SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Schacherer Joseph) "

Sökning: WFRF:(Schacherer Joseph)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • De Chiara, Matteo, et al. (författare)
  • Domestication reprogrammed the budding yeast life cycle
  • 2022
  • Ingår i: Nature Ecology & Evolution. - : Springer Science and Business Media LLC. - 2397-334X .- 2397-334X. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Domestication of plants and animals is the foundation for feeding the world human population but can profoundly alter the biology of the domesticated species. Here we investigated the effect of domestication on one of our prime model organisms, the yeast Saccharomyces cerevisiae, at a species-wide level. We tracked the capacity for sexual and asexual reproduction and the chronological life span across a global collection of 1,011 genome-sequenced yeast isolates and found a remarkable dichotomy between domesticated and wild strains. Domestication had systematically enhanced fermentative and reduced respiratory asexual growth, altered the tolerance to many stresses and abolished or impaired the sexual life cycle. The chronological life span remained largely unaffected by domestication and was instead dictated by clade-specific evolution. We traced the genetic origins of the yeast domestication syndrome using genome-wide association analysis and genetic engineering and disclosed causative effects of aneuploidy, gene presence/absence variations, copy number variations and single-nucleotide polymorphisms. Overall, we propose domestication to be the most dramatic event in budding yeast evolution, raising questions about how much domestication has distorted our understanding of the natural biology of this key model species.
  •  
2.
  • Gounot, Jean Sébastien, et al. (författare)
  • High Complexity and Degree of Genetic Variation in Brettanomyces bruxellensis Population
  • 2020
  • Ingår i: Genome Biology and Evolution. - : Oxford University Press (OUP). - 1759-6653. ; 12:6, s. 795-807
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide characterization of genetic variants of a large population of individuals within the same species is essential to have a deeper insight into its evolutionary history as well as the genotype-phenotype relationship. Population genomic surveys have been performed in multiple yeast species, including the two model organisms, Saccharomyces cerevisiae and Schizosaccharomyces pombe. In this context, we sought to characterize at the population level the Brettanomyces bruxellensis yeast species, which is a major cause of wine spoilage and can contribute to the specific flavor profile of some Belgium beers. We have completely sequenced the genome of 53 B. bruxellensis strains isolated worldwide. The annotation of the reference genome allowed us to define the gene content of this species. As previously suggested, our genomic data clearly highlighted that genetic diversity variation is related to ploidy level, which is variable in the B. bruxellensis species. Genomes are punctuated by multiple loss-of-heterozygosity regions, whereas aneuploidies as well as segmental duplications are uncommon. Interestingly, triploid genomes are more prone to gene copy number variation than diploids. Finally, the pangenome of the species was reconstructed and was found to be small with few accessory genes compared with S. cerevisiae. The pangenome is composed of 5,409 ORFs (open reading frames) among which 5,106 core ORFs and 303 ORFs that are variable within the population. All these results highlight the different trajectories of species evolution and consequently the interest of establishing population genomic surveys in more populations.
  •  
3.
  • Ishchuk, Olena, 1980, et al. (författare)
  • RNAi as a Tool to Study Virulence in the Pathogenic Yeast Candida glabrata
  • 2019
  • Ingår i: Frontiers in Microbiology. - : Frontiers Media SA. - 1664-302X. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • The yeast Candida glabrata is a major opportunistic pathogen causing mucosal and systemic infections in humans. Systemic infections caused by this yeast have high mortality rates and are difficult to treat due to this yeast's intrinsic and frequently adapting antifungal resistance. To understand and treat C. glabrata infections, it is essential to investigate the molecular basis of C. glabrata virulence and resistance. We established an RNA interference (RNAi) system in C. glabrata by expressing the Dicer and Argonaute genes from Saccharomyces castellii (a budding yeast with natural RNAi). Our experiments with reporter genes and putative virulence genes showed that the introduction of RNAi resulted in 30 and 70% gene-knockdown for the construct-types antisense and hairpin, respectively. The resulting C. glabrata RNAi strain was used for the screening of a gene library for new virulence-related genes. Phenotypic profiling with a high-resolution quantification of growth identified genes involved in the maintenance of cell integrity, antifungal drugs, and ROS resistance. The genes identified by this approach are promising targets for the treatment of C. glabrata infections.
  •  
4.
  • Tsouris, Andreas, et al. (författare)
  • RNA Interference (RNAi ) as a Tool for High-Resolution Phenotypic Screening of the Pathogenic Yeast Candida glabrata
  • 2022
  • Ingår i: Methods in Molecular Biology. - New York, NY : Springer US. - 1940-6029 .- 1064-3745. ; 2477, s. 313-330
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)abstract
    • After its discovery RNA interference (RNAi) has become a powerful tool to study gene functions in different organisms. RNAi has been applied at genome-wide scale and can be nowadays performed using high-throughput automated systems (robotics). The simplest RNAi process requires the expression of two genes (Dicer and Argonaute) to function. To initiate the silencing, constructs generating either double-strand RNA or antisense RNA are required. Recently, RNAi was reconstituted by expressing Saccharomyces castellii genes in the human pathogenic yeast Candida glabrata and was used to identify new genes related to the virulence of this pathogen.In this chapter, we describe a method to make the C. glabrata pathogenic yeast competent for RNAi and to use RNA silencing as a tool for low- or high-resolution phenotypic screening in this species.
  •  
5.
  • Zhou, Nerve, et al. (författare)
  • Yeast-bacteria competition induced new metabolic traits through large-scale genomic rearrangements in Lachancea kluyveri
  • 2017
  • Ingår i: FEMS Yeast Research. - : Oxford University Press (OUP). - 1567-1356 .- 1567-1364. ; 17:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Large-scale chromosomal rearrangements are an important source of evolutionary novelty that may have reshaped the genomes of existing yeast species. They dramatically alter genome organization and gene expression fueling a phenotypic leap in response to environmental constraints. Although the emergence of such signatures of genetic diversity is thought to be associated with human exploitation of yeasts, less is known about the driving forces operating in natural habitats. Here we hypothesize that an ecological battlefield characteristic of every autumn when fruits ripen accounts for the genomic innovations in natural populations. We described a long-term cross-kingdom competition experiment between Lachancea kluyveri and five species of bacteria. Now, we report how we further subjected the same yeast to a sixth species of bacteria, Pseudomonas fluorescens, resulting in the appearance of a fixed and stably inherited large-scale genomic rearrangement in two out of three parallel evolution lines. The 'extra-banded' karyotype, characterized by a higher fitness and an elevated fermentative capacity, conferred the emergence of new metabolic traits in most carbon sources and osmolytes. We tracked down the event to a duplication and translocation event involving a 261-kb segment. Such an experimental setup described here is an attractive method for developing industrial strains without genetic engineering strategies.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy