SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rudenko Artem) "

Sökning: WFRF:(Rudenko Artem)

  • Resultat 1-25 av 32
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Allum, Felix, et al. (författare)
  • Coulomb explosion imaging of CH3I and CH2CII photodissociation dynamics
  • 2018
  • Ingår i: Journal of Chemical Physics. - : AIP Publishing. - 0021-9606 .- 1089-7690. ; 149:20
  • Tidskriftsartikel (refereegranskat)abstract
    • The photodissociation dynamics of CH3I and CH2CII at 272 nm were investigated by time-resolved Coulomb explosion imaging, with an intense non-resonant 815nmprobe pulse. Fragment ion momenta over a widem/z range were recorded simultaneously by coupling a velocity map imaging spectrometer with a pixel imaging mass spectrometry camera. For both molecules, delay-dependent pump-probe features were assigned to ultraviolet-induced carbon-iodine bond cleavage followed by Coulomb explosion. Multi-mass imaging also allowed the sequential cleavage of both carbon-halogen bonds in CH2ClI to be investigated. Furthermore, delay-dependent relative fragment momenta of a pair of ions were directly determined using recoil-frame covariance analysis. These results are complementary to conventional velocity map imaging experiments and demonstrate the application of time-resolved Coulomb explosion imaging to photoinduced real-time molecular motion.
  •  
2.
  • Amini, Kasra, et al. (författare)
  • Alignment, orientation, and Coulomb explosion of difluoroiodobenzene studied with the pixel imaging mass spectrometry (PImMS) camera
  • 2017
  • Ingår i: Journal of Chemical Physics. - : AIP Publishing. - 0021-9606 .- 1089-7690. ; 147:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Laser-induced adiabatic alignment and mixed-field orientation of 2,6-difluoroiodobenzene (C6H3F2I) molecules are probed by Coulomb explosion imaging following either near-infrared strong-field ionization or extreme-ultraviolet multi-photon inner-shell ionization using free-electron laser pulses. The resulting photoelectrons and fragment ions are captured by a double-sided velocity map imaging spectrometer and projected onto two position-sensitive detectors. The ion side of the spectrometer is equipped with a pixel imaging mass spectrometry camera, a time-stamping pixelated detector that can record the hit positions and arrival times of up to four ions per pixel per acquisition cycle. Thus, the time-of-flight trace and ion momentum distributions for all fragments can be recorded simultaneously. We show that we can obtain a high degree of one-and three-dimensional alignment and mixed-field orientation and compare the Coulomb explosion process induced at both wavelengths.
  •  
3.
  • Amini, Kasra, et al. (författare)
  • Photodissociation of aligned CH3I and C6H3F2I molecules probed with time-resolved Coulomb explosion imaging by site-selective extreme ultraviolet ionization
  • 2018
  • Ingår i: Structural Dynamics. - : AIP Publishing. - 2329-7778. ; 5:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We explore time-resolved Coulomb explosion induced by intense, extreme ultraviolet (XUV) femtosecond pulses from a free-electron laser as a method to image photo-induced molecular dynamics in two molecules, iodomethane and 2,6-difluoroiodobenzene. At an excitation wavelength of 267 nm, the dominant reaction pathway in both molecules is neutral dissociation via cleavage of the carbon-iodine bond. This allows investigating the influence of the molecular environment on the absorption of an intense, femtosecond XUV pulse and the subsequent Coulomb explosion process. We find that the XUV probe pulse induces local inner-shell ionization of atomic iodine in dissociating iodomethane, in contrast to non-selective ionization of all photofragments in difluoroiodobenzene. The results reveal evidence of electron transfer from methyl and phenyl moieties to a multiply charged iodine ion. In addition, indications for ultrafast charge rearrangement on the phenyl radical are found, suggesting that time-resolved Coulomb explosion imaging is sensitive to the localization of charge in extended molecules.
  •  
4.
  • Andreasson, Jakob, et al. (författare)
  • Automated identification and classification of single particle serial femtosecond X-ray diffraction data
  • 2014
  • Ingår i: Optics Express. - 1094-4087. ; 22:3, s. 2497-2510
  • Tidskriftsartikel (refereegranskat)abstract
    • The first hard X-ray laser, the Linac Coherent Light Source (LCLS), produces 120 shots per second. Particles injected into the X-ray beam are hit randomly and in unknown orientations by the extremely intense X-ray pulses, where the femtosecond-duration X-ray pulses diffract from the sample before the particle structure is significantly changed even though the sample is ultimately destroyed by the deposited X-ray energy. Single particle X-ray diffraction experiments generate data at the FEL repetition rate, resulting in more than 400,000 detector readouts in an hour, the data stream during an experiment contains blank frames mixed with hits on single particles, clusters and contaminants. The diffraction signal is generally weak and it is superimposed on a low but continually fluctuating background signal, originating from photon noise in the beam line and electronic noise from the detector. Meanwhile, explosion of the sample creates fragments with a characteristic signature. Here, we describe methods based on rapid image analysis combined with ion Time-of-Flight (ToF) spectroscopy of the fragments to achieve an efficient, automated and unsupervised sorting of diffraction data. The studies described here form a basis for the development of real-time frame rejection methods, e. g. for the European XFEL, which is expected to produce 100 million pulses per hour. (C)2014 Optical Society of America
  •  
5.
  • Aquila, Andrew, et al. (författare)
  • Time-resolved protein nanocrystallography using an X-ray free-electron laser
  • 2012
  • Ingår i: Optics Express. - 1094-4087. ; 20:3, s. 2706-2716
  • Tidskriftsartikel (refereegranskat)abstract
    • We demonstrate the use of an X-ray free electron laser synchronized with an optical pump laser to obtain X-ray diffraction snapshots from the photoactivated states of large membrane protein complexes in the form of nanocrystals flowing in a liquid jet. Light-induced changes of Photosystem I-Ferredoxin co-crystals were observed at time delays of 5 to 10 µs after excitation. The result correlates with the microsecond kinetics of electron transfer from Photosystem I to ferredoxin. The undocking process that follows the electron transfer leads to large rearrangements in the crystals that will terminally lead to the disintegration of the crystals. We describe the experimental setup and obtain the first time-resolved femtosecond serial X-ray crystallography results from an irreversible photo-chemical reaction at the Linac Coherent Light Source. This technique opens the door to time-resolved structural studies of reaction dynamics in biological systems.
  •  
6.
  • Boll, Rebecca, et al. (författare)
  • Imaging molecular structure through femtosecond photoelectron diffraction on aligned and oriented gas-phase molecules
  • 2014
  • Ingår i: Faraday Discussions. - : Royal Society of Chemistry (RSC). - 1364-5498. ; 171, s. 57-80
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper gives an account of our progress towards performing femtosecond time-resolved photoelectron diffraction on gas-phase molecules in a pump-probe setup combining optical lasers and an X-ray free-electron laser. We present results of two experiments aimed at measuring photoelectron angular distributions of laser-aligned 1-ethynyl-4-fluorobenzene (C8H5F) and dissociating, laser-aligned 1,4-dibromobenzene (C6H4Br2) molecules and discuss them in the larger context of photoelectron diffraction on gas-phase molecules. We also show how the strong nanosecond laser pulse used for adiabatically laser-aligning the molecules influences the measured electron and ion spectra and angular distributions, and discuss how this may affect the outcome of future time-resolved photoelectron diffraction experiments.
  •  
7.
  • Borne, Kurtis D., et al. (författare)
  • Ultrafast electronic relaxation pathways of the molecular photoswitch quadricyclane
  • 2024
  • Ingår i: NATURE CHEMISTRY. - 1755-4330 .- 1755-4349. ; 16, s. 499-505
  • Tidskriftsartikel (refereegranskat)abstract
    • The light-induced ultrafast switching between molecular isomers norbornadiene and quadricyclane can reversibly store and release a substantial amount of chemical energy. Prior work observed signatures of ultrafast molecular dynamics in both isomers upon ultraviolet excitation but could not follow the electronic relaxation all the way back to the ground state experimentally. Here we study the electronic relaxation of quadricyclane after exciting in the ultraviolet (201 nanometres) using time-resolved gas-phase extreme ultraviolet photoelectron spectroscopy combined with non-adiabatic molecular dynamics simulations. We identify two competing pathways by which electronically excited quadricyclane molecules relax to the electronic ground state. The fast pathway (<100 femtoseconds) is distinguished by effective coupling to valence electronic states, while the slow pathway involves initial motions across Rydberg states and takes several hundred femtoseconds. Both pathways facilitate interconversion between the two isomers, albeit on different timescales, and we predict that the branching ratio of norbornadiene/quadricyclane products immediately after returning to the electronic ground state is approximately 3:2.
  •  
8.
  • Brasse, Felix, et al. (författare)
  • Time-resolved inner-shell photoelectron spectroscopy : From a bound molecule to an isolated atom
  • 2018
  • Ingår i: Physical Review A: covering atomic, molecular, and optical physics and quantum information. - 2469-9926 .- 2469-9934. ; 97:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Due to its element and site specificity, inner-shell photoelectron spectroscopy is a widely used technique to probe the chemical structure of matter. Here, we show that time-resolved inner-shell photoelectron spectroscopy can be employed to observe ultrafast chemical reactions and the electronic response to the nuclear motion with high sensitivity. The ultraviolet dissociation of iodomethane (CH3I) is investigated by ionization above the iodine 4d edge, using time-resolved inner-shell photoelectron and photoion spectroscopy. The dynamics observed in the photoelectron spectra appear earlier and are faster than those seen in the iodine fragments. The experimental results are interpreted using crystal-field and spin-orbit configuration interaction calculations, and demonstrate that time-resolved inner-shell photoelectron spectroscopy is a powerful tool to directly track ultrafast structural and electronic transformations in gas-phase molecules.
  •  
9.
  • Burt, Michael, et al. (författare)
  • Coulomb-explosion imaging of concurrent CH2BrI photodissociation dynamics
  • 2017
  • Ingår i: Physical Review A: covering atomic, molecular, and optical physics and quantum information. - 2469-9926 .- 2469-9934. ; 96:4
  • Tidskriftsartikel (refereegranskat)abstract
    • The dynamics following laser-induced molecular photodissociation of gas-phase CH2BrI at 271.6 nm were investigated by time-resolved Coulomb-explosion imaging using intense near-IR femtosecond laser pulses. The observed delay-dependent photofragment momenta reveal that CH2BrI undergoes C-I cleavage, depositing 65.6% of the available energy into internal product states, and that absorption of a second UV photon breaks the C-Br bond of C(H)2Br. Simulations confirm that this mechanism is consistent with previous data recorded at 248 nm, demonstrating the sensitivity of Coulomb-explosion imaging as a real-time probe of chemical dynamics.
  •  
10.
  • Chapman, Henry N, et al. (författare)
  • Femtosecond X-ray protein nanocrystallography.
  • 2011
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 470:7332, s. 73-7
  • Tidskriftsartikel (refereegranskat)abstract
    • X-ray crystallography provides the vast majority of macromolecular structures, but the success of the method relies on growing crystals of sufficient size. In conventional measurements, the necessary increase in X-ray dose to record data from crystals that are too small leads to extensive damage before a diffraction signal can be recorded. It is particularly challenging to obtain large, well-diffracting crystals of membrane proteins, for which fewer than 300 unique structures have been determined despite their importance in all living cells. Here we present a method for structure determination where single-crystal X-ray diffraction 'snapshots' are collected from a fully hydrated stream of nanocrystals using femtosecond pulses from a hard-X-ray free-electron laser, the Linac Coherent Light Source. We prove this concept with nanocrystals of photosystem I, one of the largest membrane protein complexes. More than 3,000,000 diffraction patterns were collected in this study, and a three-dimensional data set was assembled from individual photosystem I nanocrystals (∼200nm to 2μm in size). We mitigate the problem of radiation damage in crystallography by using pulses briefer than the timescale of most damage processes. This offers a new approach to structure determination of macromolecules that do not yield crystals of sufficient size for studies using conventional radiation sources or are particularly sensitive to radiation damage.
  •  
11.
  • Ekeberg, Tomas, et al. (författare)
  • Single-shot diffraction data from the Mimivirus particle using an X-ray free-electron laser
  • 2016
  • Ingår i: Scientific Data. - : Springer Science and Business Media LLC. - 2052-4463. ; 3
  • Tidskriftsartikel (refereegranskat)abstract
    • Free-electron lasers (FEL) hold the potential to revolutionize structural biology by producing X-ray pules short enough to outrun radiation damage, thus allowing imaging of biological samples without the limitation from radiation damage. Thus, a major part of the scientific case for the first FELs was three-dimensional (3D) reconstruction of non-crystalline biological objects. In a recent publication we demonstrated the first 3D reconstruction of a biological object from an X-ray FEL using this technique. The sample was the giant Mimivirus, which is one of the largest known viruses with a diameter of 450 nm. Here we present the dataset used for this successful reconstruction. Data-analysis methods for single-particle imaging at FELs are undergoing heavy development but data collection relies on very limited time available through a highly competitive proposal process. This dataset provides experimental data to the entire community and could boost algorithm development and provide a benchmark dataset for new algorithms.
  •  
12.
  •  
13.
  • Ekeberg, Tomas, 1983-, et al. (författare)
  • Three-dimensional structure determination with an X-ray laser
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Three-dimensional structure determination of a non-crystalline virus has been achieved from a set of randomly oriented continuous diffraction patterns captured with an X-ray laser. Intense, ultra-short X-ray pulses intercepted a beam of single mimivirus particles, producing single particle X-ray diffraction patterns that are assembled into a three-dimensional amplitude distribution based on statistical consistency. Phases are directly retrieved from the assembled Fourier distribution to synthesize a three-dimensional image. The resulting electron density reveals a pseudo-icosahedral asymmetric virion structure with a compartmentalized interior, within which the DNA genome occupies only about a fifth of the volume enclosed by the capsid. Additional electron microscopy data indicate the genome has a chromatin-like fiber structure that has not previously been observed in a virus. 
  •  
14.
  • Fukuzawa, Hironobu, et al. (författare)
  • Real-time observation of X-ray-induced intramolecular and interatomic electronic decay in CH2I2
  • 2019
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The increasing availability of X-ray free-electron lasers (XFELs) has catalyzed the development of single-object structural determination and of structural dynamics tracking in real-time. Disentangling the molecular-level reactions triggered by the interaction with an XFEL pulse is a fundamental step towards developing such applications. Here we report real-time observations of XFEL-induced electronic decay via short-lived transient electronic states in the diiodomethane molecule, using a femtosecond near-infrared probe laser. We determine the lifetimes of the transient states populated during the XFEL-induced Auger cascades and find that multiply charged iodine ions are issued from short-lived (∼20 fs) transient states, whereas the singly charged ones originate from significantly longer-lived states (∼100 fs). We identify the mechanisms behind these different time scales: contrary to the short-lived transient states which relax by molecular Auger decay, the long-lived ones decay by an interatomic Coulombic decay between two iodine atoms, during the molecular fragmentation. © 2019, The Author(s).
  •  
15.
  • Gorkhover, Tais, et al. (författare)
  • Femtosecond and nanometre visualization of structural dynamics in superheated nanoparticles
  • 2016
  • Ingår i: Nature Photonics. - : Springer Science and Business Media LLC. - 1749-4885 .- 1749-4893. ; 10:2, s. 93-97
  • Tidskriftsartikel (refereegranskat)abstract
    • The ability to observe ultrafast structural changes in nanoscopic samples is essential for understanding non-equilibrium phenomena such as chemical reactions, matter under extreme conditions, ultrafast phase transitions and intense light-matter interactions. Established imaging techniques are limited either in time or spatial resolution and typically require samples to be deposited on a substrate, which interferes with the dynamics. Here, we show that coherent X-ray diffraction images from isolated single samples can be used to visualize femtosecond electron density dynamics. We recorded X-ray snapshot images from a nanoplasma expansion, a prototypical non-equilibrium phenomenon. Single Xe clusters are superheated using an intense optical laser pulse and the structural evolution of the sample is imaged with a single X-ray pulse. We resolved ultrafast surface softening on the nanometre scale at the plasma/vacuum interface within 100 fs of the heating pulse. Our study is the first time-resolved visualization of irreversible femtosecond processes in free, individual nanometre-sized samples.
  •  
16.
  • Hantke, Max F., et al. (författare)
  • A data set from flash X-ray imaging of carboxysomes
  • 2016
  • Ingår i: Scientific Data. - : Springer Science and Business Media LLC. - 2052-4463. ; 3
  • Tidskriftsartikel (refereegranskat)abstract
    • Ultra-intense femtosecond X-ray pulses from X-ray lasers permit structural studies on single particles and biomolecules without crystals. We present a large data set on inherently heterogeneous, polyhedral carboxysome particles. Carboxysomes are cell organelles that vary in size and facilitate up to 40% of Earth’s carbon fixation by cyanobacteria and certain proteobacteria. Variation in size hinders crystallization. Carboxysomes appear icosahedral in the electron microscope. A protein shell encapsulates a large number of Rubisco molecules in paracrystalline arrays inside the organelle. We used carboxysomes with a mean diameter of 115±26 nm from Halothiobacillus neapolitanus. A new aerosol sample-injector allowed us to record 70,000 low-noise diffraction patterns in 12 min. Every diffraction pattern is a unique structure measurement and high-throughput imaging allows sampling the space of structural variability. The different structures can be separated and phased directly from the diffraction data and open a way for accurate, high-throughput studies on structures and structural heterogeneity in biology and elsewhere.
  •  
17.
  • Hantke, Max F., et al. (författare)
  • High-throughput imaging of heterogeneous cell organelles with an X-ray laser
  • 2014
  • Ingår i: Nature Photonics. - : Springer Science and Business Media LLC. - 1749-4885 .- 1749-4893. ; 8:12, s. 943-949
  • Tidskriftsartikel (refereegranskat)abstract
    • We overcome two of the most daunting challenges in single-particle diffractive imaging: collecting many high-quality diffraction patterns on a small amount of sample and separating components from mixed samples. We demonstrate this on carboxysomes, which are polyhedral cell organelles that vary in size and facilitate up to 40% of Earth's carbon fixation. A new aerosol sample-injector allowed us to record 70,000 low-noise diffraction patterns in 12 min with the Linac Coherent Light Source running at 120 Hz. We separate different structures directly from the diffraction data and show that the size distribution is preserved during sample delivery. We automate phase retrieval and avoid reconstruction artefacts caused by missing modes. We attain the highest-resolution reconstructions on the smallest single biological objects imaged with an X-ray laser to date. These advances lay the foundations for accurate, high-throughput structure determination by flash-diffractive imaging and offer a means to study structure and structural heterogeneity in biology and elsewhere.
  •  
18.
  • Johansson, Linda C, 1983, et al. (författare)
  • Lipidic phase membrane protein serial femtosecond crystallography.
  • 2012
  • Ingår i: Nature methods. - : Springer Science and Business Media LLC. - 1548-7105 .- 1548-7091. ; 9:3, s. 263-265
  • Tidskriftsartikel (refereegranskat)abstract
    • X-ray free electron laser (X-FEL)-based serial femtosecond crystallography is an emerging method with potential to rapidly advance the challenging field of membrane protein structural biology. Here we recorded interpretable diffraction data from micrometer-sized lipidic sponge phase crystals of the Blastochloris viridis photosynthetic reaction center delivered into an X-FEL beam using a sponge phase micro-jet.
  •  
19.
  • Kassemeyer, Stephan, et al. (författare)
  • Femtosecond free-electron laser x-ray diffraction data sets for algorithm development
  • 2012
  • Ingår i: Optics Express. - 1094-4087. ; 20:4, s. 4149-4158
  • Tidskriftsartikel (refereegranskat)abstract
    • We describe femtosecond X-ray diffraction data sets of viruses and nanoparticles collected at the Linac Coherent Light Source. The data establish the first large benchmark data sets for coherent diffraction methods freely available to the public, to bolster the development of algorithms that are essential for developing this novel approach as a useful imaging technique. Applications are 2D reconstructions, orientation classification and finally 3D imaging by assembling 2D patterns into a 3D diffraction volume.
  •  
20.
  • Kockert, Hansjochen, et al. (författare)
  • UV-induced dissociation of CH2BrI probed by intense femtosecond XUV pulses
  • 2022
  • Ingår i: JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS. - : IOP Publishing. - 0953-4075 .- 1361-6455. ; 55:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The ultraviolet (UV)-induced dissociation and photofragmentation of gas-phase CH2BrI molecules induced by intense femtosecond extreme ultraviolet (XUV) pulses at three different photon energies are studied by multi-mass ion imaging. Using a UV-pump-XUV-probe scheme, charge transfer between highly charged iodine ions and neutral CH2Br radicals produced by C-I bond cleavage is investigated. In earlier charge-transfer studies, the center of mass of the molecules was located along the axis of the bond cleaved by the pump pulse. In the present case of CH2BrI, this is not the case, thus inducing a rotation of the fragment. We discuss the influence of the rotation on the charge transfer process using a classical over-the-barrier model. Our modeling suggests that, despite the fact that the dissociation is slower due to the rotational excitation, the critical interatomic distance for charge transfer is reached faster. Furthermore, we suggest that charge transfer during molecular fragmentation may be modulated in a complex way.
  •  
21.
  • Koopmann, Rudolf, et al. (författare)
  • In vivo protein crystallization opens new routes in structural biology
  • 2012
  • Ingår i: Nature Methods. - : Springer Science and Business Media LLC. - 1548-7091 .- 1548-7105. ; 9:3, s. 259-262
  • Tidskriftsartikel (refereegranskat)abstract
    • Protein crystallization in cells has been observed several times in nature. However, owing to their small size these crystals have not yet been used for X-ray crystallographic analysis. We prepared nano-sized in vivo–grown crystals of Trypanosoma brucei enzymes and applied the emerging method of free-electron laser-based serial femtosecond crystallography to record interpretable diffraction data. This combined approach will open new opportunities in structural systems biology.
  •  
22.
  • Kuepper, Jochen, et al. (författare)
  • X-Ray Diffraction from Isolated and Strongly Aligned Gas-Phase Molecules with a Free-Electron Laser
  • 2014
  • Ingår i: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 112:8, s. 083002-
  • Tidskriftsartikel (refereegranskat)abstract
    • We report experimental results on x-ray diffraction of quantum-state-selected and strongly aligned ensembles of the prototypical asymmetric rotor molecule 2,5-diiodobenzonitrile using the Linac Coherent Light Source. The experiments demonstrate first steps toward a new approach to diffractive imaging of distinct structures of individual, isolated gas-phase molecules. We confirm several key ingredients of single molecule diffraction experiments: the abilities to detect and count individual scattered x-ray photons in single shot diffraction data, to deliver state-selected, e.g., structural-isomer-selected, ensembles of molecules to the x-ray interaction volume, and to strongly align the scattering molecules. Our approach, using ultrashort x-ray pulses, is suitable to study ultrafast dynamics of isolated molecules.
  •  
23.
  • Loh, N. Duane, et al. (författare)
  • Sensing the wavefront of x-ray free-electron lasers using aerosol spheres
  • 2013
  • Ingår i: Optics Express. - 1094-4087. ; 21:10, s. 12385-12394
  • Tidskriftsartikel (refereegranskat)abstract
    • Characterizing intense, focused x-ray free electron laser (FEL) pulses is crucial for their use in diffractive imaging. We describe how the distribution of average phase tilts and intensities on hard x-ray pulses with peak intensities of 1021 W/m(2) can be retrieved from an ensemble of diffraction patterns produced by 70 nm-radius polystyrene spheres, in a manner that mimics wavefront sensors. Besides showing that an adaptive geometric correction may be necessary for diffraction data from randomly injected sample sources, our paper demonstrates the possibility of collecting statistics on structured pulses using only the diffraction patterns they generate and highlights the imperative to study its impact on single-particle diffractive imaging.
  •  
24.
  • Lomb, Lukas, et al. (författare)
  • Radiation damage in protein serial femtosecond crystallography using an x-ray free-electron laser
  • 2011
  • Ingår i: Physical Review B. Condensed Matter and Materials Physics. - 1098-0121 .- 1550-235X. ; 84:21, s. 214111-1-214111-6
  • Tidskriftsartikel (refereegranskat)abstract
    • X-ray free-electron lasers deliver intense femtosecond pulses that promise to yield high resolution diffraction data of nanocrystals before the destruction of the sample by radiation damage. Diffraction intensities of lysozyme nanocrystals collected at the Linac Coherent Light Source using 2 keV photons were used for structure determination by molecular replacement and analyzed for radiation damage as a function of pulse length and fluence. Signatures of radiation damage are observed for pulses as short as 70 fs. Parametric scaling used in conventional crystallography does not account for the observed effects.
  •  
25.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 32
Typ av publikation
tidskriftsartikel (30)
annan publikation (1)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (31)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Rudenko, Artem (32)
Rolles, Daniel (31)
Erk, Benjamin (25)
Bostedt, Christoph (21)
Hartmann, Robert (20)
Foucar, Lutz (19)
visa fler...
Barty, Anton (19)
Kimmel, Nils (19)
Aquila, Andrew (18)
Rudek, Benedikt (18)
Martin, Andrew V. (17)
Chapman, Henry N. (17)
Maia, Filipe R. N. C ... (16)
Epp, Sascha W. (16)
Holl, Peter (16)
Schulz, Joachim (16)
Bozek, John D. (15)
Gumprecht, Lars (15)
Liang, Mengning (15)
Schlichting, Ilme (15)
Ullrich, Joachim (15)
Hajdu, Janos (14)
Andreasson, Jakob (14)
Ekeberg, Tomas (14)
DePonte, Daniel P. (14)
Reich, Christian (14)
Soltau, Heike (14)
Seibert, M Marvin (13)
Bajt, Saša (13)
Weidenspointner, Geo ... (13)
Graafsma, Heinz (12)
Hirsemann, Helmut (12)
Svenda, Martin (12)
Barthelmess, Miriam (12)
Coppola, Nicola (12)
Hartmann, Andreas (12)
Lomb, Lukas (12)
Rouzee, Arnaud (11)
Bogan, Michael J. (11)
Shoeman, Robert L (11)
Hampton, Christina Y ... (11)
Johnsson, Per (10)
Andersson, Inger (10)
Timneanu, Nicusor (10)
White, Thomas A. (10)
Fleckenstein, Holger (10)
Kassemeyer, Stephan (10)
Nass, Karol (10)
Stern, Stephan (10)
Wunderer, Cornelia (10)
visa färre...
Lärosäte
Uppsala universitet (24)
Lunds universitet (12)
Göteborgs universitet (5)
Sveriges Lantbruksuniversitet (3)
Kungliga Tekniska Högskolan (1)
Språk
Engelska (32)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (29)
Medicin och hälsovetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy