SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rupp David E.) "

Sökning: WFRF:(Rupp David E.)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Röhm, Marc, et al. (författare)
  • A family of secreted pathogenesis-related proteins in Candida albicans
  • 2013
  • Ingår i: Molecular Microbiology. - : Wiley. - 0950-382X .- 1365-2958. ; 87:1, s. 132-151
  • Tidskriftsartikel (refereegranskat)abstract
    • Analysing culture supernatants of yeast and hyphal cells of Candida albicans, we found two close homologues of pathogenesis-related (PR-) 1 proteins, Rbe1p and Rbt4p, in the secretome. Due to sequence homology, three additional, yet not characterized open reading frames, ORF19.6200, ORF19.2787 and ORF19.2336, together with RBE1 and RBT4 were assigned to a novel family of CaPRY proteins. In a Δrbe1/Δrbt4 deletion strain, genome-wide transcriptional analysis revealed differential transcription of only a limited set of genes implicated in virulence and oxidative stress response. Single deletion of RBE1 or RBT4 in a clinical C.albicans isolate resulted in a moderate but significant attenuation in virulence in a mouse model for disseminated candidiasis. However, a synergistic effect was observed in a Δrbe1/Δrbt4 double deletion strain, where virulence was strongly affected. Remarkably, transcription of RBT4 and RBE1 was each upregulated in blastospores of Δrbe1 or hyphae of Δrbt4 deletion strains respectively, indicating functional complementation thereby compensating a potential virulence defect in the single deletion strains. Furthermore, the double deletion strain showed increased sensitivity to attack by polymorphonuclear leucocytes. Therefore, the crucial contribution of both C.albicans pathogenesis-related proteins to virulence might be vested in protection against phagocyte attack.
  •  
2.
  • Troch, Peter A., et al. (författare)
  • The importance of hydraulic groundwater theory in catchment hydrology : The legacy of Wilfried Brutsaert and Jean-Yves Parlange
  • 2013
  • Ingår i: Water resources research. - : American Geophysical Union (AGU). - 0043-1397 .- 1944-7973. ; 49:9, s. 5099-5116
  • Forskningsöversikt (refereegranskat)abstract
    • Based on a literature overview, this paper summarizes the impact and legacy of the contributions of Wilfried Brutsaert and Jean-Yves Parlange (Cornell University) with respect to the current state-of-the-art understanding in hydraulic groundwater theory. Forming the basis of many applications in catchment hydrology, ranging from drought flow analysis to surface water-groundwater interactions, hydraulic groundwater theory simplifies the description of water flow in unconfined riparian and perched aquifers through assumptions attributed to Dupuit and Forchheimer. Boussinesq (1877) derived a general equation to study flow dynamics of unconfined aquifers in uniformly sloping hillslopes, resulting in a remarkably accurate and applicable family of results, though often challenging to solve due to its nonlinear form. Under certain conditions, the Boussinesq equation can be solved analytically allowing compact representation of soil and geomorphological controls on unconfined aquifer storage and release dynamics. The Boussinesq equation has been extended to account for flow divergence/convergence as well as for nonuniform bedrock slope (concave/convex). The extended Boussinesq equation has been favorably compared to numerical solutions of the three-dimensional Richards equation, confirming its validity under certain geometric conditions. Analytical solutions of the linearized original and extended Boussinesq equations led to the formulation of similarity indices for baseflow recession analysis, including scaling rules, to predict the moments of baseflow response. Validation of theoretical recession parameters on real-world streamflow data is complicated due to limited measurement accuracy, changing boundary conditions, and the strong coupling between the saturated aquifer with the overlying unsaturated zone. However, recent advances are shown to have mitigated several of these issues. The extended Boussinesq equation has been successfully applied to represent baseflow dynamics in catchment-scale hydrological models, and it is currently considered to represent lateral redistribution of groundwater in land surface schemes applied in global circulation models. From the review, it is clear that Wilfried Brutsaert and Jean-Yves Parlange stimulated a body of research that has led to several fundamental discoveries and practical applications with important contributions in hydrological modeling.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy