SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sandén Taru) "

Sökning: WFRF:(Sandén Taru)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Pioli, Silvia, et al. (författare)
  • Linking plant litter microbial diversity to microhabitat conditions, environmental gradients and litter mass loss : Insights from a European study using standard litter bags
  • 2020
  • Ingår i: Soil Biology and Biochemistry. - : Elsevier. - 0038-0717 .- 1879-3428. ; 144
  • Tidskriftsartikel (refereegranskat)abstract
    • Plant litter decomposition is a key process for carbon dynamics and nutrient cycling in terrestrial ecosystems. The interaction between litter properties, climatic conditions and soil attributes, influences the activity of microorganisms responsible for litter mineralization. So far, studies using standardized litters to investigate the response of bacterial and fungal communities under different environmental conditions are scarce, especially along wide geographic ranges.We used a standardized protocol to investigate the diversity of bacteria and fungi in plant litter with the aim of: (i) comparing the microbial communities of native and exotic litters with the community of local soil along a European transect from northern Finland to southern Italy, (ii) defining whether and to what extent, litter types with different traits represent selective substrates for microbial communities, (iii) disentangling the abiotic drivers of microbial diversity, and (iv) correlating the microbial diversity and species co-occurrences patterns with litter mass loss.We buried native litter and three exotic standardized litters (Deschampsia cespitosa, rooibos tea and green tea) at 12 European study sites. We determined litter mass loss after 94 days. We used an automated molecular DNA-based fingerprinting (ARISA) to profile the bacterial and fungal communities of each litter type and soil (180 samples in total).Microbial communities in native and exotic litters differed from local soil assemblages. Green tea and D. cespitosa litter represented more selective substrates compared to native litter and rooibos. Soil moisture and soil temperature were the major drivers of microbial community structure at larger scales, though with varying patterns according to litter type. Soil attributes (i.e. moisture and C/N ratios) better explained the differences in microbial abundances than litter type. Green tea degraded faster than all other litter types and accounted for the largest number of positive co-occurrences among microbial taxa. Litter mass loss was positively correlated with fungal evenness and with the percentage of positive co-occurrences between fungi.Our findings suggest that the microbial community at larger scales reflects the complex interplay between litter type and soil attributes, with the latter exerting a major influence. Mass loss patterns are in part determined by inter- and intra-kingdom interactions and fungal diversity.
  •  
2.
  • Sanden, Taru, et al. (författare)
  • Learning Science during Teatime : Using a Citizen Science Approach to Collect Data on Litter Decomposition in Sweden and Austria
  • 2020
  • Ingår i: Sustainability. - : MDPI. - 2071-1050. ; 12:18, s. 1-14
  • Tidskriftsartikel (refereegranskat)abstract
    • The decay of organic material-litter decomposition-is a critical process for life on Earth and an essential part of the global carbon cycle. Yet, this basic process remains unknown to many citizens. The Tea Bag Index (TBI) measures decomposition in a standardized, measurable, achievable, climate-relevant, and time-relevant way by burying commercial tea bags in soil for three months and calculating proxies to characterize the decomposition process (expressed as decomposition rate (k) and stabilization factor (S)). We measured TBI at 8 cm soil depth with the help of school and farm citizen scientists in 2015 in Sweden and in 2016 in Austria. Questionnaires to the participating schools and farms enabled us to capture lessons learned from this participatory data collection. In total >5500 citizen scientists participated in the mass experiments, and approximately 50% of the tea bags sent out yielded successful results that fell well within previously reported ranges. The average decomposition rates (k) ranged from 0.008 to 0.012 g d(-1) in Sweden and from 0.012 to 0.015 g d(-1) in Austria. Stabilization factors (S) were up to four times higher in Sweden than Austria. Taking part in a global experiment was a great incentive for participants, and in future experiments the citizen scientists and TBI would benefit from having enhanced communication between the researchers and participants about the results gained.
  •  
3.
  • Sarneel, Judith M., et al. (författare)
  • Reading tea leaves worldwide : decoupled drivers of initial litter decomposition mass-loss rate and stabilization
  • 2024
  • Ingår i: Ecology Letters. - : John Wiley & Sons. - 1461-023X .- 1461-0248. ; 27:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The breakdown of plant material fuels soil functioning and biodiversity. Currently, process understanding of global decomposition patterns and the drivers of such patterns are hampered by the lack of coherent large-scale datasets. We buried 36,000 individual litterbags (tea bags) worldwide and found an overall negative correlation between initial mass-loss rates and stabilization factors of plant-derived carbon, using the Tea Bag Index (TBI). The stabilization factor quantifies the degree to which easy-to-degrade components accumulate during early-stage decomposition (e.g. by environmental limitations). However, agriculture and an interaction between moisture and temperature led to a decoupling between initial mass-loss rates and stabilization, notably in colder locations. Using TBI improved mass-loss estimates of natural litter compared to models that ignored stabilization. Ignoring the transformation of dead plant material to more recalcitrant substances during early-stage decomposition, and the environmental control of this transformation, could overestimate carbon losses during early decomposition in carbon cycle models.
  •  
4.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy