SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sammen Saad Sh.) "

Sökning: WFRF:(Sammen Saad Sh.)

  • Resultat 1-25 av 28
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abba, S. I., et al. (författare)
  • Effluents quality prediction by using nonlinear dynamic block-oriented models : A system identification approach
  • 2021
  • Ingår i: Desalination and Water Treatment. - : Desalination Publications. - 1944-3994 .- 1944-3986. ; 218, s. 52-62
  • Tidskriftsartikel (refereegranskat)abstract
    • The dynamic and complex municipal wastewater treatment plant (MWWTP) process should be handled efficiently to safeguard the excellent quality of effluents characteristics. Most of the available mathematical models do not efficiently capture the MWWTP process, in such cases, the data-driven models are reliable and indispensable for effective modeling of effluents characteristics. In the present research, two nonlinear system identification (NSI) models namely; Hammerstein-Wiener model (HW) and nonlinear autoregressive with exogenous (NARX) neural network model, and a classical autoregressive (AR) model were proposed to predict the characteristics of the effluent of total suspended solids (TSSeff) and pHeff from Nicosia MWWTP in Cyprus. In order to attain the optimal models, two different combinations of input variables were cast through auto-correla-tion function and partial auto-correlation analysis. The prediction accuracy was evaluated using three statistical indicators the determination coefficient (DC), root mean square error (RMSE) and correlation coefficient (CC). The results of the appraisal indicated that the HW model outperformed NARX and AR models in predicting the pHeff, while the NARX model performed better than the HW and AR models for TSSeff prediction. It was evident that the accuracy of the HW increased averagely up to 18% with regards to the NARX model for pHeff . Likewise, the TSSeff performance increased averagely up to 25% with regards to the HW model. Also, in the validation phase, the HW model yielded DC, RMSE, and CC of 0.7355, 0.1071, and 0.8578 for pHeff, while the NARX model yielded 0.9804, 0.0049 and 0.9902 for TSSeff, respectively. For comparison with the traditional AR, the results showed that both HW and NARX models outperformed in (TSSeff) and pHeff prediction at the study location. Hence, the outcomes determined that the NSI model (i.e., HW and NARX) are reliable and resilient modeling tools that could be adopted for pHeff and TSSeff prediction.
  •  
2.
  • Abba, S.I., et al. (författare)
  • Integrating feature extraction approaches with hybrid emotional neural networks for water quality index modeling
  • 2022
  • Ingår i: Applied Soft Computing. - : Elsevier. - 1568-4946 .- 1872-9681. ; 114
  • Tidskriftsartikel (refereegranskat)abstract
    • The establishment of water quality prediction models is vital for aquatic ecosystems analysis. The traditional methods of water quality index (WQI) analysis are time-consuming and associated with a high degree of errors. These days, the application of artificial intelligence (AI) based models are trending for capturing nonlinear and complex processes. Therefore, the present study was conducted to predict the WQI in the Kinta River, Malaysia by employing the hybrid AI model i.e., GA-EANN (genetic algorithm-emotional artificial neural network). The extreme gradient boosting (XGB) and neuro-sensitivity analysis (NSA) approaches were utilized for feature extraction, and six different model combinations were derived to examine the relationship among the WQI with water quality (WQ) variables. The efficacy of the proposed hybrid GA-EANN model was evaluated against the backpropagation neural network (BPNN) and multilinear regression (MLR) models during calibration, and validation periods based on Nash–Sutcliffeefficiency (NSE), mean square error (MSE), root mean square error (RMSE), mean absolute percentage error (MAPE), and correlation coefficient (CC) indicators. According to results of appraisal the hybrid GA-EANN model produced better outcomes (NSE = 0.9233/ 0.9018, MSE = 10.5195/ 9.7889 mg/L, RMSE = 3.2434/ 3.1287 mg/L, MAPE = 3.8032/ 3.0348 mg/L, CC = 0.9609/ 0.9496) in calibration/ validation phases than BPNN and MLR models. In addition, the results indicate the better performance and suitability of the hybrid GA-EANN model with five input parameters in predicting the WQI for the study site.
  •  
3.
  • Al-Janabi, Ahmed Mohammed Sami, et al. (författare)
  • Optimizing Height and Spacing of Check Dam Systems for Better Grassed Channel Infiltration Capacity
  • 2020
  • Ingår i: Applied Sciences. - Switzerland : MDPI. - 2076-3417. ; 10:11
  • Tidskriftsartikel (refereegranskat)abstract
    • The check dams in grassed stormwater channels enhance infiltration capacity by temporarily blocking water flow. However, the design properties of check dams, such as their height and spacing, have a significant influence on the flow regime in grassed stormwater channels and thus channel infiltration capacity. In this study, a mass-balance method was applied to a grassed channel model to investigate the effects of height and spacing of check dams on channel infiltration capacity. Moreover, an empirical infiltration model was derived by improving the modified Kostiakov model for reliable estimation of infiltration capacity of a grassed stormwater channel due to check dams from four hydraulic parameters of channels, namely, the water level, channel base width, channel side slope, and flow velocity. The result revealed that channel infiltration was increased from 12% to 20% with the increase of check dam height from 10 to 20 cm. However, the infiltration was found to decrease from 20% to 19% when a 20 cm height check dam spacing was increased from 10 to 30 m. These results indicate the effectiveness of increasing height of check dams for maximizing the infiltration capacity of grassed stormwater channels and reduction of runoff volume.
  •  
4.
  • Alsafadi, Karam, et al. (författare)
  • An evapotranspiration deficit-based drought index to detect variability of terrestrial carbon productivity in the Middle East
  • 2022
  • Ingår i: Environmental Research Letters. - UK : Institute of Physics Publishing (IOPP). - 1748-9326. ; 17:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The primary driver of the land carbon sink is gross primary productivity (GPP), the gross absorption of carbon dioxide (CO2) by plant photosynthesis, which currently accounts for about one-quarter of anthropogenic CO2 emissions per year. This study aimed to detect the variability of carbon productivity using the standardized evapotranspiration deficit index (SEDI). Sixteen countries in the Middle East (ME) were selected to investigate drought. To this end, the yearly GPP dataset for the study area, spanning the 35 years (1982–2017) was used. Additionally, the Global Land Evaporation Amsterdam Model (GLEAM, version 3.3a), which estimates the various components of terrestrial evapotranspiration (annual actual and potential evaporation), was used for the same period. The main findings indicated that productivity in croplands and grasslands was more sensitive to the SEDI in Syria, Iraq, and Turkey by 34%, 30.5%, and 29.6% of cropland area respectively, and 25%, 31.5%, and 30.5% of grass land area. A significant positive correlation against the long-term data of the SEDI was recorded. Notably, the GPP recorded a decline of >60% during the 2008 extreme drought in the north of Iraq and the northeast of Syria, which concentrated within the agrarian ecosystem and reached a total vegetation deficit with 100% negative anomalies. The reductions of the annual GPP and anomalies from 2009 to 2012 might have resulted from the decrease in the annual SEDI at the peak 2008 extreme drought event. Ultimately, this led to a long delay in restoring the ecosystem in terms of its vegetation cover. Thus, the proposed study reported that the SEDI is more capable of capturing the GPP variability and closely linked to drought than commonly used indices. Therefore, understanding the response of ecosystem productivity to drought can facilitate the simulation of ecosystem changes under climate change projections.
  •  
5.
  • Amari, Abdelfattah, et al. (författare)
  • Investigation of the viable role of oil sludge-derived activated carbon for oily wastewater remediation
  • 2023
  • Ingår i: Frontiers in Environmental Science. - : Frontiers Media S.A.. - 2296-665X. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • A wide range of studies has been carried out to describe the equilibrium data of adsorption for the surface adsorption process. However, no extensive investigation has been carried out to evaluate the oil sludge based activated carbon surface adsorption. Therefore, the possibility of carbon active production using different oil sludges and consequently the adsorption mechanism of these kind of adsorbents is still unknown. In this study, a novel low-cost approach was introduced to synthesize the activated carbon using oil sludge applying a two-step process including carbonization and chemical activation. In this way, four different types of oil sludges were characterized and then applied to synthesize different carbon actives and their performance were investigated as an adsorbent. The results showed that all synthesized activated carbons, with about 6% ash and pH = 7 and the specific surface area of 110 m2/gr, have the ability to treatment of oily wastewater; which can be referred to the high carbon content (>80%). The iodine number and the efficiency of prepared activated carbon were obtained as 406.8 mg/g and 94%, respectively. The adsorption process was also studied at different process conditions such as temperature (308–338 K), pH value (3–9) and adsorbent amount (50–200 mg/L) to find the optimum condition for wastewater treatment. The results show that the pH value has an optimum in the adsorption rate (the maximum adsorption was measured at pH = 5) and the adsorption capacity can be reduced by increasing the temperature or decreasing the adsorbent amount. Moreover, three different adsorption isotherm models were applied, i.e., Langmuir, Temkin, and Freundlich isotherms; which the Langmuir equation was more suitable than others investigated isotherm models with R2 ≈ 0.999.
  •  
6.
  • Bhat, Shakeel Ahmad, et al. (författare)
  • Application of Biochar for Improving Physical, Chemical, and Hydrological Soil Properties: A Systematic Review
  • 2022
  • Ingår i: Sustainability. - : MDPI. - 2071-1050. ; 14:17
  • Forskningsöversikt (refereegranskat)abstract
    • Biochar is a carbon-based substance made by the pyrolysis of organic waste. The amount of biochar produced is determined by the type of feedstock and pyrolysis conditions. Biochar is frequently added to the soil for various reasons, including carbon sequestration, greenhouse gas mitigation, improved crop production by boosting soil fertility, removing harmful contaminants, and drought mitigation. Biochar may also be used for waste management and wastewater treatment. Biochar’s various advantages make it a potentially appealing instrument material for current science and technology. Although biochar’s impacts on soil chemical qualities and fertility have been extensively researched, little is known about its impact on enhancing soil physical qualities. This review is intended to describe biochar’s influence on some crucial soil physical and hydrological properties, including bulk density of soil, water holding capacity, soil porosity, soil hydraulic conductivity, soil water retention, water repellence–available plant water, water infiltration, soil temperature, soil color, and surface albedo. Therefore, we propose that the application of biochar in soils has considerable advantages, and this is especially true for arable soils with low fertility.
  •  
7.
  • El Jery, Atef, et al. (författare)
  • Industrial oily wastewater treatment by microfiltration using silver nanoparticle-incorporated poly (acrylonitrile-styrene) membrane
  • 2023
  • Ingår i: Environmental Sciences Europe. - : Springer. - 2190-4707 .- 2190-4715. ; 35:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Membrane filtration exhibit operational limitations such as biofouling, which leads to concentration polarization and reduces permeability and selectivity, despite advantages such as low operating cost, high selectivity, and permeability. In recent years, the antibacterial properties of silver nanoparticles (AgNPs) have been investigated for improving membrane processes; however, the fouling phenomena in presence of AgNPs in the membrane matrix have not been fully discussed. Herein, the antifouling properties of a poly (acrylonitrile-styrene) copolymer incorporated with AgNPs were studied in a microfiltration membrane process. The Creighton method was used to synthesize AgNPs, and the effects of AgNPs on the porosity, morphology, pore size, mechanical strength, permeability, and selectivity of the membranes were investigated. Moreover, to investigate the biofouling of the obtained membranes, microfiltration of industrial oily wastewater was performed at constant pressure over three cycles. Using AgNPs in the membrane matrix resulted in enhanced antifouling properties of the copolymer membrane, which is related to the structure of the AgNPs in the casting solution, as proven by SAXS analysis. The results show that the CFU% for Staphylococcus aureus and E.coli reach 2% and 6%, respectively. Finally, the Derjaguin–Landau–Verwey–Overbeek (DLVO) thermodynamic model was applied to study the antifouling mechanism, correctly predict the separation behavior in the membrane, and design, simulate, and optimize the separation processes in the membrane separation plantsa. The DLVO model could predict the separation behavior in the synthesized membranes, and the poly(acrylonitrile-styrene) copolymer membranes containing AgNPs were proven have promising industrial wastewater treatment applications.
  •  
8.
  • El Jery, Atef, et al. (författare)
  • Isotherms, kinetics and thermodynamic mechanism of methylene blue dye adsorption on synthesized activated carbon
  • 2024
  • Ingår i: Scientific Reports. - : Springer Nature. - 2045-2322. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The treatment of methylene blue (MB) dye wastewater through the adsorption process has been a subject of extensive research. However, a comprehensive understanding of the thermodynamic aspects of dye solution adsorption is lacking. Previous studies have primarily focused on enhancing the adsorption capacity of methylene blue dye. This study aimed to develop an environmentally friendly and cost-effective method for treating methylene blue dye wastewater and to gain insights into the thermodynamics and kinetics of the adsorption process for optimization. An adsorbent with selective methylene blue dye adsorption capabilities was synthesized using rice straw as the precursor. Experimental studies were conducted to investigate the adsorption isotherms and models under various process conditions, aiming to bridge gaps in previous research and enhance the understanding of adsorption mechanisms. Several adsorption isotherm models, including Langmuir, Temkin, Freundlich, and Langmuir–Freundlich, were applied to theoretically describe the adsorption mechanism. Equilibrium thermodynamic results demonstrated that the calculated equilibrium adsorption capacity (qe) aligned well with the experimentally obtained data. These findings of the study provide valuable insights into the thermodynamics and kinetics of methylene blue dye adsorption, with potential applications beyond this specific dye type. The utilization of rice straw as an adsorbent material presents a novel and cost-effective approach for MB dye removal from wastewater.
  •  
9.
  • El Jery, Atef, et al. (författare)
  • Optimization of oil industry wastewater treatment system and proposing empirical correlations for chemical oxygen demand removal using electrocoagulation and predicting the system’s performance by artificial neural network
  • 2023
  • Ingår i: PeerJ. - : PeerJ Inc.. - 2167-8359. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • The alarming pace of environmental degradation necessitates the treatment of wastewater from the oil industry in order to ensure the long-term sustainability of human civilization. Electrocoagulation has emerged as a promising method for optimizing the removal of chemical oxygen demand (COD) from wastewater obtained from oil refineries. Therefore, in this study, electrocoagulation was experimentally investigated, and a single-factorial approach was employed to identify the optimal conditions, taking into account various parameters such as current density, pH, COD concentration, electrode surface area, and NaCl concentration. The experimental findings revealed that the most favorable conditions for COD removal were determined to be 24 mA/cm2 for current density, pH 8, a COD concentration of 500 mg/l, an electrode surface area of 25.26 cm2, and a NaCl concentration of 0.5 g/l. Correlation equations were proposed to describe the relationship between COD removal and the aforementioned parameters, and double-factorial models were examined to analyze the impact of COD removal over time. The most favorable outcomes were observed after a reaction time of 20 min. Furthermore, an artificial neural network model was developed based on the experimental data to predict COD removal from wastewater generated by the oil industry. The model exhibited a mean absolute error (MAE) of 1.12% and a coefficient of determination (R2) of 0.99, indicating its high accuracy. These findings suggest that machine learning-based models have the potential to effectively predict COD removal and may even serve as viable alternatives to traditional experimental and numerical techniques.
  •  
10.
  • El Jery, Atef, et al. (författare)
  • Proposing empirical correlations and optimization of Nu and Sgen of nanofluids in channels and predicting them using artificial neural network
  • 2023
  • Ingår i: Case Studies in Thermal Engineering. - : Elsevier. - 2214-157X. ; 45
  • Tidskriftsartikel (refereegranskat)abstract
    • Getting the best performance from a thermal system requires two fundamental analyses, energy and entropy generation. An ideal mechanism has the highest Nu and the lowest entropy Sgen. As part of this research, a large dataset of fluid flow via tubes has been collected experimentally. As well as the inclusion of nanoparticles, analyses are included as well. By using deep learning algorithms, the Nusselt number and total entropy generation are predicted. In both models, the mean absolute error was lower than 5%. To determine the most accurate model, hyperparameter tuning is performed. That is adjusting all the settings in the neural network to attain the best results. The results of the predictive models are compared against experimental and benchmark results. The study incorporates a massive optimization strategy to fine-tune the predictive capabilities of the models. Furthermore, the model's predictive abilities are evaluated through the use of the coefficient of determination R2. For water and nanofluids flowing through circular, square, and rectangular cross-sections, the proposed models can predict Nu and Sgen. The results showed remarkable agreement with the experimental results. The models showed an MAE of not higher than 1.33%, which is a great achievement. Also, empirical correlations are proposed for both parameters, and double factorial optimization is implemented. The results showed that to achieve the best results, the Re should be higher than 1600, and the nanoparticle concentration should be 3%. A thorough justification of selected cases is presented as well.
  •  
11.
  • El Jery, Atef, et al. (författare)
  • Thermodynamic and structural investigation of oily wastewater treatment using peach kernel and walnut shell based activated carbon
  • 2024
  • Ingår i: PLOS ONE. - : Public Library of Science. - 1932-6203. ; 19:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite the many articles about activated carbon with different precursors in adsorption process, no in-depth research has been carried out to understand the causes of the difference in surface adsorption characteristics of activated carbon with different precursors and different activation processes. In this work, the ability of two active carbon adsorbents made of walnut shell and peach kernel by two chemical and physical methods (totally 4 different types of activated carbon) in treatment of oily wastewater including diesel, gasoline, used oil or engine lubricant has been compared. The results show that the chemical activated peach carbon active with 97% hardness has provided the highest hardness and physical activated walnut carbon active has obtained the lowest hardness value (87%). It is also found that peach activated carbon has a higher iodine number than walnut activated carbon, and this amount can be increased using chemical methods; Therefore, the highest amount of Iodine Number is related to Peach activated carbon that is made by chemical method (1230 mg/g), and the lowest amount of iodine number is seen in walnut activated carbon that is made by physical method (1020 mg/g). moreover, the pore diameter of physical activated carbon is lower than chemical activated carbon in all cases. So that the pore diameter of chemical activated peach carbon active is equal to 22.08 μm and the measured pore diameter of physical activated peach carbon active is equal to 20.42 μm. These values for walnut are obtained as 22.74 μm and 21.86 μm, respectively. Furthermore, the temperature and pH effects on the adsorption of different synthesized oily wastewater was studied and it was found that a decrease in adsorption can be seen with an increase in temperature or decreasing the pH value, which can be referred to this fact that the process of adsorption is an exothermic process. Finally, to analyze the compatibility of adsorption isotherms with experimental data and to predict the adsorption process, three different isotherms named Langmuir, Temkin, and Freundlich isotherms were applied and their parameters were correlated. The correlation results show that the Langmuir isotherm had the best correlation in all cases compared to the Freundlich and Temkin isotherms, based on the correlation coefficient, and the calculated R2 values which was greater than 0.99 in all the studied cases.
  •  
12.
  • Elboughdiri, Noureddine, et al. (författare)
  • Tailoring porous organic polymers with enhanced capacity, thermal stability and surface area for perfluorooctane sulfonic acid (PFOS) elimination from water environment
  • 2023
  • Ingår i: Applied water science. - : Springer. - 2190-5487 .- 2190-5495. ; 13:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Perfluorooctane sulfonic acid (PFOS), a perfluoroalkyl substance, has engendered alarm over its presence in water sources due to its intrinsic toxicity. Hence, there is a pressing need to identify efficacious adsorbents capable of removing PFAS derivatives from water. To achieve this, batch adsorption studies under various circumstances were employed to tune amorphous polymer networks regarding their morphological configuration, heat durability, surface area and capacity to adsorb PFOS in water. A facile, one-pot nucleophilic substitution reaction was employed to synthesize amorphous polymer networks using triazine derivatives as building units for monomers. Notably, POP-3 exhibited a superlative adsorption capacity, with a removal efficiency of 97.8%, compared to 90.3% for POP-7. POP-7 exhibited a higher specific surface area (SBET) of 232 m2 g−1 compared to POP-3 with a surface area of 5.2 m2 g−1. Additionally, the study emphasizes the importance of electrostatic forces in PFOS adsorption, with pH being a significant element, as seen by changes in the PFOS sorption process by both polymeric networks under neutral, basic and acidic environments. The optimal pH value for the PFOS removal process using both polymers was found to be 4. Also, POP-7 exhibited a better thermal stability performance (300 °C) compared to POP-3 (190 °C). Finally, these findings indicate the ease with which amorphous polymeric frameworks may be synthesized as robust and effective adsorbents for the elimination of PFOS from waterbodies.
  •  
13.
  • Habeeb, Rimsha, et al. (författare)
  • A Proposed Comparative Algorithm for Regional Crop Yield Assessment: An Application of Characteristic Objects Method
  • 2022
  • Ingår i: Mathematical problems in engineering (Print). - : Hindawi Publishing Corporation. - 1024-123X .- 1563-5147. ; 2022
  • Tidskriftsartikel (refereegranskat)abstract
    • The agriculture sector plays a vibrant role in the economic prosperity of advanced and developing countries. It is a crucial source of revenue for the majority of the population. Nevertheless, unfortunately, in Pakistan, the share of the agricultural sector in Gross Domestic Product (GDP) is gradually declining. Therefore, comprehensive strategies and actions need to be developed and implement to enhance the agricultural productivity of Pakistan. In this study, an attempt has been made to examine the crop yield revenue of Punjab, Pakistan, by ranking the districts according to their contribution to the agricultural GDP of Pakistan's economy. A Multi-Criteria Decision Making (MCDM) technique, namely, characteristic objects method (COMET), which is entirely free of the rank reversal paradox, is used for this purpose. However, to make a fair comparison, in this research, a comprehensive framework is proposed to normalize the crop yield revenue of Punjab under probabilistic nature. The proposed framework is applied to various districts of Punjab, Pakistan, from 1992 to 2019. It is concluded that Jhang, Faisalabad, and Rahim Yar Khan (RYK) are the highest-ranked districts, while Nankana Sahib, Rawalpindi, and Islamabad are the lowest-ranked districts of Punjab, Pakistan, according to their contribution to the agricultural GDP of Pakistan's economy. Outcomes associated with this research would be helpful to build precise and accurate budget allocation policies.
  •  
14.
  • Habeeb, Rimsha, et al. (författare)
  • Modified Standardized Precipitation Evapotranspiration Index: spatiotemporal analysis of drought
  • 2023
  • Ingår i: Geomatics, Natural Hazards and Risk. - : Taylor & Francis. - 1947-5705 .- 1947-5713. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Drought monitoring is a complicated issue as it requires multiple meteorological variables to monitor and anticipate drought accurately. Therefore, developing a method that enables researchers, data scientists, and planners to comprehend drought mitigation policies more accurately is essential. In this research, based on the concepts behind the calculation of the Standardized Precipitation Evapotranspiration Index (SPEI), a new drought index is proposed for regional drought monitoring: the Modified Standardized Precipitation Evapotranspiration Index (MSPEI). The potential of the proposed index is based on the estimation of Reference Evapotranspiration (ETo). Therefore, the Modified Hargreaves-Samani (MHS) equation based on fuzzy logic calibration is used to estimate ETo. The proposed index is validated on ten meteorological stations in Pakistan at a one-month time scale. Afterward, based on the Pearson correlation, the performance of the proposed index is compared with the commonly used drought index (SPEI). Results showed a significant correlation (r > 0.7) between the quantitative values of MSPEI and SPEI for all ten stations. Moreover, a modified Tjostheims coefficient is used to estimate and test the spatial correlation between SPEI and MSPEI for different drought classes. According to our findings, the association between the SW, ND, ED, EW, MW, and SD patterns of MSPEI and SPI is 0.74, 0.834, 0.673, 0.592, 0.393, and 0.434, respectively. Meanwhile, considering the significance of future drought trend detection, this research is further extended to detect the future trend of MSPEI by using the Hurst index. In accordance with the results, Bahawalnagar, Sialkot, Lahore, Kotli, and Gilgit all have HI values greater than 0.5 (0.63, 0.58, 0.56, 0.55, and 0.53, respectively). In contrast, Muzaffarabad, Skardu, and Jhelum have HI values 0.47, 0.45 and 0.38, respectively; however, HI values of 0.5 are observed at Dera Ismail Khan (DIK) and Islamabad. Therefore, this research provides a basis for developing and enhancing drought hazard characterization, encouraging researchers and policymakers to monitor and forecast regional droughts using a more accurate drought index.
  •  
15.
  • Hadi, Sinan Jasim, et al. (författare)
  • Non-linear input variable selection approach integrated with non-tuned data intelligence model for streamflow pattern simulation
  • 2019
  • Ingår i: IEEE Access. - USA : IEEE. - 2169-3536. ; 7, s. 141533-141548
  • Tidskriftsartikel (refereegranskat)abstract
    • Streamflow modeling is considered as an essential component for water resources planning and management. There are numerous challenges related to streamflow prediction that are facing water resources engineers. These challenges due to the complex processes associated with several natural variables such as non-stationarity, non-linearity, and randomness. In this study, a new model is proposed to predict long-term streamflow. Several lags that cover several years are abstracted using the potential of Extreme Gradient Boosting (XGB) then after the selected inputs variables are imposed into the predictive model (i.e., Extreme Learning Machine (ELM)). The proposed model is compared with the stand-alone schema in which the optimum lags of the variables are supplied into the XGB and ELM models. Hydrological variables including rainfall, temperature and evapotranspiration are used to build the model and predict the streamflow at Goksu-Himmeti basin in Turkey. The results showed that XGB model performed an excellent result in which can be used for predicting the streamflow pattern. Also, it is clear from the attained results that the accuracy of the streamflow prediction using XGB technique could be improved when the high number of lags was used. However, the implementation of the XGB is tree-based technique in which several issues could be raised such as overfitting problem. The proposed schema XGBELM in which XGB approach is selected the correlated inputs and ranking them according to their importance; then after, the selected inputs are supplied into the ELM model for the prediction process. The XGBELM model outperformed the stand-alone schema of both XGB and ELM models and the high-lagged schema of the XGB. It is important to indicate that the XGBELM model found to improve the prediction ability with minimum variables number.
  •  
16.
  • Jery, Atef El, et al. (författare)
  • A novel experimental and machine learning model to remove COD in a batch reactor equipped with microalgae
  • 2023
  • Ingår i: Applied water science. - : Springer. - 2190-5487 .- 2190-5495. ; 13:7
  • Tidskriftsartikel (refereegranskat)abstract
    • By using microorganisms and the microalgae Chlorella vulgaris in conjunction with sequencing batch reactors (SBRs), the performance of a wastewater treatment facility was studied. For this purpose, the effect of pH, temperature, CODinlet, and air flowrate on COD removal rate and residual was investigated. A single-factorial optimization method is utilized to optimize the amount of COD removal, and the best result is obtained with a pH of 8, CODinlet=600mg/l, and an airflow rate of 55 l/min. Under optimal conditions, the amount of residual COD in the effluent reached 36 mg/l, showing an augmentation in the efficiency of the desired system. Moreover, empirical correlations are proposed for double-factorial optimization of residual COD and COD removal. Also, a multilayer perceptron artificial neural network is proposed to model the process and predict the residual COD concentration. The useful technique of hyperparameter tuning is utilized to obtain the best result for the predictions. All the effective parameters, including the number of hidden layers, neurons, epochs, and batch size, are adjusted. Data from the experiments agreed well with the artificial neural network modeling results. For this modeling, the values of the correlation coefficient (R2) and mean absolute error (MAE) were obtained as 0.98 and 2%, respectively.
  •  
17.
  • Maroufpoor, Saman, et al. (författare)
  • A novel hybridized neuro-fuzzy model with an optimal input combination for dissolved oxygen estimation
  • 2022
  • Ingår i: Frontiers in Environmental Science. - : Frontiers Media S.A.. - 2296-665X. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Dissolved oxygen (DO) is one of the main prerequisites to protect amphibian biological systems and to support powerful administration choices. This research investigated the applicability of Shannon’s entropy theory and correlation in obtaining the combination of the optimum inputs, and then the abstracted input variables were used to develop three novel intelligent hybrid models, namely, NF-GWO (neuro-fuzzy with grey wolf optimizer), NF-SC (subtractive clustering), and NF-FCM (fuzzy c-mean), for estimation of DO concentration. Seven different input combinations of water quality variables, including water temperature (TE), specific conductivity (SC), turbidity (Tu), and pH, were used to develop the prediction models at two stations in California. The performance of proposed models for DO estimation was assessed using statistical metrics and visual interpretation. The results revealed the better performance of NF-GWO for all input combinations than other models where its performance was improved by 24.2–66.2% and 14.9–31.2% in terms of CC (correlation coefficient) and WI (Willmott index) compared to standalone NF for different input combinations. Additionally, the MAE (mean absolute error) and RMSE (root mean absolute error) of the NF model were reduced using the NF-GWO model by 9.9–46.0% and 8.9–47.5%, respectively. Therefore, NF-GWO with all water quality variables as input can be considered the optimal model for predicting DO concentration of the two stations. In contrast, NF-SC performed worst for most of the input combinations. The violin plot of NF-GWO-predicted DO was found most similar to the violin plot of observed data. The dissimilarity with the observed violin was found high for the NF-FCM model. Therefore, this study promotes the hybrid intelligence models to predict DO concentration accurately and resolve complex hydro-environmental problems.
  •  
18.
  • Mohamadi, Sedigheh, et al. (författare)
  • Zoning map for drought prediction using integrated machine learning models with a nomadic people optimization algorithm
  • 2020
  • Ingår i: Natural Hazards. - Germany : Springer. - 0921-030X .- 1573-0840. ; 104:1, s. 537-579
  • Tidskriftsartikel (refereegranskat)abstract
    • The modelling of drought is of utmost importance for the efficient management of water resources. This article used the adaptive neuro-fuzzy interface system (ANFIS), multilayer perceptron (MLP), radial basis function neural network (RBFNN), and support vector machine (SVM) models to forecast meteorological droughts in Iran. The spatial–temporal pattern of droughts in Iran was also found using recorded observation data from 1980 to 2014. A nomadic people algorithm (NPA) was utilized to train the ANFIS, MLP, RBFNN, and SVM models. Additionally, the NPA was benchmarked against the bat algorithm, salp swarm algorithm, and krill algorithm (KA). The hybrid ANFIS, MLP, RBFNN, and SVM models were used to forecast the 3-month standardized precipitation index. New evolutionary algorithms were utilized to improve the convergence speed of the soft computing models and their accuracy. First, random stations, namely, in Azarbayjan (northwest Iran), Khouzestan (southwest Iran), Khorasan (northeast Iran), and Sistan and Balouchestan (southeast Iran) were selected for the testing of the models. According to the results obtained from the Azarbayjan station, the Nash–Sutcliffe efficiency (NSE) was 0.93, 0.86, 0.85, and 0.83 for the ANFIS–NPA, MLP–NPA, RBFNN–NPA, and SVM–NPA models, respectively. For Sistan and Baloucehstan, the results indicated the superiority of the ANFIS–NPA model, followed by the MLP–NPA model, compared to the RBFNN–NPA and SVM–NPA models, and suggested that the hybrid models performed better than the standalone MLP, RBFNN, ANFIS, and SVM models. The second aim of the study was to capture the relationship between large-scale climate signals and drought indices by using a wavelet coherence analysis. The general results indicated that the NPA and wavelet coherence analysis are useful tools for modelling drought indices.
  •  
19.
  • Mokhtar, Ali, et al. (författare)
  • Estimation of SPEI Meteorological Drought using Machine Learning Algorithms
  • 2021
  • Ingår i: IEEE Access. - : IEEE. - 2169-3536. ; 9, s. 65503-65523
  • Tidskriftsartikel (refereegranskat)abstract
    • Accurate estimation of drought events is vital for the mitigation of their adverse consequences on water resources, agriculture and ecosystems. Machine learning algorithms are promising methods for drought prediction as they require less time, minimal inputs, and are relatively less complex than dynamic or physical models. In this study, a combination of machine learning with the Standardized Precipitation Evapotranspiration Index (SPEI) is proposed for analysis of drought within a representative case study in the Tibetan Plateau, China, for the period of 1980-2019. Two timescales of 3 months (SPEI-3) and 6 months (SPEI-6) aggregation were considered. Four machine learning models of Random Forest (RF), the Extreme Gradient Boost (XGB), the Convolutional neural network (CNN) and the Long-term short memory (LSTM) were developed for the estimation of the SPEIs. Seven scenarios of various combinations of climate variables as input were adopted to build the models. The best models were XGB with scenario 5 (precipitation, average temperature, minimum temperature, maximum temperature, wind speed and relative humidity) and RF with scenario 6 (precipitation, average temperature, minimum temperature, maximum temperature, wind speed, relative humidity and sunshine) for estimating SPEI-3. LSTM with scenario 4 (precipitation, average temperature, minimum temperature, maximum temperature, wind speed) was relatively better for SPEI-6 estimation. The best model for SPEI-6 was XGB with scenario 5 and RF with scenario 7 (all input climate variables, i.e., scenario 6 + solar radiation). Based on the NSE index, the performances of XGB and RF models are classified as good fits for scenarios 4 to 7 for both timescales. The developed models produced satisfactory results and they could be used as a rapid tool for decision making by water-managers.
  •  
20.
  • Mokhtar, Ali, et al. (författare)
  • Using Machine Learning Models to Predict Hydroponically Grown Lettuce Yield
  • 2022
  • Ingår i: Frontiers in Plant Science. - : Frontiers Media S.A.. - 1664-462X. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • Prediction of crop yield is an essential task for maximizing the global food supply, particularly in developing countries. This study investigated lettuce yield (fresh weight) prediction using four machine learning (ML) models, namely, support vector regressor (SVR), extreme gradient boosting (XGB), random forest (RF), and deep neural network (DNN). It was cultivated in three hydroponics systems (i.e., suspended nutrient film technique system, pyramidal aeroponic system, and tower aeroponic system), which interacted with three different magnetic unit strengths under a controlled greenhouse environment during the growing season in 2018 and 2019. Three scenarios consisting of the combinations of input variables (i.e., leaf number, water consumption, dry weight, stem length, and stem diameter) were assessed. The XGB model with scenario 3 (all input variables) yielded the lowest root mean square error (RMSE) of 8.88 g followed by SVR with the same scenario that achieved 9.55 g, and the highest result was by RF with scenario 1 (i.e., leaf number and water consumption) that achieved 12.89 g. All model scenarios having Scatter Index (SI) (i.e., RMSE divided by the average values of the observed yield) values less than 0.1 were classified as excellent in predicting fresh lettuce yield. Based on all of the performance statistics, the two best models were SVR with scenario 3 and DNN with scenario 2 (i.e., leaf number, water consumption, and dry weight). However, DNN with scenario 2 requiring less input variables is preferred. The potential of the DNN model to predict fresh lettuce yield is promising, and it can be applied on a large scale as a rapid tool for decision-makers to manage crop yield.
  •  
21.
  • Muhammad, Mohd Khairul Idlan, et al. (författare)
  • Heatwaves in Peninsular Malaysia: a spatiotemporal analysis
  • 2024
  • Ingår i: Scientific Reports. - : Springer Nature. - 2045-2322. ; 14
  • Tidskriftsartikel (refereegranskat)abstract
    • One of the direct and unavoidable consequences of global warming-induced rising temperatures is the more recurrent and severe heatwaves. In recent years, even countries like Malaysia seldom had some mild to severe heatwaves. As the Earth's average temperature continues to rise, heatwaves in Malaysia will undoubtedly worsen in the future. It is crucial to characterize and monitor heat events across time to effectively prepare for and implement preventative actions to lessen heatwave's social and economic effects. This study proposes heatwave-related indices that take into account both daily maximum (Tmax) and daily lowest (Tmin) temperatures to evaluate shifts in heatwave features in Peninsular Malaysia (PM). Daily ERA5 temperature dataset with a geographical resolution of 0.25° for the period 1950–2022 was used to analyze the changes in the frequency and severity of heat waves across PM, while the LandScan gridded population data from 2000 to 2020 was used to calculate the affected population to the heatwaves. This study also utilized Sen's slope for trend analysis of heatwave characteristics, which separates multi-decadal oscillatory fluctuations from secular trends. The findings demonstrated that the geographical pattern of heatwaves in PM could be reconstructed if daily Tmax is more than the 95th percentile for 3 or more days. The data indicated that the southwest was more prone to severe heatwaves. The PM experienced more heatwaves after 2000 than before. Overall, the heatwave-affected area in PM has increased by 8.98 km2/decade and its duration by 1.54 days/decade. The highest population affected was located in the central south region of PM. These findings provide valuable insights into the heatwaves pattern and impact.
  •  
22.
  • Niaz, Rizwan, et al. (författare)
  • A new spatiotemporal two-stage standardized weighted procedure for regional drought analysis
  • 2022
  • Ingår i: PeerJ. - : PeerJ. - 2167-8359. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Drought is a complex phenomenon that occurs due to insufficient precipitation. It does not have immediate effects, but sustained drought can affect the hydrological, agriculture, economic sectors of the country. Therefore, there is a need for efficient methods and techniques that properly determine drought and its effects. Considering the significance and importance of drought monitoring methodologies, a new drought assessment procedure is proposed in the current study, known as the Maximum Spatio-Temporal Two-Stage Standardized Weighted Index (MSTTSSWI). The proposed MSTTSSWI is based on the weighting scheme, known as the Spatio-Temporal Two-Stage Standardized Weighting Scheme (STTSSWS). The potential of the weighting scheme is based on the Standardized Precipitation Index (SPI), Standardized Precipitation Evapotranspiration Index (SPEI), and the steady-state probabilities. Further, the STTSSWS computes spatiotemporal weights in two stages for various drought categories and stations. In the first stage of the STTSSWS, the SPI, SPEI, and the steady-state probabilities are calculated for each station at a 1-month time scale to assign weights for varying drought categories. However, in the second stage, these weights are further propagated based on spatiotemporal characteristics to obtain new weights for the various drought categories in the selected region. The STTSSWS is applied to the six meteorological stations of the Northern area, Pakistan. Moreover, the spatiotemporal weights obtained from STTSSWS are used to calculate MSTTSSWI for regional drought characterization. The MSTTSSWI may accurately provide regional spatiotemporal characteristics for the drought in the selected region and motivates researchers and policymakers to use the more comprehensive and accurate spatiotemporal characterization of drought in the selected region.
  •  
23.
  • Niaz, Rizwan, et al. (författare)
  • Assessing the Probability of Drought Severity in a Homogeneous Region
  • 2022
  • Ingår i: Complexity. - UK : Hindawi Publishing Corporation. - 1076-2787 .- 1099-0526. ; 2022
  • Tidskriftsartikel (refereegranskat)abstract
    • The standardized precipitation index (SPI) is one of the most widely used indices for characterizing and monitoring drought in various regions. SPI's applicability has regional and time-scale constraints when it observes in several homogeneous climatic regions with similar characteristics. It also does not provide sufficient knowledge about precipitation deficits and the spatiotemporal evolution of drought. Therefore, a new method, the regional spatially agglomerative continuous drought probability monitoring system (RSACDPMS), is proposed to obtain spatiotemporal information and monitor drought characteristics more expeditiously. The proposed framework uses spatially agglomerative precipitation (SAP) and copulas’ functions to continuously monitor the drought probability in the homogenous region. The RSACDPMS is validated in the region of the Northern area of Pakistan. The outcomes of the current study provide a better quantitative way to obtain appropriate information about precipitation deficits and the spatiotemporal evolution of drought.
  •  
24.
  • Pham, Quoc Bao, et al. (författare)
  • A new hybrid model based on relevance vector machine with flower pollination algorithm for phycocyanin pigment concentration estimation
  • 2021
  • Ingår i: Environmental Science and Pollution Research. - : Springer Science and Business Media LLC. - 0944-1344 .- 1614-7499. ; 28, s. 32564-32579
  • Tidskriftsartikel (refereegranskat)abstract
    • Precise monitoring of cyanobacteria concentration in water resources is a daunting task. The development of reliable tools to monitor this contamination is an important research topic in water resources management. Indirect methods such as chlorophyll-a determination, cell counting, and toxin measurement of the cyanobacteria are tedious, cumbersome, and often lead to inaccurate results. The quantity of phycocyanin (PC) pigment is considered more appropriate for cyanobacteria monitoring. Traditional approaches for PC estimation are time-consuming, expensive, and require high expertise. Recently, some studies have proposed the application of artificial intelligence (AI) techniques to predict the amount of PC concentration. Nonetheless, most of these researches are limited to standalone modeling schemas such as artificial neural network (ANN), multilayer perceptron (MLP), and support vector machine (SVM). The independent schema provides imprecise results when faced with highly nonlinear systems and data uncertainties resulting from environmental disturbances. To alleviate the limitations of the existing models, this study proposes the first application of a hybrid AI model that integrates the potentials of relevance vector machine (RVM) and flower pollination algorithm (RVM-FPA) to predict the PC concentration in water resources. The performance of the hybrid model is compared with the standalone RVM model. The prediction performance of the proposed models was evaluated at two stations (stations 508 and 478) using different statistical and graphical performance evaluation methods. The results showed that the hybrid models exhibited higher performance at both stations compared to the standalone RVM model. The proposed hybrid RVM-FPA can therefore serve as a reliable predictive tool for PC concentration in water resources.
  •  
25.
  • Sammen, Saad Sh., et al. (författare)
  • Assessment of climate change impact on probable maximum floods in a tropical catchment
  • 2022
  • Ingår i: Journal of Theoretical and Applied Climatology. - : Springer. - 0177-798X .- 1434-4483. ; 148:1-2, s. 15-31
  • Tidskriftsartikel (refereegranskat)abstract
    • The increases in extreme rainfall could increase the probable maximum flood (PMF) and pose a severe threat to the critical hydraulic infrastructure such as dams and flood protection structures. This study is conducted to assess the impact of climate change on PMF in a tropical catchment. Climate and inflow data of the Tenmengor reservoir, located in the state of Perak in Malaysia, have been used to calibrate and validate the hydrological model. The projected rainfall from regional climate model is used to generate probable maximum precipitation (PMP) for future periods. A hydrological model was used to simulate PMF from PMP estimated for the historical and two future periods, early (2031 − 2045) and late (2060 − 2075). The results revealed good performance of the hydrological model with Nash–Sutcliffe efficiency, 0.74, and the relative standard error, 0.51, during validation. The estimated rainfall depths were 89.5 mm, 106.3 mm, and 143.3 mm, respectively, for 5, 10, and 50 years of the return period. The study indicated an increase in PMP by 162% to 507% and 259% to 487% during early and late periods for different return periods ranging from 5 to 1000 years. This would cause an increase in PMF by 48.9% and 122.6% during early and late periods. A large increase in PMF indicates the possibility of devastating floods in the future in his tropical catchment due to climate change.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 28

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy