SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rosenstiel P.) "

Sökning: WFRF:(Rosenstiel P.)

  • Resultat 1-25 av 25
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Campbell, PJ, et al. (författare)
  • Pan-cancer analysis of whole genomes
  • 2020
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 578:7793, s. 82-
  • Tidskriftsartikel (refereegranskat)abstract
    • Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale1–3. Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4–5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter4; identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation5,6; analyses timings and patterns of tumour evolution7; describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity8,9; and evaluates a range of more-specialized features of cancer genomes8,10–18.
  •  
3.
  •  
4.
  • Rajewsky, N., et al. (författare)
  • LifeTime and improving European healthcare through cell-based interceptive medicine
  • 2020
  • Ingår i: Nature. - : Springer Nature. - 0028-0836 .- 1476-4687. ; 587:7834, s. 377-386
  • Tidskriftsartikel (refereegranskat)abstract
    • LifeTime aims to track, understand and target human cells during the onset and progression of complex diseases and their response to therapy at single-cell resolution. This mission will be implemented through the development and integration of single-cell multi-omics and imaging, artificial intelligence and patient-derived experimental disease models during progression from health to disease. Analysis of such large molecular and clinical datasets will discover molecular mechanisms, create predictive computational models of disease progression, and reveal new drug targets and therapies. Timely detection and interception of disease embedded in an ethical and patient-centered vision will be achieved through interactions across academia, hospitals, patient-associations, health data management systems and industry. Applying this strategy to key medical challenges in cancer, neurological, infectious, chronic inflammatory and cardiovascular diseases at the single-cell level will usher in cell-based interceptive medicine in Europe over the next decade.
  •  
5.
  • Wang, J., et al. (författare)
  • Genome-wide association analysis identifies variation in vitamin D receptor and other host factors influencing the gut microbiota
  • 2016
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 48:11, s. 1396-1406
  • Tidskriftsartikel (refereegranskat)abstract
    • Human gut microbiota is an important determinant for health and disease, and recent studies emphasize the numerous factors shaping its diversity. Here we performed a genome-wide association study (GWAS) of the gut microbiota using two cohorts from northern Germany totaling 1,812 individuals. Comprehensively controlling for diet and non-genetic parameters, we identify genome-wide significant associations for overall microbial variation and individual taxa at multiple genetic loci, including the VDR gene (encoding vitamin D receptor). We observe significant shifts in the microbiota of Vdr(-/-) mice relative to control mice and correlations between the microbiota and serum measurements of selected bile and fatty acids in humans, including known ligands and downstream metabolites of VDR. Genome-wide significant (P < 5 x 10(-8)) associations at multiple additional loci identify other important points of host-microbe intersection, notably several disease susceptibility genes and sterol metabolism pathway components. Non-genetic and genetic factors each account for approximately 10% of the variation in gut microbiota, whereby individual effects are relatively small.
  •  
6.
  • Aarestrup, FM, et al. (författare)
  • Towards a European health research and innovation cloud (HRIC)
  • 2020
  • Ingår i: Genome medicine. - : Springer Science and Business Media LLC. - 1756-994X. ; 12:1, s. 18-
  • Tidskriftsartikel (refereegranskat)abstract
    • The European Union (EU) initiative on the Digital Transformation of Health and Care (Digicare) aims to provide the conditions necessary for building a secure, flexible, and decentralized digital health infrastructure. Creating a European Health Research and Innovation Cloud (HRIC) within this environment should enable data sharing and analysis for health research across the EU, in compliance with data protection legislation while preserving the full trust of the participants. Such a HRIC should learn from and build on existing data infrastructures, integrate best practices, and focus on the concrete needs of the community in terms of technologies, governance, management, regulation, and ethics requirements. Here, we describe the vision and expected benefits of digital data sharing in health research activities and present a roadmap that fosters the opportunities while answering the challenges of implementing a HRIC. For this, we put forward five specific recommendations and action points to ensure that a European HRIC: i) is built on established standards and guidelines, providing cloud technologies through an open and decentralized infrastructure; ii) is developed and certified to the highest standards of interoperability and data security that can be trusted by all stakeholders; iii) is supported by a robust ethical and legal framework that is compliant with the EU General Data Protection Regulation (GDPR); iv) establishes a proper environment for the training of new generations of data and medical scientists; and v) stimulates research and innovation in transnational collaborations through public and private initiatives and partnerships funded by the EU through Horizon 2020 and Horizon Europe.
  •  
7.
  •  
8.
  • Pan, W. H., et al. (författare)
  • Exposure to the gut microbiota drives distinct methylome and transcriptome changes in intestinal epithelial cells during postnatal development
  • 2018
  • Ingår i: Genome Medicine. - : Springer Science and Business Media LLC. - 1756-994X. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The interplay of epigenetic processes and the intestinal microbiota may play an important role in intestinal development and homeostasis. Previous studies have established that the microbiota regulates a large proportion of the intestinal epithelial transcriptome in the adult host, but microbial effects on DNA methylation and gene expression during early postnatal development are still poorly understood. Here, we sought to investigate the microbial effects on DNA methylation and the transcriptome of intestinal epithelial cells (IECs) during postnatal development. Methods: We collected IECs from the small intestine of each of five 1-, 4-and 12 to 16-week-old mice representing the infant, juvenile, and adult states, raised either in the presence or absence of a microbiota. The DNA methylation profile was determined using reduced representation bisulfite sequencing (RRBS) and the epithelial transcriptome by RNA sequencing using paired samples from each individual mouse to analyze the link between microbiota, gene expression, and DNA methylation. Results: We found that microbiota-dependent and -independent processes act together to shape the postnatal development of the transcriptome and DNA methylation signatures of IECs. The bacterial effect on the transcriptome increased over time, whereas most microbiota-dependent DNA methylation differences were detected already early after birth. Microbiota-responsive transcripts could be attributed to stage-specific cellular programs during postnatal development and regulated gene sets involved primarily immune pathways and metabolic processes. Integrated analysis of the methylome and transcriptome data identified 126 genomic loci at which coupled differential DNA methylation and RNA transcription were associated with the presence of intestinal microbiota. We validated a subset of differentially expressed and methylated genes in an independent mouse cohort, indicating the existence of microbiota-dependent " functional" methylation sites which may impact on long-term gene expression signatures in IECs. Conclusions: Our study represents the first genome-wide analysis of microbiota-mediated effects on maturation of DNA methylation signatures and the transcriptional program of IECs after birth. It indicates that the gut microbiota dynamically modulates large portions of the epithelial transcriptome during postnatal development, but targets only a subset of microbially responsive genes through their DNA methylation status.
  •  
9.
  • Wichert, R., et al. (författare)
  • Mucus Detachment by Host Metalloprotease Meprin beta Requires Shedding of Its Inactive Pro-form, which Is Abrogated by the Pathogenic Protease RgpB
  • 2017
  • Ingår i: Cell Reports. - : Elsevier BV. - 2211-1247. ; 21:8, s. 2090-2103
  • Tidskriftsartikel (refereegranskat)abstract
    • The host metalloprotease meprin beta is required for mucin 2 (MUC2) cleavage, which drives intestinal mucus detachment and prevents bacterial over-growth. To gain access to the cleavage site in MUC2, meprin b must be proteolytically shed from epithelial cells. Hence, regulation of meprin b shedding and activation is important for physiological and pathophysiological conditions. Here, we demonstrate that meprin b activation and shedding are mutually exclusive events. Employing ex vivo small intestinal organoid and cell culture experiments, we found that ADAM-mediated shedding is restricted to the inactive pro-form of meprin beta and is completely inhibited upon its conversion to the active form at the cell surface. This strict regulation of meprin beta activity can be overridden by pathogens, as demonstrated for the bacterial protease Arg-gingipain (RgpB). This secreted cysteine protease potently converts membrane-bound meprin beta into its active form, impairing meprin beta shedding and its function as a mucus-detaching protease.
  •  
10.
  • Alexandrov, Ludmil B., et al. (författare)
  • Signatures of mutational processes in human cancer
  • 2013
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 500:7463, s. 415-421
  • Tidskriftsartikel (refereegranskat)abstract
    • All cancers are caused by somatic mutations; however, understanding of the biological processes generating these mutations is limited. The catalogue of somatic mutations from a cancer genome bears the signatures of the mutational processes that have been operative. Here we analysed 4,938,362 mutations from 7,042 cancers and extracted more than 20 distinct mutational signatures. Some are present in many cancer types, notably a signature attributed to the APOBEC family of cytidine deaminases, whereas others are confined to a single cancer class. Certain signatures are associated with age of the patient at cancer diagnosis, known mutagenic exposures or defects in DNA maintenance, but many are of cryptic origin. In addition to these genome-wide mutational signatures, hypermutation localized to small genomic regions, 'kataegis', is found in many cancer types. The results reveal the diversity of mutational processes underlying the development of cancer, with potential implications for understanding of cancer aetiology, prevention and therapy.
  •  
11.
  •  
12.
  • Fuchs, B., et al. (författare)
  • Regulation of Polyp-to-Jellyfish Transition in Aurelia aurita
  • 2014
  • Ingår i: Current Biology. - : Elsevier BV. - 0960-9822. ; 24:3, s. 263-273
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The life cycle of scyphozoan cnidarians alternates between sessile asexual polyps and pelagic medusa. Transition from one life form to another is triggered by environmental signals, but the molecular cascades involved in the drastic morphological and physiological changes remain unknown. Results: We show in the moon jelly Aurelia aurita that the molecular machinery controlling transition of the sessile polyp into a free-swimming jellyfish consists of two parts. One is conserved and relies on retinoic acid signaling. The second, novel part is based on secreted proteins that are strongly upregulated prior to metamorphosis in response to the seasonal temperature changes. One of these proteins functions as a temperature-sensitive "timer" and encodes the precursor of the strobilation hormone of Aurelia. Conclusions: Our findings uncover the molecule framework controlling the polyp-to-jellyfish transition in a basal metazoan and provide insights into the evolution of complex life cycles in the animal kingdom.
  •  
13.
  • Hinrichsen, F., et al. (författare)
  • Microbial regulation of hexokinase 2 links mitochondrial metabolism and cell death in colitis
  • 2021
  • Ingår i: Cell Metabolism. - : Elsevier BV. - 1550-4131. ; 33:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Hexokinases (HK) catalyze the first step of glycolysis limiting its pace. HK2 is highly expressed in gut epithelium, contributes to immune responses, and is upregulated during inflammation. We examined the microbial regulation of HK2 and its impact on inflammation using mice lacking HK2 in intestinal epithelial cells (Hk2(Delta IEC)). Hk2(Delta IEC) mice were less susceptible to acute colitis. Analyzing the epithelial transcriptome from Hk2(Delta IEC) mice during colitis and using HK2-deficient intestinal organoids and Caco-2 cells revealed reduced mitochondrial respiration and epithelial cell death in the absence of HK2. The microbiota strongly regulated HK2 expression and activity. The microbially derived short-chain fatty acid (SCFA) butyrate repressed HK2 expression via histone deacetylase 8 (HDAC8) and reduced mitochondrial respiration in wild-type but not in HK2-deficient Caco-2 cells. Butyrate supplementation protected wild-type but not Hk2(Delta IEC) mice from colitis. Our findings define a mechanism how butyrate promotes intestinal homeostasis and suggest targeted HK2-inhibition as therapeutic avenue for inflammation.
  •  
14.
  •  
15.
  •  
16.
  •  
17.
  • Wilms, H., et al. (författare)
  • Suppression of Map Kinases Inhibits Microglial Activation and Attenuates Neuronal Cell Death Induced by Alpha-Synuclein Protofibrils
  • 2009
  • Ingår i: International Journal of Immunopathology and Pharmacology. - 0394-6320. ; 22:4, s. 897-909
  • Tidskriftsartikel (refereegranskat)abstract
    • alpha-Synuclein (alpha-Syn) accounts, as a major component of Lewy bodies (LB), for the filamentous deposits in many cases of neurodegenerative diseases. Yet, little is known about the molecular mechanisms of neuronal loss in these diseases. The correlation between alpha-Syn oligomerization/aggregation and pathologies raises the key question of which molecular form of alpha-Syn (i.e. monomeric alpha-Syn, protofibrils or mature fibrils) represents the damage-inducing culprit in the scenario of synucleinopathies. We show that human alpha-Syn protofibrils (PFs) are potent activators of parallel proinflammatory signalling pathways (p38 and ERK1/2 MAP kinases and NF-kappa B) in microglial cells in vitro. Furthermore, stereotactic injection of alpha-Syn PFs into the substantia nigra of adult rats leads to a profound activation of microglia and adjacent neuronal cell loss, which can be attenuated by the MAP kinase inhibitor semapimod. We propose that the neurodegenerative process of alpha-synucleinopathies involves microglial activation through alpha-Syn released or extruded from cells with pathogenic alpha-Syn metabolism. Compounds that inhibit the MAPK/NF-kappa B pathways might be a promising pharmacological strategy for the treatment of the inflammatory component of synucleinopathies including PD.
  •  
18.
  • Bülck, Cynthia, et al. (författare)
  • Proteolytic processing of galectin-3 by meprin metalloproteases is crucial for host-microbiome homeostasis
  • 2023
  • Ingår i: Science advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 9:13
  • Tidskriftsartikel (refereegranskat)abstract
    • The metalloproteases meprin α and meprin β are highly expressed in the healthy gut but significantly decreased in inflammatory bowel disease, implicating a protective role in mucosal homeostasis. In the colon, meprin α and meprin β form covalently linked heterodimers tethering meprin α to the plasma membrane, therefore presenting dual proteolytic activity in a unique enzyme complex. To unravel its function, we applied N-terminomics and identified galectin-3 as the major intestinal substrate for meprin α/β heterodimers. Galectin-3-deficient and meprin α/β double knockout mice show similar alterations in their microbiome in comparison to wild-type mice. We further demonstrate that meprin α/β heterodimers differentially process galectin-3 upon bacterial infection, in germ-free, conventionally housed (specific pathogen-free), or wildling mice, which in turn regulates the bacterial agglutination properties of galectin-3. Thus, the constitutive cleavage of galectin-3 by meprin α/β heterodimers may play a key role in colon host-microbiome homeostasis.
  •  
19.
  • Ellinghaus, David, et al. (författare)
  • Association between variants of PRDM1 and NDP52 and Crohn's disease, based on exome sequencing and functional studies
  • 2013
  • Ingår i: Gastroenterology. - : Elsevier BV. - 0016-5085 .- 1528-0012. ; 145:2, s. 339-347
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND & AIMS: Genome-wide association studies (GWAS) have identified 140 Crohn's disease (CD) susceptibility loci. For most loci, the variants that cause disease are not known and the genes affected by these variants have not been identified. We aimed to identify variants that cause CD through detailed sequencing, genetic association, expression, and functional studies.METHODS: We sequenced whole exomes of 42 unrelated subjects with CD and 5 healthy subjects (controls) and then filtered single nucleotide variants by incorporating association results from meta-analyses of CD GWAS and in silico mutation effect prediction algorithms. We then genotyped 9348 subjects with CD, 2868 subjects with ulcerative colitis, and 14,567 control subjects and associated variants analyzed in functional studies using materials from subjects and controls and in vitro model systems.RESULTS: We identified rare missense mutations in PR domain-containing 1 (PRDM1) and associated these with CD. These mutations increased proliferation of T cells and secretion of cytokines on activation and increased expression of the adhesion molecule L-selectin. A common CD risk allele, identified in GWAS, correlated with reduced expression of PRDM1 in ileal biopsy specimens and peripheral blood mononuclear cells (combined P = 1.6 x 10(-8)). We identified an association between CD and a common missense variant, Val248Ala, in nuclear domain 10 protein 52 (NDP52) (P = 4.83 x 10(-9)). We found that this variant impairs the regulatory functions of NDP52 to inhibit nuclear factor kappa B activation of genes that regulate inflammation and affect the stability of proteins in Toll-like receptor pathways.CONCLUSIONS: We have extended the results of GWAS and provide evidence that variants in PRDM1 and NDP52 determine susceptibility to CD. PRDM1 maps adjacent to a CD interval identified in GWAS and encodes a transcription factor expressed by T and B cells. NDP52 is an adaptor protein that functions in selective autophagy of intracellular bacteria and signaling molecules, supporting the role of autophagy in the pathogenesis of CD.
  •  
20.
  •  
21.
  • Fulde, M., et al. (författare)
  • Neonatal selection by Toll-like receptor 5 influences long-term gut microbiota composition
  • 2018
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 560:7719
  • Tidskriftsartikel (refereegranskat)abstract
    • Alterations in enteric microbiota are associated with several highly prevalent immune-mediated and metabolic diseases(1-3), and experiments involving faecal transplants have indicated that such alterations have a causal role in at least some such conditions(4-6). The postnatal period is particularly critical for the development of microbiota composition, host-microbe interactions and immune homeostasis(7-9). However, the underlying molecular mechanisms of this neonatal priming period have not been defined. Here we report the identification of a host-mediated regulatory circuit of bacterial colonization that acts solely during the early neonatal period but influences life-long microbiota composition. We demonstrate age-dependent expression of the flagellin receptor Toll-like receptor 5 (TLR5) in the gut epithelium of neonate mice. Using competitive colonization experiments, we demonstrate that epithelial TLR5-mediated REG3 gamma production is critical for the counter-selection of colonizing flagellated bacteria. Comparative microbiota transfer experiments in neonate and adult wild-type and Tlr5-deficient germ-free mice reveal that neonatal TLR5 expression strongly influences the composition of the microbiota throughout life. Thus, the beneficial microbiota in the adult host is shaped during early infancy. This might explain why environmental factors that disturb the establishment of the microbiota during early life can affect immune homeostasis and health in adulthood.
  •  
22.
  •  
23.
  •  
24.
  • Lappalainen, Tuuli, et al. (författare)
  • Transcriptome and genome sequencing uncovers functional variation in humans
  • 2013
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 501:7468, s. 506-511
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome sequencing projects are discovering millions of genetic variants in humans, and interpretation of their functional effects is essential for understanding the genetic basis of variation in human traits. Here we report sequencing and deep analysis of messenger RNA and microRNA from lymphoblastoid cell lines of 462 individuals from the 1000 Genomes Project-the first uniformly processed high-throughput RNA-sequencing data from multiple human populations with high-quality genome sequences. We discover extremely widespread genetic variation affecting the regulation of most genes, with transcript structure and expression level variation being equally common but genetically largely independent. Our characterization of causal regulatory variation sheds light on the cellular mechanisms of regulatory and loss-of-function variation, and allows us to infer putative causal variants for dozens of disease-associated loci. Altogether, this study provides a deep understanding of the cellular mechanisms of transcriptome variation and of the landscape of functional variants in the human genome.
  •  
25.
  • Weichart, D, et al. (författare)
  • Analysis of NOD2-mediated proteome response to muramyl dipeptide in HEK293 cells
  • 2006
  • Ingår i: Journal of Biological Chemistry. - 1083-351X. ; 281:4, s. 2380-2389
  • Tidskriftsartikel (refereegranskat)abstract
    • NOD2, a cytosolic receptor for the bacterial proteoglycan fragment muramyl dipeptide (MDP), plays an important role in the recognition of intracellular pathogens. Variants in the bacterial sensor domain of NOD2 are genetically associated with an increased risk for the development of Crohn disease, a human chronic inflammatory bowel disease. In the present study, global protein expression changes after MDP stimulation were analyzed by two-dimensional PAGE of total protein extracts of human cultured cells stably transfected with expression constructs encoding for wild type NOD2 (NOD2(WT)) or the disease-associated NOD2 L1007fsinsC (NOD2(SNP13)) variant. Differentially regulated proteins were identified by matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) peptide mass fingerprinting and MALDI MS/MS. The limited overlap in the responses of the NOD2-overexpressing cell lines to MDP included a down-regulation of heat shock 70-kDa protein 4. A complex pro-inflammatory program regulated by NOD2(WT) that encompasses a regulation of key genes involved in protein folding, DNA repair, cellular redox homeostasis, and metabolism was observed both under normal growth conditions and after stimulation with MDP. By using the comparison of NOD2(WT) and disease-associated NOD2(SNP13) variant, we have identified a proteomic signature pattern that may further our understanding of the influence of genetic variations in the NOD2 gene in the pathophysiology of chronic inflammatory bowel disease.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 25

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy