SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ruser A.) "

Sökning: WFRF:(Ruser A.)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Beck, S., et al. (författare)
  • The Open Innovation in Science research field: a collaborative conceptualisation approach
  • 2022
  • Ingår i: Industry and Innovation. - : Informa UK Limited. - 1366-2716 .- 1469-8390. ; 29:2, s. 136-185
  • Tidskriftsartikel (refereegranskat)abstract
    • Openness and collaboration in scientific research are attracting increasing attention from scholars and practitioners alike. However, a common understanding of these phenomena is hindered by disciplinary boundaries and disconnected research streams. We link dispersed knowledge on Open Innovation, Open Science, and related concepts such as Responsible Research and Innovation by proposing a unifying Open Innovation in Science (OIS) Research Framework. This framework captures the antecedents, contingencies, and consequences of open and collaborative practices along the entire process of generating and disseminating scientific insights and translating them into innovation. Moreover, it elucidates individual-, team-, organisation-, field-, and society-level factors shaping OIS practices. To conceptualise the framework, we employed a collaborative approach involving 47 scholars from multiple disciplines, highlighting both tensions and commonalities between existing approaches. The OIS Research Framework thus serves as a basis for future research, informs policy discussions, and provides guidance to scientists and practitioners.
  •  
2.
  • Beck, S., et al. (författare)
  • Experimenting with Open Innovation in Science (OIS) practices: A novel approach to co-developing research proposals
  • 2021
  • Ingår i: CERN IdeaSquare Journal of Experimental Innovation. - 2413-9505. ; 5:2, s. 28-49
  • Tidskriftsartikel (refereegranskat)abstract
    • Co-producing scientific research with those who are affected by it is an emerging phenomenon in contemporary science. This article summarizes and reflects on both the process and outcome of a novel experiment to co-develop scientific research proposals in the field of Open Innovation in Science (OIS), wherein scholars engaged in the study of open and collaborative practices collaborated with the “users” of their research, i.e., scientists who apply such practices in their own research. The resulting co-developed research proposals focus on scientific collaboration, open data, and knowledge sharing and are available as an appendix to this article.
  •  
3.
  • Gosch, Jonas, et al. (författare)
  • Discovery and In Situ Crystallization Studies of Cerium-Based Metal–Organic Frameworks with V-Shaped Linker Molecules
  • 2023
  • Ingår i: Inorganic Chemistry. - 0020-1669 .- 1520-510X. ; 62:51, s. 20929-20939
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery and characterization of two porous Ce(III)-based metal–organic frameworks (MOFs) with the V-shaped linker molecules 4,4′-sulfonyldibenzoate (SDB2–) and 4,4′-(hexafluoroisopropylidene)bis(benzoate) (hfipbb2–). The compounds of framework composition [Ce2(H2O)(SDB)3] (1) and [Ce2(hfipbb)3] (2) were obtained by using a synthetic approach in acetonitrile that we recently established. Structure determination of 1 was accomplished from 3D electron diffraction (3D ED) data, while 2 could be refined against powder X-ray diffraction (PXRD) data using the crystal structure of an isostructural La-MOF as the starting model. Their framework structures consist of chain-like inorganic building units (IBUs) or hybrid-BUs that are interconnected by the V-shaped linker molecules to form framework structures with channel-type pores. The composition of both compounds was confirmed by PXRD, elemental analysis, as well as NMR and IR spectroscopy. Interestingly, despite the use of (NH4)2[CeIV(NO3)6] in the synthesis, cerium ions in both MOFs occur exclusively in the + III oxidation state as determined by X-ray absorption near edge structure (XANES) and X-ray photoelectron spectroscopy (XPS). Thermal analyses reveal remarkably high thermal stabilities of ≥400 °C for the MOFs. Initial N2 sorption measurements revealed the peculiar sorption behavior of 2 which prompted a deeper investigation by Ar and CO2 sorption experiments. The combination with nonlocal density functional theory (NL-DFT) calculations adds to the understanding of the nature of the different pore diameters in 2. An extensive quasi-simultaneous in situ XANES/XRD investigation was carried out to unveil the formation of Ce-MOFs during the solvothermal syntheses in acetonitrile. The crystallization of the two Ce(III)-MOFs presented herein as well as two previously reported Ce(IV)-MOFs, all obtained by a similar synthetic approach, were studied. While the XRD patterns show time-dependent MOF crystallization, the XANES data reveal the presence of Ce(III) intermediates and their subsequent conversion to the MOFs. The addition of acetic acid in combination with the V-shaped linker molecule was identified as the crucial factor for the formation of the crystalline Ce(III/IV)-MOFs. 
  •  
4.
  • Rönfeldt, Pia, et al. (författare)
  • New Scandium-containing Coordination Polymers with Linear Linker Molecules : Crystal Structures and Luminescence Properties
  • 2020
  • Ingår i: European Journal of Inorganic Chemistry. - : Wiley. - 1434-1948 .- 1099-1948 .- 1099-0682. ; 2020:28, s. 2737-2743
  • Tidskriftsartikel (refereegranskat)abstract
    • Two new scandium-containing coordination polymers, with the formulae {(CH3)2NH2}[Sc(BPDC)2] (1) and [Sc(OH) (BPyDC)] (2) were solvothermally synthesized by using the linear linker molecules biphenyl-4,4′-dicarboxylic acid (H2BPDC) and 2,2′-bipyridine-5,5′-dicarboxylic acid (H2BPyDC). Crystal structures were determined from single-crystal and powder Xray diffraction data, respectively. The crystal structures of 1 and 2 contain isolated ScO6 or chains of trans corner-sharing ScO6 octahedra as the inorganic building unit (IBU), which are connected by the linker molecules to a 3D framework or a layered structure, respectively. The compounds were characterized by IR-spectroscopy, elemental analysis, thermogravimetric analysis and photoluminescence spectroscopy. 1 shows blue emission at 400 nm, while 2 exhibits intense green emission at 550 nm with a high quantum yield (QY) of 69 %.
  •  
5.
  • Svensson Grape, Erik, et al. (författare)
  • Synthesis, crystal structure, and topology of a polycatenated bismuth coordination polymer
  • 2022
  • Ingår i: Zeitschrift für Naturforschung. B, A journal of chemical sciences. - : Walter de Gruyter. - 0932-0776 .- 1865-7117. ; 77:4-5, s. 231-236
  • Tidskriftsartikel (refereegranskat)abstract
    • Solvothermal reaction of Bi(NO3)(3)center dot 5H(2)O with the flexible ligand 1,3,5-tris[4-(carboxyphenyl)oxamethyl]-2,4,6-trimethylbenzene (H3TBTC) in methanol at 120 degrees C for 1 h led to the formation of a novel coordination polymer (CP) with the composition of Bi(TBTC). The structure of the microcrystalline material was determined through threedimensional electron diffraction (3DED) measurements and phase purity was confirmed by a Pawley refinement, elemental analysis, and thermal analysis. The compound crystallizes in the triclinic space group P (1) over bar with one Bi3+ cation and one TBTC3- trianion in the asymmetric unit. Edge-sharing of BiO7 polyhedra leads to the formation of dinuclear Bi2O12 units, which through coordination to six TBTC3- ions form a layered two-periodic structure. Upon heating the material in air, the unit cell volume contracts by 9%, which is attributed to a shift in the inter-layer arrangement and to the flexibility of the building units of the structure. The compound starts to decompose at similar to 300 degrees C. Topological analysis revealed layers consisting of 3-c and 6-c nodes, consistent with the two-periodic kgd net - the dual of the Kagome net (kgm). However, due to the non-planar nature of the Bi(TBTC) layers, adjacent layers are interlaced by polycatenation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy