SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Roegner Matthias) "

Sökning: WFRF:(Roegner Matthias)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Grasse, Nicole, et al. (författare)
  • Role of Novel Dimeric Photosystem II (PSII)-Psb27 Protein Complex in PSII Repair
  • 2011
  • Ingår i: Journal of Biological Chemistry. - 0021-9258 .- 1083-351X. ; 286:34, s. 29548-29555
  • Tidskriftsartikel (refereegranskat)abstract
    • The multisubunit membrane protein complex Photosystem II (PSII) catalyzes one of the key reactions in photosynthesis: the light-driven oxidation of water. Here, we focus on the role of the Psb27 assembly factor, which is involved in biogenesis and repair after light-induced damage of the complex. Weshow that Psb27 is essential for the survival of cyanobacterial cells grown under stress conditions. The combination of cold stress (30 degrees C) and high light stress (1000 mu mol of photons x m(-2) x s(-1)) led to complete inhibition of growth in a Delta psb27 mutant strain of the thermophilic cyanobacterium Thermosynechococcus elongatus, whereas wild-type cells continued to grow. Moreover, Psb27-containing PSII complexes became the predominant PSII species in preparations from wild-type cells grown under cold stress. Two different PSII-Psb27 complexes were isolated and characterized in this study. The first complex represents the known monomeric PSII-Psb27 species, which is involved in the assembly of PSII. Additionally, a novel dimeric PSII-Psb27 complex could be allocated in the repair cycle, i.e. in processes after inactivation of PSII, by (15)N pulse-label experiments followed by mass spectrometry analysis. Comparison with the corresponding PSII species from Delta psb27 mutant cells showed that Psb27 prevented the release of manganese from the previously inactivated complex. These results indicate a more complex role of the Psb27 protein within the life cycle of PSII, especially under stress conditions.
  •  
2.
  • Lindblad, Peter, et al. (författare)
  • CyanoFactory, a European consortium to develop technologies needed to advance cyanobacteria as chassis for production of chemicals and fuels
  • 2019
  • Ingår i: Algal Research. - : Elsevier. - 2211-9264. ; 41
  • Forskningsöversikt (refereegranskat)abstract
    • CyanoFactory, Design, construction and demonstration of solar biofuel production using novel (photo) synthetic cell factories, was an R&D project developed in response to the European Commission FP7-ENERGY-2012-1 call "Future Emerging Technologies" and the need for significant advances in both new science and technologies to convert solar energy into a fuel. CyanoFactory was an example of "purpose driven" research and development with identified scientific goals and creation of new technologies. The present overview highlights significant outcomes of the project, three years after its successful completion. The scientific progress of CyanoFactory involved: (i) development of a ToolBox for cyanobacterial synthetic biology; (ii) construction of DataWarehouse/Bioinformatics web-based capacities and functions; (iii) improvement of chassis growth, functionality and robustness; (iv) introduction of custom designed genetic constructs into cyanobacteria, (v) improvement of photosynthetic efficiency towards hydrogen production; (vi) biosafety mechanisms; (vii) analyses of the designed cyanobacterial cells to identify bottlenecks with suggestions on further improvements; (viii) metabolic modelling of engineered cells; (ix) development of an efficient laboratory scale photobioreactor unit; and (x) the assembly and experimental performance assessment of a larger (1350 L) outdoor flat panel photobioreactor system during two seasons. CyanoFactory - Custom design and purpose construction of microbial cells for the production of desired products using synthetic biology - aimed to go beyond conventional paths to pursue innovative and high impact goals. CyanoFactory brought together ten leading European partners (universities, research organizations and enterprises) with a common goal - to develop the future technologies in Synthetic biology and Advanced photobioreactors.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy