SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sahai S) "

Sökning: WFRF:(Sahai S)

  • Resultat 1-24 av 24
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  • Walker, Anthony P, et al. (författare)
  • Horizon 2020 EuPRAXIA design study
  • 2017
  • Ingår i: Journal of Physics: Conference Series. - : IOP Publishing. - 1742-6588 .- 1742-6596. ; 874:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The Horizon 2020 Project EuPRAXIA ("European Plasma Research Accelerator with eXcellence In Applications") is preparing a conceptual design report of a highly compact and cost-effective European facility with multi-GeV electron beams using plasma as the acceleration medium. The accelerator facility will be based on a laser and/or a beam driven plasma acceleration approach and will be used for photon science, high-energy physics (HEP) detector tests, and other applications such as compact X-ray sources for medical imaging or material processing. EuPRAXIA started in November 2015 and will deliver the design report in October 2019. EuPRAXIA aims to be included on the ESFRI roadmap in 2020.
  •  
11.
  • Danilovich, T., et al. (författare)
  • ATOMIUM: halide molecules around the S-type AGB star W Aquilae
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 655
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. S-type asymptotic giant branch (AGB) stars are thought to be intermediates in the evolution of oxygen- to carbon-rich AGB stars. The chemical compositions of their circumstellar envelopes are also intermediate but have not been studied in as much detail as their carbon- and oxygen-rich counterparts. W Aql is a nearby S-type star, with well-known circumstellar parameters, making it an ideal object for in-depth study of less common molecules. Aims. We aim to determine the abundances of AlCl and AlF from rotational lines, which have been observed for the first time towards an S-type AGB star. In combination with models based on PACS observations, we aim to update our chemical kinetics network based on these results. Methods. We analyse ALMA observations towards W Aql of AlCl in the ground and first two vibrationally excited states and AlF in the ground vibrational state. Using radiative transfer models, we determine the abundances and spatial abundance distributions of (AlCl)-Cl-35, (AlCl)-Cl-37, and AlF. We also model HCl and HF emission and compare these models to PACS spectra to constrain the abundances of these species. Results. AlCl is found in clumps very close to the star, with emission confined within 0 ''.1 of the star. AlF emission is more extended, with faint emission extending 0 ''.2 to 0 ''.6 from the continuum peak. We find peak abundances, relative to H-2, of 1.7 x 10(-7) for (AlCl)-Cl-35, 7 x 10(-8) for (AlCl)-Cl-37, and 1 x 10(-7) for AlF. From the PACS spectra, we find abundances of 9.7 x 10(-8) and <= 10(-8), relative to H-2, for HCl and HF, respectively. Conclusions. The AlF abundance exceeds the solar F abundance, indicating that fluorine synthesised in the AGB star has already been dredged up to the surface of the star and ejected into the circumstellar envelope. From our analysis of chemical reactions in the wind, we conclude that AlF may participate in the dust formation process, but we cannot fully explain the rapid depletion of AlCl seen in the wind.
  •  
12.
  • Danilovich, Taissa, 1987, et al. (författare)
  • Chemical tracers of a highly eccentric AGB–main-sequence star binary
  • 2024
  • Ingår i: Nature Astronomy. - 2397-3366.
  • Tidskriftsartikel (refereegranskat)abstract
    • Binary interactions have been proposed to explain a variety of circumstellar structures seen around evolved stars, including asymptotic giant branch (AGB) stars and planetary nebulae. Studies resolving the circumstellar envelopes of AGB stars have revealed spirals, disks and bipolar outflows, with shaping attributed to interactions with a companion. Here we use a combined chemical and dynamical analysis to reveal a highly eccentric and long-period orbit for W Aquilae, a binary system containing an AGB star and a main-sequence companion. Our results are based on anisotropic SiN emission, the detections of irregular NS and SiC emission towards the S-type star, and density structures observed in the CO emission. These features are all interpreted as having formed during periastron interactions. Our astrochemistry-based method can yield stringent constraints on the orbital parameters of long-period binaries containing AGB stars, and will be applicable to other systems.
  •  
13.
  • Montargès, M., et al. (författare)
  • The VLT/SPHERE view of the A TOMIUM cool evolved star sample: I. Overview: Sample characterization through polarization analysis
  • 2023
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 671
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Low- and intermediate-mass asymptotic giant stars and massive red supergiant stars are important contributors to the chemical enrichment of the Universe. They are among the most efficient dust factories of the Galaxy, harboring chemically rich circumstellar environments. Yet, the processes that lead to dust formation or the large-scale shaping of the mass loss still escape attempts at modeling. Aims. Through the ATOMIUM project, we aim to present a consistent view of a sample of 17 nearby cool evolved stars. Our goals are to unveil the dust-nucleation sites and morphologies of the circumstellar envelope of such stars and to probe ambient environments with various conditions. This will further enhance our understanding of the roles of stellar convection and pulsations, and that of companions in shaping the dusty circumstellar medium. Methods. Here we present and analyze VLT/SPHERE-ZIMPOL polarimetric maps obtained in the visible (645- 820 nm) of 14 out of the 17 ATOMIUM sources. They were obtained contemporaneously with the ALMA high spatial resolution data. To help interpret the polarized signal, we produced synthetic maps of light scattering by dust, through 3D radiative transfer simulations with the RADMC3D code. Results. The degree of linear polarization (DoLP) observed by ZIMPOL spreads across several optical filters. We infer that it primarily probes dust located just outside of the point spread function of the central source, and in or near the plane of the sky. The polarized signal is mainly produced by structures with a total optical depth close to unity in the line of sight, and it represents only a fraction of the total circumstellar dust. The maximum DoLP ranges from 0.03- 0.38 depending on the source, fractions that can be reproduced by our 3D pilot models for grains composed of olivine, melilite, corundum, enstatite, or forsterite. The spatial structure of the DoLP shows a diverse set of shapes, including clumps, arcs, and full envelopes. Only for three sources do we note a correlation between the ALMA CO ν = 0, J = 2-1 and SiO ν = 0, J = 5-4 lines, which trace the gas density, and the DoLP, which traces the dust. Conclusions. The clumpiness of the DoLP and the lack of a consistent correlation between the gas and the dust location show that, in the inner environment, dust formation occurs at very specific sites. This has potential consequences for the derived mass-loss rates and dust-to-gas ratio in the inner region of the circumstellar environment. Except for π1 Gru and perhaps GY Aql, we do not detect interactions between the circumstellar wind and the hypothesized companions that shape the wind at larger scales. This suggests that the orbits of any other companions are tilted out of the plane of the sky.
  •  
14.
  • Wallström, Sofia, 1988, et al. (författare)
  • ATOMIUM: Molecular inventory of 17 oxygen-rich evolved stars observed with ALMA
  • 2024
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 681
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The dusty winds of cool evolved stars are a major contributor of the newly synthesised material enriching the Galaxy and future generations of stars. However, the details of the physics and chemistry behind dust formation and wind launching have yet to be pinpointed. Recent spatially resolved observations show the importance of gaining a more comprehensive view of the circumstellar chemistry, but a comparative study of the intricate interplay between chemistry and physics is still difficult because observational details such as frequencies and angular resolutions are rarely comparable. Aims. Aiming to overcome these deficiencies, ATOMIUM is an ALMA Large Programme to study the physics and chemistry of the circumstellar envelopes of a diverse set of oxygen-rich evolved stars under homogeneous observing conditions at three angular resolutions between ∼0.02′1.4′. Here we summarize the molecular inventory of these sources, and the correlations between stellar parameters and molecular content. Methods. Seventeen oxygen-rich or S-Type asymptotic giant branch (AGB) and red supergiant (RSG) stars have been observed in several tunings with ALMA Band 6, targeting a range of molecules to probe the circumstellar envelope and especially the chemistry of dust formation close to the star. We systematically assigned the molecular carriers of the spectral lines and measured their spectroscopic parameters and the angular extent of the emission of each line from integrated intensity maps. Results. Across the ATOMIUM sample, we detect 291 transitions of 24 different molecules and their isotopologues. This includes several first detections in oxygen-rich AGB/RSG stars: PO v = 1, SO2 v1 = 1 and v2 = 2, and several high energy H2O transitions. We also find several first detections in S-Type AGB stars: vibrationally excited HCN v2 = 2,3 and SiS v = 4,5,6, as well as first detections of the molecules SiC, AlCl, and AlF in W Aql. Overall, we find strong correlations between the following molecular pairs: CS and SiS, CS and AlF, NaCl and KCl, AlO and SO, SO2 and SO, and SO2 and H2O; meaning both molecules tend to have more detected emission lines in the same sources. The measured isotopic ratios of Si and S are found to be consistent with previous measurements, except for an anomalously high 29Si/30Si ratio of 4 ± 1 in the RSG VX Sgr. Conclusions. This paper presents the overall molecular inventory and an initial analysis of the large ATOMIUM dataset, laying the groundwork for future work deriving molecular abundances and abundance profiles using radiative transfer modeling which will provide more rigorous tests for chemical models.
  •  
15.
  • Gottlieb, C. A., et al. (författare)
  • ATOMIUM: ALMA tracing the origins of molecules in dust forming oxygen rich M-type stars: Motivation, sample, calibration, and initial results
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 660
  • Tidskriftsartikel (refereegranskat)abstract
    • This overview paper presents atomium, a Large Programme in Cycle 6 with the Atacama Large Millimeter/submillimeter Array (ALMA). The goal of atomium is to understand the dynamics and the gas phase and dust formation chemistry in the winds of evolved asymptotic giant branch (AGB) and red supergiant (RSG) stars. A more general aim is to identify chemical processes applicable to other astrophysical environments. Seventeen oxygen-rich AGB and RSG stars spanning a range in (circum)stellar parameters and evolutionary phases were observed in a homogeneous observing strategy allowing for an unambiguous comparison. Data were obtained between 213.83 and 269.71 GHz at high (0.025-0.050), medium (0.13-0.24), and low (~1) angular resolution. The sensitivity per ~1.3 km s-1 channel was 1.5-5 mJy beam-1, and the line-free channels were used to image the millimetre wave continuum. Our primary molecules for studying the gas dynamics and dust formation are CO, SiO, AlO, AlOH, TiO, TiO2, and HCN; secondary molecules include SO, SO2, SiS, CS, H2O, and NaCl. The scientific motivation, survey design, sample properties, data reduction, and an overview of the data products are described. In addition, we highlight one scientific result - the wind kinematics of the atomium sources. Our analysis suggests that the atomium sources often have a slow wind acceleration, and a fraction of the gas reaches a velocity which can be up to a factor of two times larger than previously reported terminal velocities assuming isotropic expansion. Moreover, the wind kinematic profiles establish that the radial velocity described by the momentum equation for a spherical wind structure cannot capture the complexity of the velocity field. In fifteen sources, some molecular transitions other than 12CO v = 0 J = 2 - 1 reach a higher outflow velocity, with a spatial emission zone that is often greater than 30 stellar radii, but much less than the extent of CO. We propose that a binary interaction with a (sub)stellar companion may (partly) explain the non-monotonic behaviour of the projected velocity field. The atomium data hence provide a crucial benchmark for the wind dynamics of evolved stars in single and binary star models.
  •  
16.
  • De Marco, O., et al. (författare)
  • The messy death of a multiple star system and the resulting planetary nebula as observed by JWST
  • 2022
  • Ingår i: Nature Astronomy. - : Springer Science and Business Media LLC. - 2397-3366. ; 6:12, s. 1421-1432
  • Tidskriftsartikel (refereegranskat)abstract
    • Planetary nebulae—the ejected envelopes of red giant stars—provide us with a history of the last, mass-losing phases of 90% of stars initially more massive than the Sun. Here we analyse images of the planetary nebula NGC 3132 from the James Webb Space Telescope (JWST) Early Release Observations. A structured, extended hydrogen halo surrounding an ionized central bubble is imprinted with spiral structures, probably shaped by a low-mass companion orbiting the central star at about 40–60 au. The images also reveal a mid-infrared excess at the central star, interpreted as a dusty disk, which is indicative of an interaction with another closer companion. Including the previously known A-type visual companion, the progenitor of the NGC 3132 planetary nebula must have been at least a stellar quartet. The JWST images allow us to generate a model of the illumination, ionization and hydrodynamics of the molecular halo, demonstrating the power of JWST to investigate complex stellar outflows. Furthermore, new measurements of the A-type visual companion allow us to derive the value for the mass of the progenitor of a central star with excellent precision: 2.86 ± 0.06 M⊙. These results serve as pathfinders for future JWST observations of planetary nebulae, providing unique insight into fundamental astrophysical processes including colliding winds and binary star interactions, with implications for supernovae and gravitational-wave systems.
  •  
17.
  • Decin, L., et al. (författare)
  • (Sub)stellar companions shape the winds of evolved stars
  • 2020
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 369:6509, s. 1497-1500
  • Tidskriftsartikel (refereegranskat)abstract
    • Binary interactions dominate the evolution of massive stars, but their role is less clear for low- and intermediate-mass stars. The evolution of a spherical wind from an asymptotic giant branch (AGB) star into a nonspherical planetary nebula (PN) could be due to binary interactions. We observed a sample of AGB stars with the Atacama Large Millimeter/submillimeter Array (ALMA) and found that their winds exhibit distinct nonspherical geometries with morphological similarities to planetary nebulae (PNe). We infer that the same physics shapes both AGB winds and PNe; additionally, the morphology and AGB mass-loss rate are correlated. These characteristics can be explained by binary interaction. We propose an evolutionary scenario for AGB morphologies that is consistent with observed phenomena in AGB stars and PNe.
  •  
18.
  • Groenewegen, M. A. T., et al. (författare)
  • The ALMA detection of CO rotational line emission in AGB stars in the Large Magellanic Cloud
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 596, s. 50-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Low- and intermediate-mass stars lose most of their stellar mass at the end of their lives on the asymptotic giant branch (AGB). Determining gas and dust mass-loss rates (MLRs) is important in quantifying the contribution of evolved stars to the enrichment of the interstellar medium.Aims. This study attempts to spectrally resolve CO thermal line emission in a small sample of AGB stars in the Large Magellanic Cloud (LMC).Methods. The Atacama Large Millimeter Array was used to observe two OH/IR stars and four carbon stars in the LMC in the CO J = 2−1 line.Results. We present the first measurement of expansion velocities in extragalactic carbon stars. All four C stars are detected and wind expansion velocities and stellar velocities are directly measured. Mass-loss rates are derived from modelling the spectral energy distribution and Spitzer/IRS spectrum with the DUSTY code. The derived gas-to-dust ratios allow the predicted velocities to agree with the observed gas-to-dust ratios. The expansion velocities and MLRs are compared to a Galactic sample of well-studied relatively low MLRs stars supplemented with extreme C stars with properties that are more similar to the LMC targets. Gas MLRs derived from a simple formula are significantly smaller than those derived from dust modelling, indicating an order of magnitude underestimate of the estimated CO abundance, time-variable mass loss, or that the CO intensities in LMC stars are lower than predicted by the formula derived for Galactic objects. This could be related to a stronger interstellar radiation field in the LMC.Conclusions. Although the LMC sample is small and the comparison to Galactic stars is non-trivial because of uncertainties in their distances (hence luminosities), it appears that for C stars the wind expansion velocities in the LMC are lower than in the solar neighbourhood, while the MLRs appear to be similar. This is in agreement with dynamical dust-driven wind models.
  •  
19.
  •  
20.
  •  
21.
  • Khouri, Theo, 1985, et al. (författare)
  • Observational identification of a sample of likely recent common-envelope events
  • 2022
  • Ingår i: Nature Astronomy. - : Springer Science and Business Media LLC. - 2397-3366. ; 6:2, s. 275-286
  • Tidskriftsartikel (refereegranskat)abstract
    • One of the most poorly understood stellar evolutionary paths is that of binary systems undergoing common-envelope evolution, when the envelope of a giant star engulfs the orbit of a companion. The interaction that ensues leads to a great variety of astrophysical systems and associated phenomena, but happens over a very short timescale. Unfortunately, direct empirical studies of this momentous and complex phase are difficult at present because few objects experiencing, or having just experienced, common-envelope evolution are known. Here we present Atacama Large Millimeter/submillimeter Array observations of minor CO isotopologues towards a sample of sources known as water fountains, which reveal that almost all of them recently lost a substantial fraction of their initial mass over a timescale of less than a few tens to a few hundreds of years. The only known mechanism able to explain such rapid mass ejection, corresponding to a large fraction of the stellar mass, is the common-envelope evolution. A stellar population analysis shows that the number of water-fountain sources in the Milky Way is comparable to the expected number of common-envelope events that involve low-mass evolved stars. Thus, the known sample of water-fountain sources accounts for a large fraction of the systems undergoing a common-envelope phase in our Galaxy. As one of the distinguishing characteristics of water-fountain sources is their fast bipolar outflow, we conclude that outflows and jets play an important role right before, during or immediately after the common-envelope phase.
  •  
22.
  • Sabin, L., et al. (författare)
  • ALMA reveals the coherence of the magnetic field geometry in OH 231.8+4.2
  • 2020
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 495:4, s. 4297-4305
  • Tidskriftsartikel (refereegranskat)abstract
    • In a continuing effort to investigate the role of magnetic fields in evolved low- and intermediate-mass stars (principally regarding the shaping of their envelopes), we present new Atacama Large Millimeter/submillimeter Array (ALMA) high-resolution polarization data obtained for the nebula OH 231.8+4.2. We found that the polarized emission likely arises from aligned grains in the presence of magnetic fields rather than radiative alignment and self-scattering. The ALMA data show well organized electric field orientations in most of the nebula and the inferred magnetic field vectors (rotated by 90 degrees) trace an hourglass morphology centred on the central system of the nebula. One region in the southern part of OH 231.8+4.2 shows a less organized distribution probably due to the shocked environment. These findings, in conjunction with earlier investigations (maser studies and dust emission analysis at other scales and wavelengths) suggest an overall magnetic hourglass located inside a toroidal field. We propose the idea that the magnetic field structure is closely related to the architecture of a magnetic tower and that the outflows were therefore magnetically launched. While the current dynamical effect of the fields might be weak in the equatorial plane principally due to the evolution of the envelope, it would still be affecting the outflows. In that regard, the measurement of the magnetic field at the stellar surface, which is still missing, combined with a full magnetohydrodynamic treatment are required to better understand and constrain the events occurring in OH 231.8+4.2.
  •  
23.
  • Ueta, T., et al. (författare)
  • Herschel Planetary Nebula Survey (HerPlaNS)
  • 2014
  • Ingår i: Asymmetrical Planetary Nebulae VI conference, Proceedings of the conference held 4-8 November, 2013. ; , s. 106-
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • The Herschel Planetary Nebula Survey (HerPlaNS) is one of the largest Open Time programs carried out by the Herschel Space Observatory, by which we simultaneously probe the dust and gas components of the circumstellar environments of evolved stars. HerPlaNS is part of a community-wide panchromatic (from X-ray to Radio) observational initiative to furnish substantial PN data resources that would allow us - PN astronomers - to tackle a multitude of issues in PN physics. In this contribution we will give a general overview of the survey and a glimpse of what the data can tell us using NGC 6781 as an example.
  •  
24.
  • Ueta, T., et al. (författare)
  • Planetary Nebula dust haloes revealed by Herschel
  • 2013
  • Ingår i: Proceedings of Science. - Trieste, Italy : Sissa Medialab. - 1824-8039.
  • Konferensbidrag (refereegranskat)abstract
    • Herschel Planetary Nebula Survey (HerPlaNS) is a far-IR imaging and spectroscopic survey of planetary nebulae, performedwith the Herschel Space Observatory, aiming at (1) establishing the spatially-resolved far-IR characteristics of the target nebulae and (2) understanding the energetics and shaping history of the circumstellar nebulae. Below we briefly demonstrate the breadth and depth of the HerPlaNS data set using one of the targets, NGC6781, as an example, and explore expectations in the era of SPICA, the next-generation far-IR mission.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-24 av 24

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy