SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rubin Carl Johan) "

Sökning: WFRF:(Rubin Carl Johan)

  • Resultat 1-25 av 89
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dadras, Mahsa Shahidi, et al. (författare)
  • The polarity protein Par3 coordinates positively self-renewal and negatively invasiveness in glioblastoma
  • 2021
  • Ingår i: Cell Death and Disease. - : Springer Nature. - 2041-4889. ; 12:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Glioblastoma (GBM) is a brain malignancy characterized by invasiveness to the surrounding brain tissue and by stem-like cells, which propagate the tumor and may also regulate invasiveness. During brain development, polarity proteins, such as Par3, regulate asymmetric cell division of neuro-glial progenitors and neurite motility. We, therefore, studied the role of the Par3 protein (encoded by PARD3) in GBM. GBM patient transcriptomic data and patient-derived culture analysis indicated diverse levels of expression of PARD3 across and independent from subtypes. Multiplex immunolocalization in GBM tumors identified Par3 protein enrichment in SOX2-, CD133-, and NESTIN-positive (stem-like) cells. Analysis of GBM cultures of the three subtypes (proneural, classical, mesenchymal), revealed decreased gliomasphere forming capacity and enhanced invasiveness upon silencing Par3. GBM cultures with suppressed Par3 showed low expression of stemness (SOX2 and NESTIN) but higher expression of differentiation (GFAP) genes. Moreover, Par3 silencing reduced the expression of a set of genes encoding mitochondrial enzymes that generate ATP. Accordingly, silencing Par3 reduced ATP production and concomitantly increased reactive oxygen species. The latter was required for the enhanced migration observed upon silencing of Par3 as anti-oxidants blocked the enhanced migration. These findings support the notion that Par3 exerts homeostatic redox control, which could limit the tumor cell-derived pool of oxygen radicals, and thereby the tumorigenicity of GBM.
  •  
2.
  • Herrmann, Björn, et al. (författare)
  • Comparison of a duplex quantitative real-time PCR assay and the COBAS Amplicor CMV Monitor test for detection of cytomegalovirus
  • 2004
  • Ingår i: Journal of Clinical Microbiology. - 0095-1137 .- 1098-660X. ; 42:5, s. 1909-14
  • Tidskriftsartikel (refereegranskat)abstract
    • A duplex quantitative real-time PCR (qPCR) assay was designed to detect both the polymerase gene (pol) and the glycoprotein gene (gB) of cytomegalovirus (CMV). The detection limit of the qPCR was determined to be 1 to 3 copies/reaction and the linear measure interval was 10(3) to 10(8) copies/ml. The qPCR system was compared to the COBAS Amplicor CMV Monitor test (COBAS) by an analysis of 138 plasma samples. Both systems detected CMV in 71 cases and had negative results for 33 samples. In addition, 34 samples were positive by qPCR and negative by the COBAS assay, but in no case was the COBAS result positive and the qPCR result negative. Thus, qPCR detected 48% more positive cases than the COBAS method. For samples with > or = 10(5) copies/ml by qPCR, a saturation effect was seen in the COBAS assay and quantification required dilution. Copy numbers for pol and gB by qPCR generally agreed. However, the reproducibility of qPCR assays and the need for an international standard are discussed. Discrepant copy numbers for pol and gB by qPCR were found for samples from two patients, and sequence analysis revealed that the corresponding CMV strains were mismatched at four nucleotide positions compared with the gB fragment primer sequences. In conclusion, a duplex qPCR assay in a real-time format facilitates quantitative measurements and minimizes the risk of false-negative results.
  •  
3.
  • Nätt, Daniel, et al. (författare)
  • Heritable genome-wide variation of gene expression and promoter methylation between wild and domesticated chickens
  • 2012
  • Ingår i: BMC Genomics. - : BioMed Central. - 1471-2164. ; 13:59
  • Tidskriftsartikel (refereegranskat)abstract
    • Variations in gene expression, mediated by epigenetic mechanisms, may cause broad phenotypic effects in animals. However, it has been debated to what extent expression variation and epigenetic modifications, such as patterns of DNA methylation, are transferred across generations, and therefore it is uncertain what role epigenetic variation may play in adaptation. Here, we show that in Red Junglefowl, ancestor of domestic chickens, gene expression and methylation profiles in thalamus/hypothalamus differ substantially from that of a domesticated egg laying breed. Expression as well as methylation differences are largely maintained in the offspring, demonstrating reliable inheritance of epigenetic variation. Some of the inherited methylation differences are tissue-specific, and the differential methylation at specific loci are little changed after eight generations of intercrossing between Red Junglefowl and domesticated laying hens. There was an over-representation of differentially expressed and methylated genes in selective sweep regions associated with chicken domestication. Hence, our results show that epigenetic variation is inherited in chickens, and we suggest that selection of favourable epigenomes, either by selection of genotypes affecting epigenetic states, or by selection of methylation states which are inherited independently of sequence differences, may have been an important aspect of chicken domestication.
  •  
4.
  • Rubin, Carl-Johan, et al. (författare)
  • Differential gene expression in femoral bone from red junglefowl and domestic chicken, differing for bone phenotypic traits
  • 2007
  • Ingår i: BMC Genomics. - : Springer Science and Business Media LLC. - 1471-2164. ; 8, s. 208-
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Osteoporosis is frequently observed among aging hens from egg-producing strains (layers) of domestic chicken. White Leghorn (WL) has been intensively selected for egg production and it manifests striking phenotypic differences for a number of traits including several bone phenotypes in comparison with the wild ancestor of chicken, the red junglefowl (RJ). Previously, we have identified four Quantitative Trait Loci (QTL) affecting bone mineral density and bone strength in an intercross between RJ and WL. With the aim of further elucidating the genetic basis of bone traits in chicken, we have now utilized cDNA-microarray technology in order to compare global RNA-expression in femoral bone from adult RJ and WL (five of each sex and population). Results: When contrasting microarray data for all WL-individuals to that of all RJ-individuals we observed differential expression (False discovery rate adjusted p-values < 0.015) for 604 microarray probes. In corresponding male and female contrasts, differential expression was observed for 410 and 270 probes, respectively. Altogether, the three contrasts between WL and RJ revealed differential expression of 779 unique transcripts, 57 of which are located to previously identified QTL-regions for bone traits. Some differentially expressed genes have previously been attributed roles in bone metabolism and these were: WNT inhibitory factor I (WIFI), WD repeat-containing protein 5 (WDR5) and Syndecan 3 (SDC3). Among differentially expressed transcripts, those encoding structural ribosomal proteins were highly enriched and all 15 had lower expression in WL. Conclusion: We report the identification of 779 differentially expressed transcripts, several residing within QTL-regions for bone traits. Among differentially expressed transcripts, those encoding structural ribosomal proteins were highly enriched and all had lower expression levels in WL. In addition, transcripts encoding four translation initiation and translation elongation factor proteins also had lower expression levels in WL, possibly indicating perturbation of protein biosynthesis pathways between the two populations. Information derived from this study could be relevant to the bone research field and may also aid in further inference of genetic changes accompanying animal domestication.
  •  
5.
  •  
6.
  • Schubert, Mikkel, et al. (författare)
  • Prehistoric genomes reveal the genetic foundation and cost of horse domestication
  • 2014
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 111:52, s. E5661-E5669
  • Tidskriftsartikel (refereegranskat)abstract
    • The domestication of the horse similar to 5.5 kya and the emergence of mounted riding, chariotry, and cavalry dramatically transformed human civilization. However, the genetics underlying horse domestication are difficult to reconstruct, given the near extinction of wild horses. We therefore sequenced two ancient horse genomes from Taymyr, Russia (at 7.4- and 24.3-fold coverage), both predating the earliest archeological evidence of domestication. We compared these genomes with genomes of domesticated horses and the wild Przewalski's horse and found genetic structure within Eurasia in the Late Pleistocene, with the ancient population contributing significantly to the genetic variation of domesticated breeds. We furthermore identified a conservative set of 125 potential domestication targets using four complementary scans for genes that have undergone positive selection. One group of genes is involved in muscular and limb development, articular junctions, and the cardiac system, and may represent physiological adaptations to human utilization. A second group consists of genes with cognitive functions, including social behavior, learning capabilities, fear response, and agreeableness, which may have been key for taming horses. We also found that domestication is associated with inbreeding and an excess of deleterious mutations. This genetic load is in line with the "cost of domestication" hypothesis also reported for rice, tomatoes, and dogs, and it is generally attributed to the relaxation of purifying selection resulting from the strong demographic bottlenecks accompanying domestication. Our work demonstrates the power of ancient genomes to reconstruct the complex genetic changes that transformed wild animals into their domesticated forms, and the population context in which this process took place.
  •  
7.
  • Andersson, Lisa, et al. (författare)
  • Mutations in DMRT3 affect locomotion in horses and spinal circuit function in mice
  • 2012
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 488:7413, s. 642-646
  • Tidskriftsartikel (refereegranskat)abstract
    • Locomotion in mammals relies on a central pattern-generating circuitry of spinal interneurons established during development that coordinates limb movement(1). These networks produce left-right alternation of limbs as well as coordinated activation of flexor and extensor muscles(2). Here we show that a premature stop codon in the DMRT3 gene has a major effect on the pattern of locomotion in horses. The mutation is permissive for the ability to perform alternate gaits and has a favourable effect on harness racing performance. Examination of wild-type and Dmrt3-null mice demonstrates that Dmrt3 is expressed in the dI6 subdivision of spinal cord neurons, takes part in neuronal specification within this subdivision, and is critical for the normal development of a coordinated locomotor network controlling limb movements. Our discovery positions Dmrt3 in a pivotal role for configuring the spinal circuits controlling stride in vertebrates. The DMRT3 mutation has had a major effect on the diversification of the domestic horse, as the altered gait characteristics of a number of breeds apparently require this mutation.
  •  
8.
  • Andersson, Leif, et al. (författare)
  • ZBED6 : the birth of a new transcription factor in the common ancestor of placental mammals
  • 2010
  • Ingår i: Transcription. - : Informa UK Limited. - 2154-1272 .- 2154-1264. ; 1:3, s. 144-148
  • Tidskriftsartikel (refereegranskat)abstract
    • A DNA transposon integrated into -the genome of a primitive mammal some 200 million years ago and, millions of years later, it evolved an essential function in the common ancestor of all placental mammals. This protein, now named ZBED6, was recently discovered because a mutation disrupting one of its binding sites, in an intron of the IGF2 gene, makes pigs grow more muscle. These findings have revealed a new mechanism for regulating muscle growth as well as a novel transcription factor that appears to be of major importance for transcriptional regulation in placental mammals.
  •  
9.
  • Andrade, Pedro, et al. (författare)
  • Regulatory changes in pterin and carotenoid genes underlie balanced color polymorphisms in the wall lizard
  • 2019
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 116:12, s. 5633-5642
  • Tidskriftsartikel (refereegranskat)abstract
    • Reptiles use pterin and carotenoid pigments to produce yellow, orange, and red colors. These conspicuous colors serve a diversity of signaling functions, but their molecular basis remains unresolved. Here, we show that the genomes of sympatric color morphs of the European common wall lizard (Podarcis muralis), which differ in orange and yellow pigmentation and in their ecology and behavior, are virtually undifferentiated. Genetic differences are restricted to two small regulatory regions near genes associated with pterin [sepiapterin reductase (SPR)] and carotenoid [beta-carotene oxygenase 2 (BCO2)] metabolism, demonstrating that a core gene in the housekeeping pathway of pterin biosynthesis has been coopted for bright coloration in reptiles and indicating that these loci exert pleiotropic effects on other aspects of physiology. Pigmentation differences are explained by extremely divergent alleles, and haplotype analysis revealed abundant transspecific allele sharing with other lacertids exhibiting color polymorphisms. The evolution of these conspicuous color ornaments is the result of ancient genetic variation and cross-species hybridization.
  •  
10.
  • Ayllon, Fernando, et al. (författare)
  • The vgll3 Locus Controls Age at Maturity in Wild and Domesticated Atlantic Salmon (Salmo salar L.) Males
  • 2015
  • Ingår i: PLOS Genetics. - : Public Library of Science (PLoS). - 1553-7390 .- 1553-7404. ; 11:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Wild and domesticated Atlantic salmon males display large variation for sea age at sexual maturation, which varies between 1-5 years. Previous studies have uncovered a genetic predisposition for variation of age at maturity with moderate heritability, thus suggesting a polygenic or complex nature of this trait. The aim of this study was to identify associated genetic loci, genes and ultimately specific sequence variants conferring sea age at maturity in salmon. We performed a genome wide association study (GWAS) using a pool sequencing approach (20 individuals per river and phenotype) of male salmon returning to rivers as sexually mature either after one sea winter (2009) or three sea winters (2011) in six rivers in Norway. The study revealed one major selective sweep, which covered 76 significant SNPs in which 74 were found in a 370 kb region of chromosome 25. Genotyping other smolt year classes of wild and domesticated salmon confirmed this finding. Genotyping domesticated fish narrowed the haplotype region to four SNPs covering 2386 bp, containing the vgll3 gene, including two missense mutations explaining 33-36% phenotypic variation. A single locus was found to have a highly significant role in governing sea age at maturation in this species. The SNPs identified may be both used as markers to guide breeding for late maturity in salmon aquaculture and in monitoring programs of wild salmon. Interestingly, a SNP in proximity of the VGLL3 gene in humans (Homo sapiens), has previously been linked to age at puberty suggesting a conserved mechanism for timing of puberty in vertebrates.
  •  
11.
  • Bi, Huijuan, et al. (författare)
  • A frame-shift mutation in COMTD1 is associated with impaired pheomelanin pigmentation in chicken
  • 2023
  • Ingår i: PLOS Genetics. - : Public Library of Science (PLoS). - 1553-7390 .- 1553-7404. ; 19:4
  • Tidskriftsartikel (refereegranskat)abstract
    • The biochemical pathway regulating the synthesis of yellow/red pheomelanin is less well characterized than the synthesis of black/brown eumelanin. Inhibitor of gold (IG phenotype) is a plumage colour variant in chicken that provides an opportunity to further explore this pathway since the recessive allele (IG) at this locus is associated with a defect in the production of pheomelanin. IG/IG homozygotes display a marked dilution of red pheomelanin pigmentation, whilst black pigmentation (eumelanin) is only slightly affected. Here we show that a 2-base pair insertion (frame-shift mutation) in the 5th exon of the Catechol-O-methyltransferase containing domain 1 gene (COMTD1), expected to cause a complete or partial loss-of-function of the COMTD1 enzyme, shows complete concordance with the IG phenotype within and across breeds. We show that the COMTD1 protein is localized to mitochondria in pigment cells. Knockout of Comtd1 in a mouse melanocytic cell line results in a reduction in pheomelanin metabolites and significant alterations in metabolites of glutamate/glutathione, riboflavin, and the tricarboxylic acid cycle. Furthermore, COMTD1 overexpression enhanced cellular proliferation following chemical-induced transfection, a potential inducer of oxidative stress. These observations suggest that COMTD1 plays a protective role for melanocytes against oxidative stress and that this supports their ability to produce pheomelanin.
  •  
12.
  • Bianchi, Matteo, et al. (författare)
  • Whole-genome genotyping and resequencing reveal the association of a deletion in the complex interferon alpha gene cluster with hypothyroidism in dogs
  • 2020
  • Ingår i: BMC Genomics. - : BMC. - 1471-2164. ; 21
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Hypothyroidism is a common complex endocrinopathy that typically has an autoimmune etiology, and it affects both humans and dogs. Genetic and environmental factors are both known to play important roles in the disease development. In this study, we sought to identify the genetic risk factors potentially involved in the susceptibility to the disease in the high-risk Giant Schnauzer dog breed.Results: By employing genome-wide association followed by fine-mapping (top variant p-value=5.7x10(-6)), integrated with whole-genome resequencing and copy number variation analysis, we detected a similar to 8.9 kbp deletion strongly associated (p-value=0.0001) with protection against development of hypothyroidism. The deletion is located between two predicted Interferon alpha (IFNA) genes and it may eliminate functional elements potentially involved in the transcriptional regulation of these genes. Remarkably, type I IFNs have been extensively associated to human autoimmune hypothyroidism and general autoimmunity. Nonetheless, the extreme genomic complexity of the associated region on CFA11 warrants further long-read sequencing and annotation efforts in order to ascribe functions to the identified deletion and to characterize the canine IFNA gene cluster in more detail.Conclusions: Our results expand the current knowledge on genetic determinants of canine hypothyroidism by revealing a significant link with the human counterpart disease, potentially translating into better diagnostic tools across species, and may contribute to improved canine breeding strategies.
  •  
13.
  • Brusini, Irene, et al. (författare)
  • Changes in brain architecture are consistent with altered fear processing in domestic rabbits
  • 2018
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 115:28, s. 7380-7385
  • Tidskriftsartikel (refereegranskat)abstract
    • The most characteristic feature of domestic animals is their change in behavior associated with selection for tameness. Here we show, using high-resolution brain magnetic resonance imaging in wild and domestic rabbits, that domestication reduced amygdala volume and enlarged medial prefrontal cortex volume, supporting that areas driving fear have lost volume while areas modulating negative affect have gained volume during domestication. In contrast to the localized gray matter alterations, white matter anisotropy was reduced in the corona radiata, corpus callosum, and the subcortical white matter. This suggests a compromised white matter structural integrity in projection and association fibers affecting both afferent and efferent neural flow, consistent with reduced neural processing. We propose that compared with their wild ancestors, domestic rabbits are less fearful and have an attenuated flight response because of these changes in brain architecture.
  •  
14.
  • Carneiro, Miguel, et al. (författare)
  • Candidate genes underlying heritable differences in reproductive seasonality between wild and domestic rabbits
  • 2015
  • Ingår i: Animal Genetics. - : Wiley. - 0268-9146 .- 1365-2052. ; 46:4, s. 418-425
  • Tidskriftsartikel (refereegranskat)abstract
    • Reproductive seasonality is a trait that often differs between domestic animals and their wild ancestors, with domestic animals showing prolonged or even continuous breeding seasons. However, the genetic basis underlying this trait is still poorly understood for most species, and because environmental factors and resource availability are known to play an important role in determining breeding seasons, it is also not clear in most cases to what extent this phenotypic shift is determined by the more lenient captive conditions or by genetic factors. Here, using animals resulting from an initial cross between wild and domestic rabbits followed by two consecutive backcrosses (BC1 and BC2) to wild rabbits, we evaluated the yearly distribution of births for the different generations. Similar to domestic rabbits, F1 animals could be bred all year round but BC1 and BC2 animals showed a progressive and significant reduction in the span of the breeding season, providing experimental evidence that reduced seasonal breeding in domestic rabbits has a clear genetic component and is not a simple by-product of rearing conditions. We then took advantage of a recently published genome-wide scan of selection in the domesticated lineage and searched for candidate genes potentially associated with this phenotypic shift. Candidate genes located within regions targeted by selection include well-known examples of genes controlling clock functions (CRY1 and NR3C1) and reproduction (PRLR).
  •  
15.
  • Carneiro, Miguel, et al. (författare)
  • Dwarfism and Altered Craniofacial Development in Rabbits Is Caused by a 12.1 kb Deletion at the HMGA2 Locus
  • 2017
  • Ingår i: Genetics. - : GENETICS SOCIETY AMERICA. - 0016-6731 .- 1943-2631. ; 205:2, s. 955-965
  • Tidskriftsartikel (refereegranskat)abstract
    • The dwarf phenotype characterizes the smallest of rabbit breeds and is governed largely by the effects of a single dwarfing allele with an incompletely dominant effect on growth. Dwarf rabbits typically weigh under 1 kg and have altered craniofacial morphology. The dwarf allele is recessive lethal and dwarf homozygotes die within a few days of birth. The dwarf phenotype is expressed in heterozygous individuals and rabbits from dwarf breeds homozygous for the wild-type allele are normal, although smaller when compared to other breeds. Here, we show that the dwarf allele constitutes a similar to 12.1 kb deletion overlapping the promoter region and first three exons of the HMGA2 gene leading to inactivation of this gene. HMGA2 has been frequently associated with variation in body size across species. Homozygotes for null alleles are viable in mice but not in rabbits and probably not in humans. RNA-sequencing analysis of rabbit embryos showed that very few genes (4-29 genes) were differentially expressed among the three HMGA2/dwarf genotypes, suggesting that dwarfism and inviability in rabbits are caused by modest changes in gene expression. Our results show that HMGA2 is critical for normal expression of IGF2BP2, which encodes an RNA-binding protein. Finally, we report a catalog of regions of elevated genetic differentiation between dwarf and normal-size rabbits, including LCORL-NCAPG, STC2, HOXD cluster, and IGF2BP2. Levels and patterns of genetic diversity at the LCORL-NCAPG locus further suggest that small size in dwarf breeds was enhanced by crosses with wild rabbits. Overall, our results imply that small size in dwarf rabbits results from a large effect, loss-of-function (LOF) mutation in HMGA2 combined with polygenic selection.
  •  
16.
  • Carneiro, Miguel, et al. (författare)
  • Rabbit genome analysis reveals a polygenic basis for phenotypic change during domestication
  • 2014
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 345:6200, s. 1074-1079
  • Tidskriftsartikel (refereegranskat)abstract
    • The genetic changes underlying the initial steps of animal domestication are still poorly understood. We generated a high-quality reference genome for the rabbit and compared it to resequencing data from populations of wild and domestic rabbits. We identified more than 100 selective sweeps specific to domestic rabbits but only a relatively small number of fixed (or nearly fixed) single-nucleotide polymorphisms (SNPs) for derived alleles. SNPs with marked allele frequency differences between wild and domestic rabbits were enriched for conserved noncoding sites. Enrichment analyses suggest that genes affecting brain and neuronal development have often been targeted during domestication. We propose that because of a truly complex genetic background, tame behavior in rabbits and other domestic animals evolved by shifts in allele frequencies at many loci, rather than by critical changes at only a few domestication loci.
  •  
17.
  • Dorshorst, Ben, et al. (författare)
  • A Complex Genomic Rearrangement Involving the Endothelin 3 Locus Causes Dermal Hyperpigmentation in the Chicken
  • 2011
  • Ingår i: PLoS Genetics. - : Public Library of Science (PLoS). - 1553-7390 .- 1553-7404. ; 7:12, s. e1002412-
  • Tidskriftsartikel (refereegranskat)abstract
    • Dermal hyperpigmentation or Fibromelanosis (FM) is one of the few examples of skin pigmentation phenotypes in the chicken, where most other pigmentation variants influence feather color and patterning. The Silkie chicken is the most widespread and well-studied breed displaying this phenotype. The presence of the dominant FM allele results in extensive pigmentation of the dermal layer of skin and the majority of internal connective tissue. Here we identify the causal mutation of FM as an inverted duplication and junction of two genomic regions separated by more than 400 kb in wild-type individuals. One of these duplicated regions contains endothelin 3 (EDN3), a gene with a known role in promoting melanoblast proliferation. We show that EDN3 expression is increased in the developing Silkie embryo during the time in which melanoblasts are migrating, and elevated levels of expression are maintained in the adult skin tissue. We have examined four different chicken breeds from both Asia and Europe displaying dermal hyperpigmentation and conclude that the same structural variant underlies this phenotype in all chicken breeds. This complex genomic rearrangement causing a specific monogenic trait in the chicken illustrates how novel mutations with major phenotypic effects have been reused during breed formation in domestic animals.
  •  
18.
  • Dorshorst, Ben, et al. (författare)
  • A Genomic Duplication is Associated with Ectopic Eomesodermin Expression in the Embryonic Chicken Comb and Two Duplex-comb Phenotypes
  • 2015
  • Ingår i: PLOS Genetics. - : Public Library of Science (PLoS). - 1553-7390 .- 1553-7404. ; 11:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Duplex-comb (D) is one of three major loci affecting comb morphology in the domestic chicken. Here we show that the two Duplex-comb alleles, V-shaped (D*V) and Buttercup (D*C), are both associated with a 20 Kb tandem duplication containing several conserved putative regulatory elements located 200 Kb upstream of the eomesodermin gene (EOMES). EOMES is a T-box transcription factor that is involved in mesoderm specification during gastrulation. In D*V and D*C chicken embryos we find that EOMES is ectopically expressed in the ectoderm of the comb-developing region as compared to wild-type embryos. The confinement of the ectopic expression of EOMES to the ectoderm is in stark contrast to the causal mechanisms underlying the two other major comb loci in the chicken (Rose-comb and Pea-comb) in which the transcription factors MNR2 and SOX5 are ectopically expressed strictly in the mesenchyme. Interestingly, the causal mutations of all three major comb loci in the chicken are now known to be composed of large-scale structural genomic variants that each result in ectopic expression of transcription factors. The Duplex-comb locus also illustrates the evolution of alleles in domestic animals, which means that alleles evolve by the accumulation of two or more consecutive mutations affecting the phenotype. We do not yet know whether the V-shaped or Buttercup allele correspond to the second mutation that occurred on the haplotype of the original duplication event.
  •  
19.
  • Dorshorst, Ben, et al. (författare)
  • Dominant Red Coat Color in Holstein Cattle Is Associated with a Missense Mutation in the Coatomer Protein Complex, Subunit Alpha (COPA) Gene
  • 2015
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 10:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Coat color in Holstein dairy cattle is primarily controlled by the melanocortin 1 receptor (MC1R) gene, a central determinant of black (eumelanin) vs. red/brown pheomelanin synthesis across animal species. The major MC1R alleles in Holsteins are Dominant Black (MC1R(D)) and Recessive Red (MC1R(e)). A novel form of dominant red coat color was first observed in an animal born in 1980. The mutation underlying this phenotype was named Dominant Red and is epistatic to the constitutively activated MC1R(D). Here we show that a missense mutation in the coatomer protein complex, subunit alpha (COPA), a gene with previously no known role in pigmentation synthesis, is completely associated with Dominant Red in Holstein dairy cattle. The mutation results in an arginine to cysteine substitution at an amino acid residue completely conserved across eukaryotes. Despite this high level of conservation we show that both heterozygotes and homozygotes are healthy and viable. Analysis of hair pigment composition shows that the Dominant Red phenotype is similar to the MC1R Recessive Red phenotype, although less effective at reducing eumelanin synthesis. RNA-seq data similarly show that Dominant Red animals achieve predominantly pheomelanin synthesis by down regulating genes normally required for eumelanin synthesis. COPA is a component of the coat protein I seven subunit complex that is involved with retrograde and cis-Golgi intracellular coated vesicle transport of both protein and RNA cargo. This suggests that Dominant Red may be caused by aberrant MC1R protein or mRNA trafficking within the highly compartmentalized melanocyte, mimicking the effect of the Recessive Red loss of function MC1R allele.
  •  
20.
  • Edvardsen, Rolf Brudvik, et al. (författare)
  • Heterochiasmy and the establishment of gsdf as a novel sex determining gene in Atlantic halibut
  • 2022
  • Ingår i: PLOS Genetics. - : PUBLIC LIBRARY SCIENCE. - 1553-7390 .- 1553-7404. ; 18:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Atlantic Halibut (Hippoglossus hippoglossus) has a X/Y genetic sex determination system, but the sex determining factor is not known. We produced a high-quality genome assembly from a male and identified parts of chromosome 13 as the Y chromosome due to sequence divergence between sexes and segregation of sex genotypes in pedigrees. Linkage analysis revealed that all chromosomes exhibit heterochiasmy, i.e. male-only and female-only meiotic recombination regions (MRR/FRR). We show that FRR/MRR intervals differ in nucleotide diversity and repeat class content and that this is true also for other Pleuronectidae species. We further show that remnants of a Gypsy-like transposable element insertion on chr13 promotes early male specific expression of gonadal somatic cell derived factor (gsdf). Less than 4.5 MYA, this male-determining element evolved on an autosomal FRR segment featuring pre-existing male meiotic recombination barriers, thereby creating a Y chromosome. Our findings indicate that heterochiasmy may facilitate the evolution of genetic sex determination systems relying on linkage of sexually antagonistic loci to a sex-determining factor. Author summaryEven closely related fish species can have different sex chromosomes, but this turn-over of sex determination systems is poorly understood. Here, we used large-scale genome sequencing to determine the DNA sequence of the Atlantic halibut chromosomes and compared sequencing data from males and females to identify the sex chromosomes. We show that males have much higher gene activity of the gene gonadal somatic cell derived factor (gsdf), which is located on the sex chromosomes and has a role in testicular development. The genome contains many mobile DNA sequences, transposable elements (TEs), one placed in front of gsdf, enhancing its activity. This made gsdf the sex determining factor, thereby creating a new Y-chromosome. We further describe how all Atlantic halibut chromosomes behave similar to sex chromosomes in that most regions only recombine in one sex. This phenomenon may contribute to the rapid turn-over of genetic sex determination systems in fish. Our results highlight the molecular events creating a new Y-chromosome and show that the new Atlantic halibut Y was formed less than 4.5 million years ago. Future studies in Atlantic halibut and closely related species can shed light on mechanisms contributing to sex chromosome evolution in fish.
  •  
21.
  • Enbody, Erik D., et al. (författare)
  • A multispecies BCO2 beak color polymorphism in the Darwin's finch radiation
  • 2021
  • Ingår i: Current Biology. - : Elsevier. - 0960-9822 .- 1879-0445. ; 31:24, s. 5597-5604.e7
  • Tidskriftsartikel (refereegranskat)abstract
    • Carotenoid-based polymorphisms are widespread in populations of birds, fish, and reptiles,(1) but generally little is known about the factors affecting their maintenance in populations.(2) We report a combined field and molecular-genetic investigation of a nestling beak color polymorphism in Darwin's finches. Beaks are pink or yellow, and yellow is recessive.(3) Here we show that the polymorphism arose in the Galapagos half a million years ago through a mutation associated with regulatory change in the BCO2 gene and is shared by 14 descendant species. The polymorphism is probably a balanced polymorphism, maintained by ecolog- ical selection associated with survival and diet. In cactus finches, the frequency of the yellow genotype is correlated with cactus fruit abundance and greater hatching success and may be altered by introgressive hybridization. Polymorphisms that are hidden as adults, as here, may be far more common than is currently recognized, and contribute to diversification in ways that are yet to be discovered.
  •  
22.
  • Enbody, Erik D., et al. (författare)
  • Community-wide genome sequencing reveals 30 years of Darwin's finch evolution
  • 2023
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 381:6665, s. 1427-
  • Tidskriftsartikel (refereegranskat)abstract
    • A fundamental goal in evolutionary biology is to understand the genetic architecture of adaptive traits. Using whole-genome data of 3955 of Darwin's finches on the Galapagos Island of Daphne Major, we identified six loci of large effect that explain 45% of the variation in the highly heritable beak size of Geospiza fortis, a key ecological trait. The major locus is a supergene comprising four genes. Abrupt changes in allele frequencies at the loci accompanied a strong change in beak size caused by natural selection during a drought. A gradual change in Geospiza scandens occurred across 30 years as a result of introgressive hybridization with G. fortis. This study shows how a few loci with large effect on a fitness-related trait contribute to the genetic potential for rapid adaptive radiation.
  •  
23.
  •  
24.
  • Felkel, S., et al. (författare)
  • Asian horses deepen the MSY phylogeny
  • 2018
  • Ingår i: Animal Genetics. - : WILEY. - 0268-9146 .- 1365-2052. ; 49:1, s. 90-93
  • Tidskriftsartikel (refereegranskat)abstract
    • Humans have shaped the population history of the horse ever since domestication about 5500years ago. Comparative analyses of the Y chromosome can illuminate the paternal origin of modern horse breeds. This may also reveal different breeding strategies that led to the formation of extant breeds. Recently, a horse Y-chromosomal phylogeny of modern horses based on 1.46Mb of the male-specific Y (MSY) was generated. We extended this dataset with 52 samples from five European, two American and seven Asian breeds. As in the previous study, almost all modern European horses fall into a crown group, connected via a few autochthonous Northern European lineages to the outgroup, the Przewalski's Horse. In total, we now distinguish 42 MSY haplotypes determined by 158 variants within domestic horses. Asian horses show much higher diversity than previously found in European breeds. The Asian breeds also introduce a deep split to the phylogeny, preliminarily dated to 5527 +/- 872years. We conclude that the deep splitting Asian Y haplotypes are remnants of a far more diverse ancient horse population, whose haplotypes were lost in other lineages.
  •  
25.
  • Felkel, Sabine, et al. (författare)
  • The horse Y chromosome as an informative marker for tracing sire lines
  • 2019
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Analysis of the Y chromosome is the best-established way to reconstruct paternal family history in humans. Here, we applied fine-scaled Y-chromosomal haplotyping in horses with biallelic markers and demonstrate the potential of our approach to address the ancestry of sire lines. We de novo assembled a draft reference of the male-specific region of the Y chromosome from Illumina short reads and then screened 5.8 million basepairs for variants in 130 specimens from intensively selected and rural breeds and nine Przewalski's horses. Among domestic horses we confirmed the predominance of a young'crown haplogroup' in Central European and North American breeds. Within the crown, we distinguished 58 haplotypes based on 211 variants, forming three major haplogroups. In addition to two previously characterised haplogroups, one observed in Arabian/Coldblooded and the other in Turkoman/Thoroughbred horses, we uncovered a third haplogroup containing Iberian lines and a North African Barb Horse. In a genealogical showcase, we distinguished the patrilines of the three English Thoroughbred founder stallions and resolved a historic controversy over the parentage of the horse 'Galopin', born in 1872. We observed two nearly instantaneous radiations in the history of Central and Northern European Y-chromosomal lineages that both occurred after domestication 5,500 years ago.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 89
Typ av publikation
tidskriftsartikel (76)
annan publikation (6)
doktorsavhandling (5)
konferensbidrag (1)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (76)
övrigt vetenskapligt/konstnärligt (13)
Författare/redaktör
Rubin, Carl-Johan (85)
Andersson, Leif (52)
Ljunggren, Östen (11)
Rafati, Nima (10)
Lindahl, Katarina (10)
Carneiro, Miguel (8)
visa fler...
Lindgren, Gabriella (7)
Pettersson, Mats (7)
Wallerman, Ola (7)
Wright, Dominic (7)
Jensen, Per (6)
Herrmann, Björn (5)
Lindblad-Toh, Kersti ... (5)
Mallmin, Hans (5)
Jensen, Per, 1956- (5)
Hallböök, Finn (5)
Bed'Hom, Bertrand (5)
Carlborg, Örjan (5)
Ferrand, Nuno (5)
Dorshorst, Ben (5)
Grant, B. Rosemary (5)
Grant, Peter R. (5)
Tixier-Boichard, Mic ... (5)
Sundström, Elisabeth (5)
Afonso, Sandra (5)
Mikko, Sofia (4)
Kämpe, Olle (4)
Andersson, Göran (4)
Blanco-Aguiar, Jose ... (4)
Villafuerte, Rafael (4)
Lamichhaney, Sangeet (4)
Imsland, Freyja (4)
Jiang, Lin (4)
Kjaerner-Semb, Erik (4)
Furmanek, Tomasz (4)
Larsson, Sune (3)
Johnsson, Martin (3)
Younis, Shady (3)
Ryman, Nils (3)
Orlando, Ludovic (3)
Almén, Markus Sällma ... (3)
Berglund, Jonas (3)
Webster, Matthew T. (3)
Enbody, Erik D (3)
Wright, Dominic, 197 ... (3)
Laikre, Linda (3)
Schwochow, Doreen (3)
Maqbool, Khurram (3)
Ayllon, Fernando (3)
Edvardsen, Rolf B. (3)
visa färre...
Lärosäte
Uppsala universitet (88)
Sveriges Lantbruksuniversitet (38)
Karolinska Institutet (13)
Linköpings universitet (10)
Göteborgs universitet (4)
Stockholms universitet (4)
visa fler...
Kungliga Tekniska Högskolan (3)
Lunds universitet (2)
Umeå universitet (1)
visa färre...
Språk
Engelska (89)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (49)
Lantbruksvetenskap (32)
Medicin och hälsovetenskap (24)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy