SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sassa Yasmine 1981) "

Sökning: WFRF:(Sassa Yasmine 1981)

  • Resultat 1-25 av 55
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Jonsson, Viktor, et al. (författare)
  • Photoelectron dispersion in metallic and insulating thin films
  • 2021
  • Ingår i: Physical Review Research. - : American Physical Society. - 2643-1564. ; 3:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The underlying mechanism behind the metal-to-insulator transition in is still a topic of intense debate. The two leading theoretical interpretations associate the transition with either electron-lattice or electron-electron correlations. Novel experimental results are required to converge towards one of the two scenarios. Here we report on a temperature-dependent angle-resolved photoelectron study of thin films across the metal-to-insulator transition. The obtained experimental results are compared to density functional theory calculations. We find an overall energy shift and compression of the electronic band structure across the transition while the overall band topology is conserved. The results demonstrate the importance of electron-electron correlations in establishing the insulating state.
  •  
2.
  • Benedek, Peter, et al. (författare)
  • Quantifying Diffusion through Interfaces of Lithium-Ion Battery Active Materials
  • 2020
  • Ingår i: ACS Applied Materials & Interfaces. - : American Chemical Society (ACS). - 1944-8252 .- 1944-8244. ; 12:14, s. 16243-16249
  • Tidskriftsartikel (refereegranskat)abstract
    • Detailed understanding of charge diffusion processes in a lithium-ion battery is crucial to enable its systematic improvement. Experimental investigation of diffusion at the interface between active particles and the electrolyte is challenging but warrants investigation as it can introduce resistances that, for example, limit the charge and discharge rates. Here, we show an approach to study diffusion at interfaces using muon spin spectroscopy. By performing measurements on LiFePO4 platelets with different sizes, we determine how diffusion through the LiFePO4 (010) interface differs from that in the center of the particle (i.e., bulk diffusion). We perform ab initio calculations to aid the understanding of the results and show the relevance of our interfacial diffusion measurement to electrochemical performance through cyclic voltammetry measurements. These results indicate that surface engineering can be used to improve the performance of lithium-ion batteries.
  •  
3.
  • Chen, Chih-Yao, et al. (författare)
  • High-voltage honeycomb layered oxide positive electrodes for rechargeable sodium batteries
  • 2020
  • Ingår i: Chemical Communications. - : Royal Society of Chemistry (RSC). - 1364-548X .- 1359-7345. ; 56:65, s. 9272-9275
  • Tidskriftsartikel (refereegranskat)abstract
    • Honeycomb layered oxides from Na2Ni2-xCoxTeO6 family were assessed for use as positive electrodes in rechargeable sodium batteries at ambient and elevated temperatures using ionic liquids. Substitution of nickel with cobalt increases the discharge voltage to nearly 4 V (versus Na+/Na), surpassing the average voltages of most Na based layered oxide positive electrodes.
  •  
4.
  • Duan, Yu Xia, et al. (författare)
  • Crystal electric field splitting and f -electron hybridization in heavy-fermion CePt2In7
  • 2019
  • Ingår i: Physical Review B. - : AMER PHYSICAL SOC. - 2469-9969 .- 2469-9950. ; 100:8
  • Tidskriftsartikel (refereegranskat)abstract
    • We use high-resolution angle-resolved photoemission spectroscopy to investigate the electronic structure of the antiferromagnetic heavy fermion compound CePt2In7, which is a member of the CeIn3-derived heavy fermion material family. Weak hybridization among 4f electron states and conduction bands was identified in CePt2In7 at low temperature much weaker than that in the other heavy fermion compounds like CeIrIn5 and CeRhIn5. The Ce 4f spectrum shows fine structures near the Fermi energy, reflecting the crystal electric field splitting of the 4f5/21 and 4f7/21 states. Also, we find that the Fermi surface has a strongly three-dimensional topology, in agreement with density-functional theory calculations.  © 2019 American Physical Society.
  •  
5.
  • Elson, Frank, et al. (författare)
  • TRIM Simulations Tool for μ + Stopping Fraction in Hydrostatic Pressure Cells
  • 2023
  • Ingår i: Journal of Physics: Conference Series. - : IOP Publishing. - 1742-6588 .- 1742-6596. ; 2462:1
  • Konferensbidrag (refereegranskat)abstract
    • For quantum systems or materials, a common procedure for probing their behaviour is to tune electronic/magnetic properties using external parameters, e.g. temperature, magnetic field or pressure. Pressure application as an external stimuli is a widely used tool, where the sample in question is inserted into a pressure cell providing a hydrostatic pressure condition. Such device causes some practical problems when using in Muon Spin Rotation/Relaxation (μ +SR) experiments as a large proportion of the muons will be implanted in the pressure cell rather than in the sample, resulting in a higher background signal. This issue gets further amplified when the temperature dependent response from the sample is much smaller than that of the pressure cell,which may cause the sample response to be lost in the background and cause difficulties in aligning the sample within the beam. To tackle this issue, we have used pySRIM [1] to construct a practical and helpful simulation tool for calculating muon stopping fractions, specifically for the pressure cell setup at the μE1 beamline using the GPD spectrometer at the Paul Scherrer Institute, with the use of TRIM simulations. The program is used to estimate the number of muon stopping in both the sample and the pressure cell at a given momentum. The simultion tool is programmed into a GUI, making it accessible to user to approximate prior to their experiments at GPD what fractions will belong to the sample and the pressure cell in their fitting procedure.
  •  
6.
  • Facio, Jorge I., et al. (författare)
  • Engineering a pure Dirac regime in ZrTe5
  • 2023
  • Ingår i: SciPost Physics. - : Stichting SciPost. - 2542-4653. ; 14:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Real-world topological semimetals typically exhibit Dirac and Weyl nodes that coexist with trivial Fermi pockets. This tends to mask the physics of the relativistic quasiparti-cles. Using the example of ZrTe5, we show that strain provides a powerful tool for in-situ tuning of the band structure such that all trivial pockets are pushed far away from the Fermi energy, but only for a certain range of Van der Waals gaps. Our results naturally reconcile contradicting reports on the presence or absence of additional pockets in ZrTe5, and provide a clear map of where to find a pure three-dimensional Dirac semimetallic phase in the structural parameter space of the material.
  •  
7.
  • Forslund, Ola Kenji, et al. (författare)
  • Intertwined magnetic sublattices in the double perovskite compound LaSrNiReO6
  • 2020
  • Ingår i: Physical Review B. - : American Physical Society. - 2469-9969 .- 2469-9950. ; 102:14
  • Tidskriftsartikel (refereegranskat)abstract
    • We report a muon spin rotation (μ+SR) study of the magnetic properties of the double perovskite compound LaSrNiReO6. Using the unique length and time scales of the μ+SR technique, we successfully clarify the magnetic ground state of LaSrNiReO6, which was previously deemed as a spin glass state. Instead, our μ+SR results point toward a long-range dynamically ordered ground state below TC=23 K, for which a static limit is foreseen at T=0. Furthermore, between 23K250 K) state. Our results reveal how two separate yet intertwined magnetic lattices interact within the unique double perovskite structure and the importance of using complementary experimental techniques to obtain a complete understanding of the microscopic magnetic properties of complex materials.
  •  
8.
  • Forslund, Ola Kenji, 1990, et al. (författare)
  • Pressure driven magnetic order in Sr 1 - x Ca x Co 2 P 2
  • 2022
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322 .- 2045-2322. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The magnetic phase diagram of Sr1-xCaxCo2P2 as a function of hydrostatic pressure and temperature is investigated by means of high pressure muon spin rotation, relaxation and resonance (μ+SR). The weak pressure dependence for the x≠ 1 compounds suggests that the rich phase diagram of Sr1-xCaxCo2P2 as a function of x at ambient pressure may not solely be attributed to chemical pressure effects. The x= 1 compound on the other hand reveals a high pressure dependence, where the long range magnetic order is fully suppressed at pc 2≈ 9.8 kbar, which seem to be a first order transition. In addition, an intermediate phase consisting of magnetic domains is formed above pc 1≈ 8 kbar where they co-exist with a magnetically disordered state. These domains are likely to be ferromagnetic islands (FMI) and consist of an high- (FMI-1) and low-temperature (FMI-2) region, respectively, separated by a phase boundary at Ti≈ 20 K. This kind of co-existence is unusual and is originating from a coupling between lattice and magnetic degrees of freedoms.
  •  
9.
  • Galeski, S., et al. (författare)
  • Origin of the quasi-quantized Hall effect in ZrTe 5
  • 2021
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723 .- 2041-1723. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The quantum Hall effect (QHE) is traditionally considered to be a purely two-dimensional (2D) phenomenon. Recently, however, a three-dimensional (3D) version of the QHE was reported in the Dirac semimetal ZrTe . It was proposed to arise from a magnetic-field-driven Fermi surface instability, transforming the original 3D electron system into a stack of 2D sheets. Here, we report thermodynamic, spectroscopic, thermoelectric and charge transport measurements on such ZrTe samples. The measured properties: magnetization, ultrasound propagation, scanning tunneling spectroscopy, and Raman spectroscopy, show no signatures of a Fermi surface instability, consistent with in-field single crystal X-ray diffraction. Instead, a direct comparison of the experimental data with linear response calculations based on an effective 3D Dirac Hamiltonian suggests that the quasi-quantization of the observed Hall response emerges from the interplay of the intrinsic properties of the ZrTe electronic structure and its Dirac-type semi-metallic character.
  •  
10.
  • Ge, Yuqing, 1996, et al. (författare)
  • Confirming the high pressure phase diagram of the Shastry-Sutherland model
  • 2023
  • Ingår i: Journal of Physics: Conference Series. - : IOP Publishing. - 1742-6588 .- 1742-6596. ; 2462:1
  • Konferensbidrag (refereegranskat)abstract
    • A Muon Spin Rotation (μ + SR) study was conducted to investigate the magnetic properties of SrCu2(BO3)2 (SCBO) as a function of temperature/pressure. Measurements in zero field and transverse field confirm the absence of long range magnetic order at high pressures and low temperatures. These measurements suggest changes in the Cu spin fluctuations characteristics above 21 kbar, consistent with the formation of a plaquette phase as previously suggested by inelastic neutron scattering measurements. SCBO is the only known realisation of the Shatry-Sutherland model, thus the ground state mediating the dimer and antiferromagnetic phase is likekly to be a plaquette state.
  •  
11.
  • Horio, M., et al. (författare)
  • Electronic reconstruction forming a C-2-symmetric Dirac semimetal in Ca3Ru2O7
  • 2021
  • Ingår i: npj Quantum Materials. - : Springer Science and Business Media LLC. - 2397-4648. ; 6:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Electronic band structures in solids stem from a periodic potential reflecting the structure of either the crystal lattice or electronic order. In the stoichiometric ruthenate Ca3Ru2O7, numerous Fermi surface-sensitive probes indicate a low-temperature electronic reconstruction. Yet, the causality and the reconstructed band structure remain unsolved. Here, we show by angle-resolved photoemission spectroscopy, how in Ca3Ru2O7 a C-2-symmetric massive Dirac semimetal is realized through a Brillouin-zone preserving electronic reconstruction. This Dirac semimetal emerges in a two-stage transition upon cooling. The Dirac point and band velocities are consistent with constraints set by quantum oscillation, thermodynamic, and transport experiments, suggesting that the complete Fermi surface is resolved. The reconstructed structure-incompatible with translational-symmetry-breaking density waves-serves as an important test for band structure calculations of correlated electron systems.
  •  
12.
  • Horio, M., et al. (författare)
  • Orbital-selective metal skin induced by alkali-metal-dosing Mott-insulating Ca 2 RuO 4
  • 2023
  • Ingår i: Communications Physics. - 2399-3650. ; 6:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Doped Mott insulators are the starting point for interesting physics such as high temperature superconductivity and quantum spin liquids. For multi-band Mott insulators, orbital selective ground states have been envisioned. However, orbital selective metals and Mott insulators have been difficult to realize experimentally. Here we demonstrate by photoemission spectroscopy how Ca2RuO4, upon alkali-metal surface doping, develops a single-band metal skin. Our dynamical mean field theory calculations reveal that homogeneous electron doping of Ca2RuO4 results in a multi-band metal. All together, our results provide evidence for an orbital-selective Mott insulator breakdown, which is unachievable via simple electron doping. Supported by a cluster model and cluster perturbation theory calculations, we demonstrate a type of skin metal-insulator transition induced by surface dopants that orbital-selectively hybridize with the bulk Mott state and in turn produce coherent in-gap states.
  •  
13.
  • Horio, M., et al. (författare)
  • Oxide Fermi liquid universality revealed by electron spectroscopy
  • 2020
  • Ingår i: Physical Review B. - 2469-9969 .- 2469-9950. ; 102:24
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a combined soft x-ray and high-resolution vacuum-ultraviolet angle-resolved photoemission spectroscopy study of the electron-overdoped cuprate Pr1.3-xLa0.7CexCuO4 (PLCCO). Demonstration of its highly two-dimensional band structure enabled precise determination of the in-plane self-energy dominated by electron-electron scattering. Through analysis of this self-energy and the Fermi liquid cut-off energy scale, we find-in contrast to hole-doped cuprates-a momentum isotropic and comparatively weak electron correlation in PLCCO. Yet, the self-energies extracted from multiple oxide systems combine to demonstrate a logarithmic divergent relation between the quasiparticle scattering rate and mass. This constitutes a spectroscopic version of the Kadowaki-Woods relation with an important merit-the demonstration of Fermi liquid quasiparticle lifetime and mass being set by a single energy scale.
  •  
14.
  • Jana, Somnath, et al. (författare)
  • Revisiting Goodenough-Kanamori rules in a new series of double perovskites LaSr1-xCaxNiReO6
  • 2019
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322 .- 2045-2322. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The magnetic ground states in highly ordered double perovskites LaSr1-xCaxNiReO6 (x = 0.0, 0.5, 1.0) are studied in view of the Goodenough-Kanamori rules of superexchange interactions in this paper. In LaSrNiReO6, Ni and Re sublattices are found to exhibit curious magnetic states separately, but no long range magnetic ordering is achieved. The magnetic transition at similar to 255 K is identified with the independent Re sublattice magnetic ordering. Interestingly, the sublattice interactions are tuned by modifying the Ni-O-Re bond angles through Ca doping. Upon Ca doping, the Ni and Re sublattices start to display a ferrimagnetically ordered state at low temperature. The neutron powder diffraction data reveals long range ferrimagnetic ordering of the Ni and Re magnetic sublattices along the crystallographic b-axis. The transition temperature of the ferrimagnetic phase increases monotonically with increasing Ca concentration.
  •  
15.
  • John Mukkattukavil, D., et al. (författare)
  • Resonant inelastic soft x-ray scattering on LaPt 2 Si 2
  • 2022
  • Ingår i: Journal of physics. Condensed matter : an Institute of Physics journal. - 1361-648X .- 0953-8984. ; 34:32
  • Tidskriftsartikel (refereegranskat)abstract
    • X-ray absorption and resonant inelastic x-ray scattering spectra of LaPt2Si2single crystal at the Si 2pand La 4dedges are presented. The data are interpreted in terms of density functional theory, showing that the Si spectra can be described in terms of Sisanddlocal partial density of states (LPDOS), and the La spectra are due to quasi-atomic local 4fexcitations. Calculations show that Ptd-LPDOS dominates the occupied states, and a sharp localized Lafstate is found in the unoccupied states, in line with the observations.
  •  
16.
  • Kanyolo, Godwill Mbiti, et al. (författare)
  • Honeycomb layered oxides: Structure, energy storage, transport, topology and relevant insights
  • 2021
  • Ingår i: Chemical Society Reviews. - : Royal Society of Chemistry (RSC). - 1460-4744 .- 0306-0012. ; 50:6, s. 3990-4030
  • Forskningsöversikt (refereegranskat)abstract
    • The advent of nanotechnology has hurtled the discovery and development of nanostructured materials with stellar chemical and physical functionalities in a bid to address issues in energy, environment, telecommunications and healthcare. In this quest, a class of two-dimensional layered materials consisting of alkali or coinage metal atoms sandwiched between slabs exclusively made of transition metal and chalcogen (or pnictogen) atoms arranged in a honeycomb fashion have emerged as materials exhibiting fascinatingly rich crystal chemistry, high-voltage electrochemistry, fast cation diffusion besides playing host to varied exotic electromagnetic and topological phenomena. Currently, with a niche application in energy storage as high-voltage materials, this class of honeycomb layered oxides serves as ideal pedagogical exemplars of the innumerable capabilities of nanomaterials drawing immense interest in multiple fields ranging from materials science, solid-state chemistry, electrochemistry and condensed matter physics. In this review, we delineate the relevant chemistry and physics of honeycomb layered oxides, and discuss their functionalities for tunable electrochemistry, superfast ionic conduction, electromagnetism and topology. Moreover, we elucidate the unexplored albeit vastly promising crystal chemistry space whilst outlining effective ways to identify regions within this compositional space, particularly where interesting electromagnetic and topological properties could be lurking within the aforementioned alkali and coinage-metal honeycomb layered oxide structures. We conclude by pointing towards possible future research directions, particularly the prospective realisation of Kitaev-Heisenberg-Dzyaloshinskii-Moriya interactions with single crystals and Floquet theory in closely-related honeycomb layered oxide materials. This journal is
  •  
17.
  • Kobayashi, Shintaro, et al. (författare)
  • Linear Trimer Formation with Antiferromagnetic Ordering in 1 T-CrSe2 Originating from Peierls-like Instabilities and Interlayer Se-Se Interactions
  • 2019
  • Ingår i: Inorganic Chemistry. - : American Chemical Society (ACS). - 0020-1669 .- 1520-510X. ; 58:21, s. 14304-14315
  • Tidskriftsartikel (refereegranskat)abstract
    • Anomalous successive structural transitions in layered 1T-CrSe 2 with an unusual Cr 4+ valency were investigated by synchrotron X-ray diffraction. 1T-CrSe 2 exhibits dramatic structural changes in in-plane Cr-Cr and interlayer Se-Se distances, which originate from two interactions: (i) in-plane Cr-Cr interactions derived from Peierls-like trimerization instabilities on the orbitally assisted one-dimensional chains and (ii) interlayer Se-Se interactions through p-p hybridization. As a result, 1T-CrSe 2 has the unexpected ground state of an antiferromagnetic metal with multiple Cr linear trimers with three-center-two-electron σ bonds. Interestingly, partial substitution of Se for S atoms in 1T-CrSe 2 changes the ground state from an antiferromagnetic metal to an insulator without long-range magnetic ordering, which is due to the weakening of interlayer interactions between anions. The unique low-temperature structures and electronic states of this system are determined by the competition and cooperation of in-plane Cr-Cr and interlayer Se-Se interactions.
  •  
18.
  • Kobayashi, Takahiro, et al. (författare)
  • Revealing the Hidden Spin-Polarized Bands in a Superconducting Tl Bilayer Crystal
  • 2023
  • Ingår i: Nano Letters. - 1530-6992 .- 1530-6984. ; 23:16, s. 7675-7682
  • Tidskriftsartikel (refereegranskat)abstract
    • The interplay of spin-orbit coupling and crystal symmetry can generate spin-polarized bands in materials only a few atomic layers thick, potentially leading to unprecedented physical properties. In the case of bilayer materials with global inversion symmetry, locally broken inversion symmetry can generate degenerate spin-polarized bands, in which the spins in each layer are oppositely polarized. Here, we demonstrate that the hidden spins in a Tl bilayer crystal are revealed by growing it on Ag(111) of sizable lattice mismatch, together with the appearance of a remarkable phenomenon unique to centrosymmetric hidden-spin bilayer crystals: a novel band splitting in both spin and space. The key to success in observing this novel splitting is that the interaction at the interface has just the right strength: it does not destroy the original wave functions of the Tl bilayer but is strong enough to induce an energy separation.
  •  
19.
  • Kramer, K. P., et al. (författare)
  • Band structure of overdoped cuprate superconductors: Density functional theory matching experiments
  • 2019
  • Ingår i: Physical Review B. - 2469-9969 .- 2469-9950. ; 99:22
  • Tidskriftsartikel (refereegranskat)abstract
    • A comprehensive angle-resolved photoemission spectroscopy study of the band structure in singlelayer cuprates is presented with the aim of uncovering universal trends across different materials. Five different hole-and electron-overdoped cuprate superconductors (La1.59Eu0.2Sr0.21CuO4, La1.77Sr0.23CuO4, Bi1.74Pb0.38Sr1.88CuO6+delta, Tl2Ba2CuO6+delta, and Pr1.15La0.7Ce0.15CuO4) have been studied with special focus on the bands with a predominately d-orbital character. Using a light polarization analysis, the e(g) and t(2g) bands are identified across these materials. A clear correlation between the d(3z2-r2) band energy and the apical oxygen distance d(A) is demonstrated. Moreover, the compound dependence of the d(x2-y2) band bottom and the t(2g) band top is revealed. A direct comparison to density functional theory (DFT) calculations employing hybrid exchange-correlation functionals demonstrates excellent agreement. We thus conclude that the DFT methodology can be used to describe the global band structure of overdoped single-layer cuprates on both the hole-and electron-doped side.
  •  
20.
  • Kramer, K. P., et al. (författare)
  • Revealing the Orbital Composition of Heavy Fermion Quasiparticles in CeRu 2 Si 2
  • 2023
  • Ingår i: Journal of the Physical Society of Japan. - 1347-4073 .- 0031-9015. ; 92:10
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a resonant angle-resolved photoemission spectroscopy (ARPES) study of the electronic band structure and heavy fermion quasiparticles in CeRu2Si2. Using light polarization analysis, considerations of the crystal field environment and hybridization between conduction and f electronic states, we identify the d-electronic orbital character of conduction bands crossing the Fermi level. Resonant ARPES spectra suggest that the localized Ce f states hybridize with eg and t2g states around the zone center. In this fashion, we reveal the orbital structure of the heavy fermion quasiparticles in CeRu2Si2 and discuss its implications for metamagnetism and superconductivity in the related compound CeCu2Si2
  •  
21.
  • Küspert, Julia, et al. (författare)
  • Pseudogap suppression by competition with superconductivity in La-based cuprates
  • 2022
  • Ingår i: Physical Review Research. - 2643-1564. ; 4:4
  • Tidskriftsartikel (refereegranskat)abstract
    • We carried out a comprehensive high-resolution angle-resolved photoemission spectroscopy (ARPES) study of the pseudogap interplay with superconductivity in La-based cuprates. The three systems La2-xSrxCuO4, La1.6-xNd0.4SrxCuO4, and La1.8-xEu0.2SrxCuO4 display slightly different pseudogap critical points in the temperature versus doping phase diagram. We studied the pseudogap evolution into the superconducting state for doping concentrations just below the critical point. In this setting, near optimal doping for superconductivity and in the presence of the weakest possible pseudogap, we uncover how the pseudogap is partially suppressed inside the superconducting state. This conclusion is based on the direct observation of a reduced pseudogap energy scale and re-emergence of spectral weight suppressed by the pseudogap. Altogether these observations suggest that the pseudogap phenomenon in La-based cuprates is in competition with superconductivity for antinodal spectral weight.
  •  
22.
  • Leitner, Torsten, 1979-, et al. (författare)
  • The CoESCA station at BESSY: Auger electron–photoelectron coincidences from surfaces demonstrated for Ag MNN
  • 2021
  • Ingår i: Journal of Electron Spectroscopy and Related Phenomena. - : Elsevier BV. - 0368-2048 .- 1873-2526. ; 250
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work, we present the CoESCA station for electron–electron coincidence spectroscopy from surfaces, built in a close collaboration between Uppsala University and Helmholtz-Zentrum Berlin at the BESSY II synchrotron facility in Berlin, Germany. We start with a detailed overview of previous work in the field of electron–electron coincidences, before we describe the CoESCA setup and its design parameters. The system is capable of recording shot-to-shot resolved 6D coincidence datasets, i.e. the kinetic energy and the two take off angles for both coincident electrons. The mathematics behind extracting and analysing these multi-dimensional coincidence datasets is introduced, with a focus on coincidence statistics, resulting in fundamental limits of the signal-to-noise ratio and its implications for acquisition times and the size of the raw data stream. The functionality of the CoESCA station is demonstrated for the example of Auger electron–photoelectron coincidences from silver surfaces for photoelectrons from the Ag 3d core levels and their corresponding MNN Auger electrons. The Auger spectra originating from the different core levels, 3d and 3d could be separated and further, the two-hole state energy distributions were determined for these Auger decay channels.
  •  
23.
  • Ma, Le Anh, et al. (författare)
  • Na-ion mobility in P2-type Na0.5MgxNi0.17-xMn0.83O2 (0
  • 2021
  • Ingår i: Physical Chemistry Chemical Physics. - : Royal Society of Chemistry (RSC). - 1463-9084 .- 1463-9076. ; 23:42, s. 24478-24486
  • Tidskriftsartikel (refereegranskat)abstract
    • Sodium transition metal oxides with a layered structure are one of the most widely studied cathode materials for Na+-ion batteries. Since the mobility of Na+ in such cathode materials is a key factor that governs the performance of material, electrochemical and muon spin rotation and relaxation techniques are here used to reveal the Na+-ion mobility in a P2-type Na0.5MgxNi0.17-xMn0.83O2 (x = 0, 0.02, 0.05 and 0.07) cathode material. Combining electrochemical techniques such as galvanostatic cycling, cyclic voltammetry, and the galvanostatic intermittent titration technique with mu+SR, we have successfully extracted both self-diffusion and chemical-diffusion under a potential gradient, which are essential to understand the electrode material from an atomic-scale viewpoint. The results indicate that a small amount of Mg substitution has strong effects on the cycling performance and the Na+ mobility. Amongst the tested cathode systems, it was found that the composition with a Mg content of x = 0.02 resulted in the best cycling stability and highest Na+ mobility based on electrochemical and mu+SR results. The current study clearly shows that for developing a new generation of sustainable energy-storage devices, it is crucial to study and understand both the structure as well as dynamics of ions in the material on an atomic level.
  •  
24.
  • Marks, Kess, et al. (författare)
  • Investigation of the surface species during temperature dependent dehydrogenation of naphthalene on Ni(111)
  • 2019
  • Ingår i: Journal of Chemical Physics. - : AIP Publishing. - 0021-9606 .- 1089-7690. ; 150:24
  • Tidskriftsartikel (refereegranskat)abstract
    • The temperature dependent dehydrogenation of naphthalene on Ni(111) has been investigated using vibrational sum-frequency generation spectroscopy, X-ray photoelectron spectroscopy, scanning tunneling microscopy, and density functional theory with the aim of discerning the reaction mechanism and the intermediates on the surface. At 110 K, multiple layers of naphthalene adsorb on Ni(111); the first layer is a flat lying chemisorbed monolayer, whereas the next layer(s) consist of physisorbed naphthalene. The aromaticity of the carbon rings in the first layer is reduced due to bonding to the surface Ni-atoms. Heating at 200 K causes desorption of the multilayers. At 360 K, the chemisorbed naphthalene monolayer starts dehydrogenating and the geometry of the molecules changes as the dehydrogenated carbon atoms coordinate to the nickel surface; thus, the molecule tilts with respect to the surface, recovering some of its original aromaticity. This effect peaks at 400 K and coincides with hydrogen desorption. Increasing the temperature leads to further dehydrogenation and production of H-2 gas, as well as the formation of carbidic and graphitic surface carbon. Published under license by AIP Publishing.
  •  
25.
  • Matsubara, Nami, et al. (författare)
  • Cation Distributions and Magnetic Properties of Ferrispinel MgFeMnO4
  • 2020
  • Ingår i: Inorganic Chemistry. - : American Chemical Society (ACS). - 0020-1669 .- 1520-510X. ; 59:24, s. 17970-17980
  • Tidskriftsartikel (refereegranskat)abstract
    • The crystal structure and magnetic properties of the cubic spinel MgFeMnO4 were studied by using a series of in-house techniques along with large-scale neutron diffraction and muon spin rotation spectroscopy in the temperature range between 1.5 and 500 K. The detailed crystal structure is successfully refined by using a cubic spinel structure described by the space group Fd3¯ m. Cations within tetrahedral A and octahedral B sites of the spinel were found to be in a disordered state. The extracted fractional site occupancies confirm the presence of antisite defects, which are of importance for the electrochemical performance of MgFeMnO4 and related battery materials. Neutron diffraction and muon spin spectroscopy reveal a ferrimagnetic order below TC = 394.2 K, having a collinear spin arrangement with antiparallel spins at the A and B sites, respectively. Our findings provide new and improved understanding of the fundamental properties of the ferrispinel materials and of their potential applications within future spintronics and battery devices.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 55

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy