot be simply extrapolated to infer similar effects at colony level. Although individual laboratory larval assays have clearly demonstrated the antagonistic effects of hbs-LAB on P. larvae infection, the results from the experiments presented here indicate that direct conversion of such practice to colony-level administration of live hbs-LAB is not effective.
  •  
20.
  • Lamei, Sepideh, et al. (författare)
  • The secretome of honey bee-specific lactic acid bacteria inhibits Paenibacillus larvae growth
  • 2019
  • Ingår i: Journal of Apicultural Research. - : Informa UK Limited. - 0021-8839 .- 2078-6913. ; 58:3, s. 405-412
  • Tidskriftsartikel (refereegranskat)abstract
    • American Foulbrood (AFB) is a particularly pernicious bacterial disease of honey bees due to the extreme persistence of endospores of the causative agent Paenibacillus larvae. These spores are resistant to harsh environmental conditions, unaffected by antimicrobial agents and can remain viable for decades. The germination of the endospore in the larval midgut is the crucial first step leading to infection, followed by vegetative growth, tissue invasion and disease, culminating in spore formation when the host´s nutrients have been exhausted. Therefore, inhibiting spore germination or impeding early vegetative growth would be a highly effective strategy for limiting the impact of AFB. We previously showed that honey bee-specific lactic acid bacteria (hbs–LAB) had a major inhibitory effect on P. larvae both in culture and in larval bioassays. The present study documents the progress towards characterization of compounds, processes and interactions between P. larvae and the hbs–LAB responsible for this inhibitory effect. Firstly, we used an agar diffusion assay and larval infection bioassay to show that most, if not all, of the inhibitory effect was associated with the extracellular fraction (secretome). Secondly, we employed a turbidimetric growth assay to demonstrate that the hbs–LAB secretome strongly inhibited P. larvae vegetative growth, however, probably not by reducing spore germination. The inhibition was similarly effective against both major P. larvae genotypes (ERIC-I and II) in all experiments. The implications of our results for characterization of the secretome and for the management and treatment of AFB and P. larvae are further discussed.
  •  
21.
  •  
22.
  •  
23.
  • Locke Grandér, Barbara, et al. (författare)
  • Adapted tolerance to virus infections in four geographically distinct Varroa destructor-resistant honeybee populations
  • 2021
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • The ectoparasitic mite, Varroa destructor, is unarguably the leading cause of honeybee (Apis mellifera) mortality worldwide through its role as a vector for lethal viruses, in particular, strains of the Deformed wing virus (DWV) and Acute bee paralysis virus (ABPV) complexes. Several honeybee populations across Europe have well-documented adaptations of mite-resistant traits but little is known about host adaptations towards the virus infections vectored by the mite. The aim of this study was to assess and compare the possible contribution of adapted virus tolerance and/or resistance to the enhanced survival of four well-documented mite-resistant honeybee populations from Norway, Sweden, The Netherlands and France, in relation to unselected mite-susceptible honeybees. Caged adult bees and laboratory reared larvae, from colonies of these four populations, were inoculated with DWV and ABPV in a series of feeding infection experiments, while control groups received virus-free food. Virus infections were monitored using RT-qPCR assays in individuals sampled over a time course. In both adults and larvae the DWV and ABPV infection dynamics were nearly identical in all groups, but all mite-resistant honeybee populations had significantly higher survival rates compared to the mite-susceptible honeybees. These results suggest that adapted virus tolerance is an important component of survival mechanisms.
  •  
24.
  •  
25.
  • Locke Grandér, Barbara, et al. (författare)
  • Increased Tolerance and Resistance to Virus Infections: A Possible Factor in the Survival of Varroa destructor-Resistant Honey Bees (Apis mellifera)
  • 2014
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • The honey bee ectoparasitic mite, Varroa destructor, has a world-wide distribution and inflicts more damage than all other known apicultural diseases. However, Varroa-induced colony mortality is more accurately a result of secondary virus infections vectored by the mite. This means that honey bee resistance to Varroa may include resistance or tolerance to virus infections. The aim of this study was to see if this is the case for a unique population of mite-resistant (MR) European honey bees on the island of Gotland, Sweden. This population has survived uncontrolled mite infestation for over a decade, developing specific mite-related resistance traits to do so. Using RT-qPCR techniques, we monitored late season virus infections, Varroa mite infestation and honey bee colony population dynamics in the Gotland MR population and compared this to mite-susceptible (MS) colonies in a close by apiary. From summer to autumn the deformed wing virus (DWV) titres increased similarly between the MR and MS populations, while the black queen cell virus (BQCV) and sacbrood virus (SBV) titres decreased substantially in the MR population compared to the MS population by several orders of magnitude. The MR colonies all survived the following winter with high mite infestation, high DWV infection, small colony size and low proportions of autumn brood, while the MS colonies all perished. Possible explanations for these changes in virus titres and their relevance to Varroa resistance and colony winter survival are discussed.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 111
Typ av publikation
tidskriftsartikel (94)
forskningsöversikt (8)
bokkapitel (5)
annan publikation (3)
konferensbidrag (1)
Typ av innehåll
refereegranskat (78)
populärvet., debatt m.m. (24)
övrigt vetenskapligt/konstnärligt (9)
Författare/redaktör
Rodrigues De Miranda ... (111)
Forsgren, Eva (28)
Locke Grandér, Barba ... (24)
Fries, Ingemar (15)
Rundlöf, Maj (10)
Semberg, Emilia (9)
visa fler...
Terenius, Olle (7)
Onorati, Piero (5)
Granberg, Fredrik (5)
Stout, Jane C. (4)
Smith, Henrik G. (3)
Riesbeck, Kristian (3)
Jansson, Anna (3)
Tamburini, Giovanni (3)
Bommarco, Riccardo (3)
Berggren, Åsa (3)
Paxton, Robert J. (3)
Albrecht, Matthias (3)
Klein, Alexandra Mar ... (3)
Low, Matthew (3)
Hodge, Simon (3)
Dominik, Christophe (3)
De la Rúa, Pilar (3)
Cini, Elena (3)
Schwarz, Janine M. (3)
Raimets, Risto (3)
di Prisco, Gennaro (3)
Bottero, Irene (3)
Brown, Mark J.F. (3)
Costa, Cecilia (3)
Martínez-López, Vice ... (3)
Medrzycki, Piotr (3)
Senapathi, Deepa (3)
Tellgren-Roth, Chris ... (2)
Potts, Simon G. (2)
Nicholson, Charlie C (2)
Schweiger, Oliver (2)
Pereira-Peixoto, Mar ... (2)
Ivarsson, Kjell (2)
Nilson, Bo (2)
Neumann, Peter (2)
Jonsson, Ove (2)
Attridge, Eleanor (2)
Mänd, Marika (2)
Doublet, Vincent (2)
Rahbek Pedersen, Tho ... (2)
Osterman, Julia (2)
Laurent, Marion (2)
Chauzat, Marie Pierr ... (2)
Kiljanek, Tomasz (2)
visa färre...
Lärosäte
Sveriges Lantbruksuniversitet (111)
Lunds universitet (12)
Uppsala universitet (8)
Örebro universitet (1)
Linköpings universitet (1)
Språk
Engelska (91)
Svenska (15)
Nederländska (2)
Franska (1)
Norska (1)
Portugisiska (1)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (83)
Lantbruksvetenskap (54)
Medicin och hälsovetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy