SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sacchet Matthew D) "

Sökning: WFRF:(Sacchet Matthew D)

  • Resultat 1-18 av 18
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Wierenga, Lara M., et al. (författare)
  • Greater male than female variability in regional brain structure across the lifespan
  • 2022
  • Ingår i: Human Brain Mapping. - : John Wiley & Sons. - 1065-9471 .- 1097-0193. ; 43:1, s. 470-499
  • Tidskriftsartikel (refereegranskat)abstract
    • For many traits, males show greater variability than females, with possible implications for understanding sex differences in health and disease. Here, the ENIGMA (Enhancing Neuro Imaging Genetics through Meta-Analysis) Consortium presents the largest-ever mega-analysis of sex differences in variability of brain structure, based on international data spanning nine decades of life. Subcortical volumes, cortical surface area and cortical thickness were assessed in MRI data of 16,683 healthy individuals 1-90 years old (47% females). We observed significant patterns of greater male than female between-subject variance for all subcortical volumetric measures, all cortical surface area measures, and 60% of cortical thickness measures. This pattern was stable across the lifespan for 50% of the subcortical structures, 70% of the regional area measures, and nearly all regions for thickness. Our findings that these sex differences are present in childhood implicate early life genetic or gene-environment interaction mechanisms. The findings highlight the importance of individual differences within the sexes, that may underpin sex-specific vulnerability to disorders.
  •  
2.
  • Dima, Danai, et al. (författare)
  • Subcortical volumes across the lifespan : Data from 18,605 healthy individuals aged 3-90 years.
  • 2022
  • Ingår i: Human Brain Mapping. - : Wiley. - 1065-9471 .- 1097-0193. ; 43:1, s. 452-469
  • Tidskriftsartikel (refereegranskat)abstract
    • Age has a major effect on brain volume. However, the normative studies available are constrained by small sample sizes, restricted age coverage and significant methodological variability. These limitations introduce inconsistencies and may obscure or distort the lifespan trajectories of brain morphometry. In response, we capitalized on the resources of the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) Consortium to examine age-related trajectories inferred from cross-sectional measures of the ventricles, the basal ganglia (caudate, putamen, pallidum, and nucleus accumbens), the thalamus, hippocampus and amygdala using magnetic resonance imaging data obtained from 18,605 individuals aged 3-90 years. All subcortical structure volumes were at their maximum value early in life. The volume of the basal ganglia showed a monotonic negative association with age thereafter; there was no significant association between age and the volumes of the thalamus, amygdala and the hippocampus (with some degree of decline in thalamus) until the sixth decade of life after which they also showed a steep negative association with age. The lateral ventricles showed continuous enlargement throughout the lifespan. Age was positively associated with inter-individual variability in the hippocampus and amygdala and the lateral ventricles. These results were robust to potential confounders and could be used to examine the functional significance of deviations from typical age-related morphometric patterns.
  •  
3.
  • Frangou, Sophia, et al. (författare)
  • Cortical thickness across the lifespan : Data from 17,075 healthy individuals aged 3-90 years
  • 2022
  • Ingår i: Human Brain Mapping. - : John Wiley & Sons. - 1065-9471 .- 1097-0193. ; 43:1, s. 431-451
  • Tidskriftsartikel (refereegranskat)abstract
    • Delineating the association of age and cortical thickness in healthy individuals is critical given the association of cortical thickness with cognition and behavior. Previous research has shown that robust estimates of the association between age and brain morphometry require large-scale studies. In response, we used cross-sectional data from 17,075 individuals aged 3-90 years from the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) Consortium to infer age-related changes in cortical thickness. We used fractional polynomial (FP) regression to quantify the association between age and cortical thickness, and we computed normalized growth centiles using the parametric Lambda, Mu, and Sigma method. Interindividual variability was estimated using meta-analysis and one-way analysis of variance. For most regions, their highest cortical thickness value was observed in childhood. Age and cortical thickness showed a negative association; the slope was steeper up to the third decade of life and more gradual thereafter; notable exceptions to this general pattern were entorhinal, temporopolar, and anterior cingulate cortices. Interindividual variability was largest in temporal and frontal regions across the lifespan. Age and its FP combinations explained up to 59% variance in cortical thickness. These results may form the basis of further investigation on normative deviation in cortical thickness and its significance for behavioral and cognitive outcomes.
  •  
4.
  • Hamilton, Paul, et al. (författare)
  • Striatal dopamine deficits predict reductions in striatal functional connectivity in major depression: a concurrent C-11-raclopride positron emission tomography and functional magnetic resonance imaging investigation
  • 2018
  • Ingår i: Translational Psychiatry. - : NATURE PUBLISHING GROUP. - 2158-3188. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Major depressive disorder (MDD) is characterized by the altered integration of reward histories and reduced responding of the striatum. We have posited that this reduced striatal activation in MDD is due to tonically decreased stimulation of striatal dopamine synapses which results in decremented propagation of information along the corticostriatal-pallido-thalamic (CSPT) spiral. In the present investigation, we tested predictions of this formulation by conducting concurrent functional magnetic resonance imaging (fMRI) and C-11-raclopride positron emission tomography (PET) in depressed and control (CTL) participants. We scanned 16 depressed and 14 CTL participants with simultaneous fMRI and C-11-raclopride PET. We estimated raclopride binding potential (BPND), voxel-wise, and compared MDD and CTL samples with respect to BPND in the striatum. Using striatal regions that showed significant between-group BPND differences as seeds, we conducted whole-brain functional connectivity analysis using the fMRI data and identified brain regions in each group in which connectivity with striatal seed regions scaled linearly with BPND from these regions. We observed increased BPND in the ventral striatum, bilaterally, and in the right dorsal striatum in the depressed participants. Further, we found that as BPND increased in both the left ventral striatum and right dorsal striatum in MDD, connectivity with the cortical targets of these regions (default-mode network and salience network, respectively) decreased. Deficits in stimulation of striatal dopamine receptors in MDD could account in part for the failure of transfer of information up the CSPT circuit in the pathophysiology of this disorder.
  •  
5.
  • Javaheripour, Nooshin, et al. (författare)
  • Altered resting-state functional connectome in major depressive disorder : a mega-analysis from the PsyMRI consortium
  • 2021
  • Ingår i: Translational Psychiatry. - : Springer Nature. - 2158-3188. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Major depressive disorder (MDD) is associated with abnormal neural circuitry. It can be measured by assessing functional connectivity (FC) at resting-state functional MRI, that may help identifying neural markers of MDD and provide further efficient diagnosis and monitor treatment outcomes. The main aim of the present study is to investigate, in an unbiased way, functional alterations in patients with MDD using a large multi-center dataset from the PsyMRI consortium including 1546 participants from 19 centers (). After applying strict exclusion criteria, the final sample consisted of 606 MDD patients (age: 35.8 +/- 11.9 y.o.; females: 60.7%) and 476 healthy participants (age: 33.3 +/- 11.0 y.o.; females: 56.7%). We found significant relative hypoconnectivity within somatosensory motor (SMN), salience (SN) networks and between SMN, SN, dorsal attention (DAN), and visual (VN) networks in MDD patients. No significant differences were detected within the default mode (DMN) and frontoparietal networks (FPN). In addition, alterations in network organization were observed in terms of significantly lower network segregation of SMN in MDD patients. Although medicated patients showed significantly lower FC within DMN, FPN, and SN than unmedicated patients, there were no differences between medicated and unmedicated groups in terms of network organization in SMN. We conclude that the network organization of cortical networks, involved in processing of sensory information, might be a more stable neuroimaging marker for MDD than previously assumed alterations in higher-order neural networks like DMN and FPN.
  •  
6.
  • Petrov, Dmitry, et al. (författare)
  • Machine Learning for Large-Scale Quality Control of 3D Shape Models in Neuroimaging
  • 2017
  • Ingår i: Machine learning in medical imaging. MLMI (Workshop). - Cham : Springer International Publishing. ; 10541, s. 371-378
  • Tidskriftsartikel (refereegranskat)abstract
    • As very large studies of complex neuroimaging phenotypes become more common, human quality assessment of MRI-derived data remains one of the last major bottlenecks. Few attempts have so far been made to address this issue with machine learning. In this work, we optimize predictive models of quality for meshes representing deep brain structure shapes. We use standard vertex-wise and global shape features computed homologously across 19 cohorts and over 7500 human-rated subjects, training kernelized Support Vector Machine and Gradient Boosted Decision Trees classifiers to detect meshes of failing quality. Our models generalize across datasets and diseases, reducing human workload by 30-70%, or equivalently hundreds of human rater hours for datasets of comparable size, with recall rates approaching inter-rater reliability.
  •  
7.
  • Sacchet, Matthew D., et al. (författare)
  • Cognitive and neural consequences of memory suppression in major depressive disorder
  • 2017
  • Ingår i: Cognitive, Affective, & Behavioral Neuroscience. - : SPRINGER. - 1530-7026 .- 1531-135X. ; 17:1, s. 77-93
  • Tidskriftsartikel (refereegranskat)abstract
    • Negative biases in cognition have been documented consistently in major depressive disorder (MDD), including difficulties in the ability to control the processing of negative material. Although negative information-processing biases have been studied using both behavioral and neuroimaging paradigms, relatively little research has been conducted examining the difficulties of depressed persons with inhibiting the retrieval of negative information from long-term memory. In this study, we used the think/no-think paradigm and functional magnetic resonance imaging to assess the cognitive and neural consequences of memory suppression in individuals diagnosed with depression and in healthy controls. The participants showed typical behavioral forgetting effects, but contrary to our hypotheses, there were no differences between the depressed and nondepressed participants or between neutral and negative memories. Relative to controls, depressed individuals exhibited greater activity in right middle frontal gyrus during memory suppression, regardless of the valence of the suppressed stimuli, and differential activity in the amygdala and hippocampus during memory suppression involving negatively valenced stimuli. These findings indicate that depressed individuals are characterized by neural anomalies during the suppression of long-term memories, increasing our understanding of the brain bases of negative cognitive biases in MDD.
  •  
8.
  • Belov, Vladimir, et al. (författare)
  • Multi-site benchmark classification of major depressive disorder using machine learning on cortical and subcortical measures
  • 2024
  • Ingår i: Scientific Reports. - : NATURE PORTFOLIO. - 2045-2322. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Machine learning (ML) techniques have gained popularity in the neuroimaging field due to their potential for classifying neuropsychiatric disorders. However, the diagnostic predictive power of the existing algorithms has been limited by small sample sizes, lack of representativeness, data leakage, and/or overfitting. Here, we overcome these limitations with the largest multi-site sample size to date (N = 5365) to provide a generalizable ML classification benchmark of major depressive disorder (MDD) using shallow linear and non-linear models. Leveraging brain measures from standardized ENIGMA analysis pipelines in FreeSurfer, we were able to classify MDD versus healthy controls (HC) with a balanced accuracy of around 62%. But after harmonizing the data, e.g., using ComBat, the balanced accuracy dropped to approximately 52%. Accuracy results close to random chance levels were also observed in stratified groups according to age of onset, antidepressant use, number of episodes and sex. Future studies incorporating higher dimensional brain imaging/phenotype features, and/or using more advanced machine and deep learning methods may yield more encouraging prospects.
  •  
9.
  • Connolly, Colm G., et al. (författare)
  • Resting-state functional connectivity of the amygdala and longitudinal changes in depression severity in adolescent depression
  • 2017
  • Ingår i: Journal of Affective Disorders. - : Elsevier. - 0165-0327 .- 1573-2517. ; 207, s. 86-94
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The incidence of major depressive disorder (MDD) rises during adolescence, yet the neural mechanisms of MDD during this key developmental period are unclear. Altered amygdala resting-state functional connectivity (RSFC) has been associated with both adolescent and adult MDD, as well as symptom improvement in response to treatment in adults. However, no study to date has examined whether amygdala RSFC is associated with changes in depressive symptom severity in adolescents.Method: We examined group differences in amygdala RSFC between medication-naïve depressed adolescents (N=48) and well-matched healthy controls (N=53) cross-sectionally. We then longitudinally examined whether baseline amygdala RSFC was associated with change in depression symptoms three months later in a subset of the MDD group (N=24).Results: Compared to healthy controls, depressed adolescents showed reduced amygdala-based RSFC with the dorsolateral prefrontal cortex (DLPFC)and the ventromedial prefrontal cortex (VMPFC). Within the depressed group, more positive baseline RSFC between the amygdala and insulae was associated with greater reduction in depression symptoms three months later.Limitations: Only a subset of depressed participants was assessed at follow-up and treatment type and delivery were not standardized.Conclusions: Adolescent depression may be characterized by dysfunction of frontolimbic circuits (amygdala-DLPFC, amygdala-VMPFC) underpinning emotional regulation, whereas those circuits (amygdala-insula) subserving affective integration may index changes in depression symptom severity and may therefore potentially serve as a candidate biomarker for treatment response. Furthermore, these results suggest that the biomarkers of MDD presence are distinct from those associated with change in depression symptoms over time.
  •  
10.
  • Gallo, Selene, et al. (författare)
  • Functional connectivity signatures of major depressive disorder: machine learning analysis of two multicenter neuroimaging studies
  • 2023
  • Ingår i: Molecular Psychiatry. - : SPRINGERNATURE. - 1359-4184 .- 1476-5578. ; 28:7, s. 3013-3022
  • Tidskriftsartikel (refereegranskat)abstract
    • The promise of machine learning has fueled the hope for developing diagnostic tools for psychiatry. Initial studies showed high accuracy for the identification of major depressive disorder (MDD) with resting-state connectivity, but progress has been hampered by the absence of large datasets. Here we used regular machine learning and advanced deep learning algorithms to differentiate patients with MDD from healthy controls and identify neurophysiological signatures of depression in two of the largest resting-state datasets for MDD. We obtained resting-state functional magnetic resonance imaging data from the REST-meta-MDD (N = 2338) and PsyMRI (N = 1039) consortia. Classification of functional connectivity matrices was done using support vector machines (SVM) and graph convolutional neural networks (GCN), and performance was evaluated using 5-fold cross-validation. Features were visualized using GCN-Explainer, an ablation study and univariate t-testing. The results showed a mean classification accuracy of 61% for MDD versus controls. Mean accuracy for classifying (non-)medicated subgroups was 62%. Sex classification accuracy was substantially better across datasets (73-81%). Visualization of the results showed that classifications were driven by stronger thalamic connections in both datasets, while nearly all other connections were weaker with small univariate effect sizes. These results suggest that whole brain resting-state connectivity is a reliable though poor biomarker for MDD, presumably due to disease heterogeneity as further supported by the higher accuracy for sex classification using the same methods. Deep learning revealed thalamic hyperconnectivity as a prominent neurophysiological signature of depression in both multicenter studies, which may guide the development of biomarkers in future studies.
  •  
11.
  • Hamilton, Paul J., et al. (författare)
  • Effects of salience-network-node neurofeedback training on affective biases in major depressive disorder
  • 2016
  • Ingår i: Psychiatry Research. - : Elsevier. - 0925-4927 .- 1872-7506. ; 249, s. 91-96
  • Tidskriftsartikel (refereegranskat)abstract
    • Neural models of major depressive disorder (MDD) posit that over-response of components of the brains salience network (SN) to negative stimuli plays a crucial role in the pathophysiology of MDD. In the present proof-of-concept study, we tested this formulation directly by examining the affective consequences of training depressed persons to down-regulate response of SN nodes to negative material. Ten participants in the real neurofeedback group saw, and attempted to learn to down-regulate, activity from an empirically identified node of the SN. Ten other participants engaged in an equivalent procedure with the exception that they saw SN-node neurofeedback indices from participants in the real neurofeedback group. Before and after scanning, all participants completed tasks assessing emotional responses to negative scenes and to negative and positive self-descriptive adjectives. Compared to participants in the sham-neurofeedback group, from pre- to post-training, participants in the realneurofeedback group showed a greater decrease in SN-node response to negative stimuli, a greater decrease in self-reported emotional response to negative scenes, and a greater decrease in self-reported emotional response to negative self-descriptive adjectives. Our findings provide support for a neural formulation in which the SN plays a primary role in contributing to negative cognitive biases in MDD. (C) 2016 Elsevier Ireland Ltd. All rights reserved.
  •  
12.
  • Henje Blom, Eva, 1962-, et al. (författare)
  • The neuroscience and context of adolescent depression
  • 2016
  • Ingår i: Acta Paediatrica. - : Wiley. - 0803-5253 .- 1651-2227. ; 105:4, s. 358-365
  • Forskningsöversikt (refereegranskat)abstract
    • Adolescent depression is a growing public health concern with an increased risk of negative health outcomes, including suicide. The use of antidepressants and psychotherapy has not halted its increasing prevalence, and there is a critical need for effective prevention and treatment. We reviewed the neuroscience of adolescent depression, with a focus on the neurocircuitry of sustained threat and summarised contextual factors that have an impact on brain development and the pathophysiology of depression. We also reviewed novel treatment models.Conclusion: Attention to the relevant neurocircuitry and contextual factors implicated in adolescent depression is necessary to advance prevention and treatment development.
  •  
13.
  • Ho, Tiffany C., et al. (författare)
  • Fusiform gyrus dysfunction is associated with perceptual processing efficiency to emotional faces in adolescent depression : a model-based approach
  • 2016
  • Ingår i: Frontiers in Psychology. - Lausanne : Frontiers Media S.A.. - 1664-1078. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • While the extant literature has focused on major depressive disorder (MDD) as being characterized by abnormalities in processing affective stimuli (e.g., facial expressions), little is known regarding which specific aspects of cognition influence the evaluation of affective stimuli, and what are the underlying neural correlates. To investigate these issues, we assessed 26 adolescents diagnosed with MDD and 37 well-matched healthy controls (HCL) who completed an emotion identification task of dynamically morphing faces during functional magnetic resonance imaging (fMRI). We analyzed the behavioral data using a sequential sampling model of response time (RT) commonly used to elucidate aspects of cognition in binary perceptual decision making tasks: the Linear Ballistic Accumulator (LBA) model. Using a hierarchical Bayesian estimation method, we obtained group-level and individual-level estimates of LBA parameters on the facial emotion identification task. While the MDD and HCL groups did not differ in mean RT, accuracy, or group-level estimates of perceptual processing efficiency (i.e., drift rate parameter of the LBA), the MDD group showed significantly reduced responses in left fusiform gyrus compared to the HCL group during the facial emotion identification task. Furthermore, within the MDD group, fMRI signal in the left fusiform gyrus during affective face processing was significantly associated with greater individual-level estimates of perceptual processing efficiency. Our results therefore suggest that affective processing biases in adolescents with MDD are characterized by greater perceptual processing efficiency of affective visual information in sensory brain regions responsible for the early processing of visual information. The theoretical, methodological, and clinical implications of our results are discussed.
  •  
14.
  • LeWinn, Kaja Z., et al. (författare)
  • An exploratory examination of reappraisal success in depressed adolescents : Preliminary evidence of functional differences in cognitive control brain regions
  • 2018
  • Ingår i: Journal of Affective Disorders. - : Elsevier. - 0165-0327 .- 1573-2517. ; 240, s. 155-164
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Most neuroimaging studies of adolescent depression employ tasks not designed to engage brain regions necessary for the cognitive control of emotion, which is central to many behavioral therapies for depression. Depressed adults demonstrate less effective activation of these regions and greater amygdala activation during cognitive reappraisal; we examined whether depressed adolescents show similar patterns of brain activation.Methods: We collected functional magnetic resonance imaging (fMRI) data during cognitive reappraisal in 41 adolescents with major depressive disorder (MDD) and 34 matched controls (ages 13-17). We examined group differences in (1) activations associated with reappraisal and reappraisal success (i.e., negative affect reduction during reappraisal) using whole brain and amygdala region-of-interest analyses, and (2) functional connectivity of regions from the group-by-reappraisal success interaction.Results: We found no significant group differences in whole brain or amygdala analyses during reappraisal. In the group-by-reappraisal success interaction, activations in the left dorsomedial prefrontal cortex (dmPFC) and left dorsolateral PFC (dlPFC) were associated with reappraisal success in healthy controls but not depressed adolescents. Depressed adolescents demonstrated reduced connectivity between the left dmPFC and the anterior insula/inferior frontal gyri bilaterally (AI/IFG) and between left dlPFC and left AI/IFG.Limitations: Our results should be considered exploratory given our less conservative statistical threshold in the group-by-reappraisal interaction.Conclusions: We find preliminary evidence that depressed adolescents engage cognitive control regions less efficiently than healthy controls, suggesting delayed maturation of regulatory prefrontal cortex regions; more research is needed to determine whether cognitive therapies improve functioning of these regions in depressed youth.
  •  
15.
  • McWhinney, Sean R, et al. (författare)
  • Principal component analysis as an efficient method for capturing multivariate brain signatures of complex disorders-ENIGMA study in people with bipolar disorders and obesity.
  • 2024
  • Ingår i: Human brain mapping. - 1097-0193. ; 45:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Multivariate techniques better fit the anatomy of complex neuropsychiatric disorders which are characterized not by alterations in a single region, but rather by variations across distributed brain networks. Here, we used principal component analysis (PCA) to identify patterns of covariance across brain regions and relate them to clinical and demographic variables in a large generalizable dataset of individuals with bipolar disorders and controls. We then compared performance of PCA and clustering on identical sample to identify which methodology was better in capturing links between brain and clinical measures. Using data from the ENIGMA-BD working group, we investigated T1-weighted structural MRI data from 2436 participants with BD and healthy controls, and applied PCA to cortical thickness and surface area measures. We then studied the association of principal components with clinical and demographic variables using mixed regression models. We compared the PCA model with our prior clustering analyses of the same data and also tested it in a replication sample of 327 participants with BD or schizophrenia and healthy controls. The first principal component, which indexed a greater cortical thickness across all 68 cortical regions, was negatively associated with BD, BMI, antipsychotic medications, and age and was positively associated with Li treatment. PCA demonstrated superior goodness of fit to clustering when predicting diagnosis and BMI. Moreover, applying the PCA model to the replication sample yielded significant differences in cortical thickness between healthy controls and individuals with BD or schizophrenia. Cortical thickness in the same widespread regional network as determined by PCA was negatively associated with different clinical and demographic variables, including diagnosis, age, BMI, and treatment with antipsychotic medications or lithium. PCA outperformed clustering and provided an easy-to-use and interpret method to study multivariate associations between brain structure and system-level variables. PRACTITIONER POINTS: In this study of 2770 Individuals, we confirmed that cortical thickness in widespread regional networks as determined by principal component analysis (PCA) was negatively associated with relevant clinical and demographic variables, including diagnosis, age, BMI, and treatment with antipsychotic medications or lithium. Significant associations of many different system-level variables with the same brain network suggest a lack of one-to-one mapping of individual clinical and demographic factors to specific patterns of brain changes. PCA outperformed clustering analysis in the same data set when predicting group or BMI, providing a superior method for studying multivariate associations between brain structure and system-level variables.
  •  
16.
  • Sacchet, Matthew D., et al. (författare)
  • Large-scale hypoconnectivity between resting-state functional networks in unmedicated adolescent major depressive disorder
  • 2016
  • Ingår i: Neuropsychopharmacology. - London : Nature Publishing Group. - 0893-133X .- 1740-634X. ; 41:12, s. 2951-2960
  • Tidskriftsartikel (refereegranskat)abstract
    • Major depressive disorder (MDD) often emerges during adolescence, a critical period of brain development. Recent resting-state fMRI studies of adults suggest that MDD is associated with abnormalities within and between resting-state networks (RSNs). Here we tested whether adolescent MDD is characterized by abnormalities in interactions among RSNs. Participants were 55 unmedicated adolescents diagnosed with MDD and 56 matched healthy controls. Functional connectivity was mapped using resting-state fMRI. We used the network-based statistic (NBS) to compare large-scale connectivity between groups and also compared the groups on graph metrics. We further assessed whether group differences identified using nodes defined from functionally defined RSNs were also evident when using anatomically defined nodes. In addition, we examined relations between network abnormalities and depression severity and duration. Finally, we compared intranetwork connectivity between groups and assessed the replication of previously reported MDD-related abnormalities in connectivity. The NBS indicated that, compared with controls, depressed adolescents exhibited reduced connectivity (p<0.024, corrected) between a specific set of RSNs, including components of the attention, central executive, salience, and default mode networks. The NBS did not identify group differences in network connectivity when using anatomically defined nodes. Longer duration of depression was significantly correlated with reduced connectivity in this set of network interactions (p=0.020, corrected), specifically with reduced connectivity between components of the dorsal attention network. The dorsal attention network was also characterized by reduced intranetwork connectivity in the MDD group. Finally, we replicated previously reported abnormal connectivity in individuals with MDD. In summary, adolescents with MDD show hypoconnectivity between large-scale brain networks compared with healthy controls. Given that connectivity among these networks typically increases during adolescent neurodevelopment, these results suggest that adolescent depression is associated with abnormalities in neural systems that are still developing during this critical period.
  •  
17.
  • Tymofiyeva, Olga, et al. (författare)
  • DTI-based connectome analysis of adolescents with major depressive disorder reveals hypoconnectivity of the right caudate
  • 2017
  • Ingår i: Journal of Affective Disorders. - : Elsevier. - 0165-0327 .- 1573-2517. ; 207, s. 18-25
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Adolescence is a vulnerable period for the onset of major depressive disorder (MDD). While some studies have shown white matter alterations in adolescent MDD, there is still a gap in understanding how the brain is affected at a network level.METHODS: We compared diffusion tensor imaging (DTI)-based brain networks in a cohort of 57 adolescents with MDD and 41 well-matched healthy controls who completed self-reports of depression symptoms and stressful life events. Using atlas-based brain regions as network nodes and tractography streamline count or mean fractional anisotropy (FA) as edge weights, we examined weighted local and global network properties and performed Network-Based Statistic (NBS) analysis.RESULTS: While there were no significant group differences in the global network properties, the FA-weighted node strength of the right caudate was significantly lower in depressed adolescents and correlated positively with age across both groups. The NBS analysis revealed a cluster of lower FA-based connectivity in depressed subjects centered on the right caudate, including connections to frontal gyri, insula, and anterior cingulate. Within this cluster, the most robust difference between groups was the connection between the right caudate and middle frontal gyrus. This connection showed a significant diagnosis by stress interaction and a negative correlation with total stress in depressed adolescents.LIMITATIONS: Use of DTI-based tractography, one atlas-based parcellation, and FA values to characterize brain networks represent this study's limitations.CONCLUSIONS: Our results allowed us to suggest caudate-centric models of dysfunctional processes underlying adolescent depression, which might guide future studies and help better understand and treat this disorder.
  •  
18.
  • Tymofiyeva, Olga, et al. (författare)
  • High levels of mitochondrial DNA are associated with adolescent brain structural hypoconnectivity and increased anxiety but not depression
  • 2018
  • Ingår i: Journal of Affective Disorders. - Amsterdam : Elsevier. - 0165-0327 .- 1573-2517. ; 232, s. 283-290
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Adolescent anxiety and depression are highly prevalent psychiatric disorders that are associated with altered molecular and neurocircuit profiles. Recently, increased mitochondrial DNA copy number (mtDNA-cn) has been found to be associated with several psychopathologies in adults, especially anxiety and depression. The associations between mtDNA-cn and anxiety and depression have not, however, been investigated in adolescents. Moreover, to date there have been no studies examining associations between mtDNA-cn and brain network alterations in mood disorders in any age group.METHODS: The first aim of this study was to compare salivary mtDNA-cn between 49 depressed and/or anxious adolescents and 35 well-matched healthy controls. The second aim of this study was to identify neural correlates of mtDNA-cn derived from diffusion tensor imaging (DTI) and tractography, in the full sample of adolescents.RESULTS: There were no diagnosis-specific alterations in mtDNA-cn. However, there was a positive correlation between mtDNA-cn and levels of anxiety, but not depression, in the full sample of adolescents. A subnetwork of connections largely corresponding to the left fronto-occipital fasciculus had significantly lower fractional anisotropy (FA) values in adolescents with higher than median mtDNA-cn.LIMITATIONS: Undifferentiated analysis of free and intracellular mtDNA and use of DTI-based tractography represent this study's limitations.CONCLUSIONS: The results of this study help elucidate the relationships between clinical symptoms, molecular changes, and neurocircuitry alterations in adolescents with and without anxiety and depression, and they suggest that increased mtDNA-cn is associated both with increased anxiety symptoms and with decreased fronto-occipital structural connectivity in this population.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-18 av 18
Typ av publikation
tidskriftsartikel (17)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (18)
Författare/redaktör
Sacchet, Matthew D. (18)
Gotlib, Ian H. (11)
Connolly, Colm G. (8)
Ho, Tiffany C. (8)
Yang, Tony T. (8)
Ching, Christopher R ... (6)
visa fler...
Pomarol-Clotet, Edit ... (6)
Thompson, Paul M (6)
Stein, Dan J (6)
Harrison, Ben J. (6)
Tymofiyeva, Olga (6)
LeWinn, Kaja Z. (6)
Walter, Henrik (6)
Dannlowski, Udo (5)
Grotegerd, Dominik (5)
Sim, Kang (5)
Radua, Joaquim (5)
Salvador, Raymond (5)
Thomopoulos, Sophia ... (5)
Henje Blom, Eva, 196 ... (5)
Agartz, Ingrid (4)
Canales-Rodríguez, E ... (4)
Cannon, Dara M (4)
Hahn, Tim (4)
McDonald, Colm (4)
Westlye, Lars T (4)
Andreassen, Ole A (4)
Wang, Lei (4)
Aghajani, Moji (4)
Veer, Ilya M. (4)
Jahanshad, Neda (4)
Veltman, Dick J (4)
Dima, Danai (4)
Li, Meng (4)
Portella, Maria J. (4)
Wittfeld, Katharina (4)
Wright, Margaret J. (4)
Schmaal, Lianne (4)
Ehrlich, Stefan (4)
Dickie, Erin W. (4)
Howells, Fleur M. (4)
Uhlmann, Anne (4)
Borgwardt, Stefan (4)
Frodl, Thomas (4)
Fuentes-Claramonte, ... (4)
Gur, Ruben C (4)
McPhilemy, Genevieve (4)
Rosa, Pedro G P (4)
Satterthwaite, Theod ... (4)
Serpa, Mauricio H (4)
visa färre...
Lärosäte
Karolinska Institutet (11)
Umeå universitet (10)
Linköpings universitet (6)
Uppsala universitet (3)
Göteborgs universitet (1)
Lunds universitet (1)
Språk
Engelska (18)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (17)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy