SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Saatoglu Dilan) "

Sökning: WFRF:(Saatoglu Dilan)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Saatoglu, Dilan, et al. (författare)
  • Dispersal in a house sparrow metapopulation : An integrative case study of genetic assignment calibrated with ecological data and pedigree information
  • 2021
  • Ingår i: Molecular Ecology. - : John Wiley & Sons. - 0962-1083 .- 1365-294X. ; 30:19, s. 4740-4756
  • Tidskriftsartikel (refereegranskat)abstract
    • Dispersal has a crucial role determining ecoevolutionary dynamics through both gene flow and population size regulation. However, to study dispersal and its consequences, one must distinguish immigrants from residents. Dispersers can be identified using telemetry, capture-mark-recapture (CMR) methods, or genetic assignment methods. All of these methods have disadvantages, such as high costs and substantial field efforts needed for telemetry and CMR surveys, and adequate genetic distance required in genetic assignment. In this study, we used genome-wide 200K Single Nucleotide Polymorphism data and two different genetic assignment approaches (GSI_SIM, Bayesian framework; BONE, network-based estimation) to identify the dispersers in a house sparrow (Passer domesticus) metapopulation sampled over 16 years. Our results showed higher assignment accuracy with BONE. Hence, we proceeded to diagnose potential sources of errors in the assignment results from the BONE method due to variation in levels of interpopulation genetic differentiation, intrapopulation genetic variation and sample size. We show that assignment accuracy is high even at low levels of genetic differentiation and that it increases with the proportion of a population that has been sampled. Finally, we highlight that dispersal studies integrating both ecological and genetic data provide robust assessments of the dispersal patterns in natural populations.
  •  
2.
  • Saatoglu, Dilan, et al. (författare)
  • The genetic basis of dispersal in a vertebrate metapopulation
  • 2024
  • Ingår i: Molecular Ecology. - : John Wiley & Sons. - 0962-1083 .- 1365-294X. ; 33:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Dispersal affects evolutionary processes by changing population size and genetic composition, influencing the viability and persistence of populations. Investigating which mechanisms underlie variation in dispersal phenotypes and whether populations harbour adaptive potential for dispersal is crucial to understanding the eco-evolutionary dynamics of this important trait. Here, we investigate the genetic architecture of dispersal among successfully recruited individuals in an insular metapopulation of house sparrows. We use an extensive long-term individual-based ecological data set and high-density single-nucleotide polymorphism (SNP) genotypes for over 2500 individuals. We conducted a genome-wide association study (GWAS), and found a relationship between dispersal probability and a SNP located near genes known to regulate circadian rhythm, glycogenesis and exercise performance, among other functions. However, this SNP only explained 3.8% of variance, suggesting that dispersal is a polygenic trait. We then used an animal model to estimate heritable genetic variation (σA2), which composes 10% of the total variation in dispersal probability. Finally, we investigated differences in σA2 across populations occupying ecologically relevant habitat types (farm vs. non-farm) using a genetic groups animal model. We found different adaptive potentials across habitats, with higher mean breeding value, σA2, and heritability for the habitat presenting lower dispersal rates, suggesting also different roles of environmental variation. Our results suggest a complex genetic architecture of dispersal and demonstrate that adaptive potential may be environment dependent in key eco-evolutionary traits. The eco-evolutionary implications of such environment dependence and consequent spatial variation are likely to become ever more important with the increased fragmentation and loss of suitable habitats for many natural populations.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy