SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Scheringer Martin) "

Sökning: WFRF:(Scheringer Martin)

  • Resultat 1-25 av 62
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bergman, Åke, et al. (författare)
  • Science and policy on endocrine disrupters must not be mixed : a reply to a "common sense" intervention by toxicology journal editors
  • 2013
  • Ingår i: Environmental Health. - : BioMed Central (BMC). - 1476-069X. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • The "common sense" intervention by toxicology journal editors regarding proposed European Union endocrine disrupter regulations ignores scientific evidence and well-established principles of chemical risk assessment. In this commentary, endocrine disrupter experts express their concerns about a recently published, and is in our considered opinion inaccurate and factually incorrect, editorial that has appeared in several journals in toxicology. Some of the shortcomings of the editorial are discussed in detail. We call for a better founded scientific debate which may help to overcome a polarisation of views detrimental to reaching a consensus about scientific foundations for endocrine disrupter regulation in the EU.
  •  
2.
  • Mohammed Taha, Hiba, et al. (författare)
  • The NORMAN Suspect List Exchange (NORMAN-SLE) : facilitating European and worldwide collaboration on suspect screening in high resolution mass spectrometry
  • 2022
  • Ingår i: Environmental Sciences Europe. - : Springer. - 2190-4707 .- 2190-4715. ; 34:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The NORMAN Association (https://www.norman-network.com/) initiated the NORMAN Suspect List Exchange (NORMAN-SLE; https://www.norman-network.com/nds/SLE/) in 2015, following the NORMAN collaborative trial on non-target screening of environmental water samples by mass spectrometry. Since then, this exchange of information on chemicals that are expected to occur in the environment, along with the accompanying expert knowledge and references, has become a valuable knowledge base for “suspect screening” lists. The NORMAN-SLE now serves as a FAIR (Findable, Accessible, Interoperable, Reusable) chemical information resource worldwide.Results: The NORMAN-SLE contains 99 separate suspect list collections (as of May 2022) from over 70 contributors around the world, totalling over 100,000 unique substances. The substance classes include per- and polyfluoroalkyl substances (PFAS), pharmaceuticals, pesticides, natural toxins, high production volume substances covered under the European REACH regulation (EC: 1272/2008), priority contaminants of emerging concern (CECs) and regulatory lists from NORMAN partners. Several lists focus on transformation products (TPs) and complex features detected in the environment with various levels of provenance and structural information. Each list is available for separate download. The merged, curated collection is also available as the NORMAN Substance Database (NORMAN SusDat). Both the NORMAN-SLE and NORMAN SusDat are integrated within the NORMAN Database System (NDS). The individual NORMAN-SLE lists receive digital object identifiers (DOIs) and traceable versioning via a Zenodo community (https://zenodo.org/communities/norman-sle), with a total of > 40,000 unique views, > 50,000 unique downloads and 40 citations (May 2022). NORMAN-SLE content is progressively integrated into large open chemical databases such as PubChem (https://pubchem.ncbi.nlm.nih.gov/) and the US EPA’s CompTox Chemicals Dashboard (https://comptox.epa.gov/dashboard/), enabling further access to these lists, along with the additional functionality and calculated properties these resources offer. PubChem has also integrated significant annotation content from the NORMAN-SLE, including a classification browser (https://pubchem.ncbi.nlm.nih.gov/classification/#hid=101).Conclusions: The NORMAN-SLE offers a specialized service for hosting suspect screening lists of relevance for the environmental community in an open, FAIR manner that allows integration with other major chemical resources. These efforts foster the exchange of information between scientists and regulators, supporting the paradigm shift to the “one substance, one assessment” approach. New submissions are welcome via the contacts provided on the NORMAN-SLE website (https://www.norman-network.com/nds/SLE/).
  •  
3.
  • Muncke, Jane, et al. (författare)
  • A vision for safer food contact materials: Public health concerns as drivers for improved testing
  • 2023
  • Ingår i: ENVIRONMENT INTERNATIONAL. - 0160-4120 .- 1873-6750. ; 180
  • Tidskriftsartikel (refereegranskat)abstract
    • Food contact materials (FCMs) and food contact articles are ubiquitous in today's globalized food system. Chemicals migrate from FCMs into foodstuffs, so called food contact chemicals (FCCs), but current regulatory requirements do not sufficiently protect public health from hazardous FCCs because only individual substances used to make FCMs are tested and mostly only for genotoxicity while endocrine disruption and other hazard properties are disregarded. Indeed, FCMs are a known source of a wide range of hazardous chemicals, and they likely contribute to highly prevalent non-communicable diseases. FCMs can also include non-intentionally added substances (NIAS), which often are unknown and therefore not subject to risk assessment. To address these important shortcomings, we outline how the safety of FCMs may be improved by (1) testing the overall migrate, including (unknown) NIAS, of finished food contact articles, and (2) expanding toxicological testing beyond genotoxicity to multiple endpoints associated with non-communicable diseases relevant to human health. Toidentify mechanistic endpoints for testing, we group chronic health outcomes associated with chemical exposure into Six Clusters of Disease (SCOD) and we propose that finished food contact articles should be tested for their impacts on these SCOD. Research should focus on developing robust, relevant, and sensitive in-vitro assays based on mechanistic information linked to the SCOD, e.g., through Adverse Outcome Pathways (AOPs) or Key Characteristics of Toxicants. Implementing this vision will improve prevention of chronic diseases that are associated with hazardous chemical exposures, including from FCMs.
  •  
4.
  • Muncke, Jane, et al. (författare)
  • Impacts of food contact chemicals on human health : a consensus statement
  • 2020
  • Ingår i: Environmental Health. - : BioMed Central (BMC). - 1476-069X. ; 19:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Food packaging is of high societal value because it conserves and protects food, makes food transportable and conveys information to consumers. It is also relevant for marketing, which is of economic significance. Other types of food contact articles, such as storage containers, processing equipment and filling lines, are also important for food production and food supply. Food contact articles are made up of one or multiple different food contact materials and consist of food contact chemicals. However, food contact chemicals transfer from all types of food contact materials and articles into food and, consequently, are taken up by humans. Here we highlight topics of concern based on scientific findings showing that food contact materials and articles are a relevant exposure pathway for known hazardous substances as well as for a plethora of toxicologically uncharacterized chemicals, both intentionally and non-intentionally added. We describe areas of certainty, like the fact that chemicals migrate from food contact articles into food, and uncertainty, for example unidentified chemicals migrating into food. Current safety assessment of food contact chemicals is ineffective at protecting human health. In addition, society is striving for waste reduction with a focus on food packaging. As a result, solutions are being developed toward reuse, recycling or alternative (non-plastic) materials. However, the critical aspect of chemical safety is often ignored. Developing solutions for improving the safety of food contact chemicals and for tackling the circular economy must include current scientific knowledge. This cannot be done in isolation but must include all relevant experts and stakeholders. Therefore, we provide an overview of areas of concern and related activities that will improve the safety of food contact articles and support a circular economy. Our aim is to initiate a broader discussion involving scientists with relevant expertise but not currently working on food contact materials, and decision makers and influencers addressing single-use food packaging due to environmental concerns. Ultimately, we aim to support science-based decision making in the interest of improving public health. Notably, reducing exposure to hazardous food contact chemicals contributes to the prevention of associated chronic diseases in the human population.
  •  
5.
  •  
6.
  • Armitage, James M, et al. (författare)
  • Modeling the Global Fate and Transport of Perfluorooctane Sulfonate (PFOS) and Precursor Compounds in Relation to Temporal Trends in Wildlife Exposure.
  • 2009
  • Ingår i: Environmental Science and Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 43:24, s. 9274-80
  • Tidskriftsartikel (refereegranskat)abstract
    • A global-scale fate and transport model was applied to investigate the historic and future trends in ambient concentrations of perfluorooctane sulfonate (PFOS) and volatile perfluorooctane sulfonyl fluoride (POSF)-based precursor compounds in the environment. First, a global emission inventory for PFOS and its precursor compounds was estimated for the period 1957-2010. We used this inventory as input to a global-scale contaminant fate model and compared modeled concentrations with field data. The main focus of the simulations was to examine how modeled concentrations of PFOS and volatile precursor compounds respond to the major production phase-out that occurred in 2000-2002. Modeled concentrations of PFOS in surface ocean waters are generally within a factor of 5 of field data and are dominated by direct emissions of this substance. In contrast, modeled concentrations of the precursor compounds considered in this study are lower than measured concentrations both before and after the production phase-out. Modeled surface ocean water concentrations of PFOS in source regions decline slowly in response to the production phase-out while concentrations in remote regions continue to increase until 2030. In contrast, modeled concentrations of precursor compounds in both the atmosphere and surface ocean water compartment in all regions respond rapidly to the production phase-out (i.e., decline quickly to much lower levels). With respect to wildlife biomonitoring data, since precursor compounds are bioavailable and degrade to PFOS in vivo, it is at least plausible that declining trends in PFOS body burdens observed in some marine organisms are attributable to this exposure pathway. The continued increases in PFOS body burdens observed in marine organisms inhabiting other regions may reflect exposure primarily to PFOS itself, present in the environment due to production and use of this compound as well as degradation of precursor compounds.
  •  
7.
  • Carney Almroth, Bethanie, 1974, et al. (författare)
  • Obstacles to scientific input in global policy.
  • 2023
  • Ingår i: Science (New York, N.Y.). - 1095-9203 .- 0036-8075. ; 380:6649, s. 1021-1022
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)
  •  
8.
  • Schäffer, Andreas, et al. (författare)
  • Conflicts of Interest in the Assessment of Chemicals, Waste, and Pollution
  • 2023
  • Ingår i: Environmental Science and Technology. - 0013-936X .- 1520-5851. ; 57:48, s. 19066-19077
  • Tidskriftsartikel (refereegranskat)abstract
    • Pollution by chemicals and waste impacts human and ecosystem health on regional, national, and global scales, resulting, together with climate change and biodiversity loss, in a triple planetary crisis. Consequently, in 2022, countries agreed to establish an intergovernmental science-policy panel (SPP) on chemicals, waste, and pollution prevention, complementary to the existing intergovernmental science-policy bodies on climate change and biodiversity. To ensure the SPP’s success, it is imperative to protect it from conflicts of interest (COI). Here, we (i) define and review the implications of COI, and its relevance for the management of chemicals, waste, and pollution; (ii) summarize established tactics to manufacture doubt in favor of vested interests, i.e., to counter scientific evidence and/or to promote misleading narratives favorable to financial interests; and (iii) illustrate these with selected examples. This analysis leads to a review of arguments for and against chemical industry representation in the SPP’s work. We further (iv) rebut an assertion voiced by some that the chemical industry should be directly involved in the panel’s work because it possesses data on chemicals essential for the panel’s activities. Finally, (v) we present steps that should be taken to prevent the detrimental impacts of COI in the work of the SPP. In particular, we propose to include an independent auditor’s role in the SPP to ensure that participation and processes follow clear COI rules. Among others, the auditor should evaluate the content of the assessments produced to ensure unbiased representation of information that underpins the SPP’s activities.
  •  
9.
  • Vandenberg, Laura N., et al. (författare)
  • A proposed framework for the systematic review and integrated assessment (SYRINA) of endocrine disrupting chemicals
  • 2016
  • Ingår i: Environmental Health. - London : BioMed Central (BMC). - 1476-069X. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The issue of endocrine disrupting chemicals (EDCs) is receiving wide attention from both the scientific and regulatory communities. Recent analyses of the EDC literature have been criticized for failing to use transparent and objective approaches to draw conclusions about the strength of evidence linking EDC exposures to adverse health or environmental outcomes. Systematic review methodologies are ideal for addressing this issue as they provide transparent and consistent approaches to study selection and evaluation. Objective methods are needed for integrating the multiple streams of evidence (epidemiology, wildlife, laboratory animal, in vitro, and in silico data) that are relevant in assessing EDCs.Methods: We have developed a framework for the systematic review and integrated assessment (SYRINA) of EDC studies. The framework was designed for use with the International Program on Chemical Safety (IPCS) and World Health Organization (WHO) definition of an EDC, which requires appraisal of evidence regarding 1) association between exposure and an adverse effect, 2) association between exposure and endocrine disrupting activity, and 3) a plausible link between the adverse effect and the endocrine disrupting activity.Results: Building from existing methodologies for evaluating and synthesizing evidence, the SYRINA framework includes seven steps: 1) Formulate the problem; 2) Develop the review protocol; 3) Identify relevant evidence; 4) Evaluate evidence from individual studies; 5) Summarize and evaluate each stream of evidence; 6) Integrate evidence across all streams; 7) Draw conclusions, make recommendations, and evaluate uncertainties. The proposed method is tailored to the IPCS/WHO definition of an EDC but offers flexibility for use in the context of other definitions of EDCs.Conclusions: When using the SYRINA framework, the overall objective is to provide the evidence base needed to support decision making, including any action to avoid/minimise potential adverse effects of exposures. This framework allows for the evaluation and synthesis of evidence from multiple evidence streams. Finally, a decision regarding regulatory action is not only dependent on the strength of evidence, but also the consequences of action/inaction, e.g. limited or weak evidence may be sufficient to justify action if consequences are serious or irreversible.
  •  
10.
  • Bogdal, Christian, et al. (författare)
  • Emissions of polybrominated diphenyl ethers (PBDEs) in Zurich, Switzerland, determined by a combination of measurements and modeling
  • 2014
  • Ingår i: Chemosphere. - : Elsevier BV. - 0045-6535 .- 1879-1298. ; 116, s. 15-23
  • Tidskriftsartikel (refereegranskat)abstract
    • Polybrominated diphenyl ethers (PBDEs) have been widely used as flame retardants but they are of concern and are currently being phased-out because of their environmentally hazardous properties and their potential to cause adverse health effects. We analyzed PBDEs in Zurich, Switzerland, and applied a multimedia environmental fate model to back-calculate the rate of PBDE emission to air. PBDE concentrations in ambient air were measured in summer 2010 and winter 2011 in the city center of Zurich. Concentrations were higher in summer (sum PBDEs 118-591 pg m(-3)) than in winter (sum PBDEs 17-151 pg m(-3)), and are on the upper end of concentrations reported in literature for urban sites with no point sources of PBDEs. The emissions derived from our measurements (summer: 53-165 mu g capita(-1) d(-1), winter: 25-112 mu g capita(-1) d(-1)) and extrapolated to annual emissions for Switzerland (114-406 kg a(-1)) lie in the middle of ranges reported on the basis of substance flow analyses and emission inventories. The difference between summer and winter emissions is small compared to the difference that would be expected from the temperature dependence of PBDE vapor pressure, which would be consistent with emissions occurring to a large extent from flame-proofed materials located indoors under nearly constant temperature conditions and/or emissions to air occurring by suspension of particles containing PBDEs. Compared to previous studies in Switzerland, concentrations and emissions of PBDEs appear to have increased during the last five years with an increasing contribution of decabromodiphenyl ether, despite the addition of PBDEs to national and international regulations.
  •  
11.
  • Bogdal, Christian, et al. (författare)
  • Emissions of Polychlorinated Biphenyls, Polychlorinated Dibenzo-p-dioxins, and Polychlorinated Dibenzofurans during 2010 and 2011 in Zurich, Switzerland
  • 2014
  • Ingår i: Environmental Science and Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 48:1, s. 482-490
  • Tidskriftsartikel (refereegranskat)abstract
    • Persistent organic pollutants (POPs) are ubiquitous contaminants of environmental and human health relevance, but their emissions into the environment are still poorly known. In this study, concentrations of selected POPs were measured in ambient air in Zurich, Switzerland, and interpreted with a multimedia mass balance model. The aim of the combination of measurements and modeling was to back-calculate atmospheric emission rates of POPs. Measurements were performed in summer 2010 and winter 2011 and target analytes included polychlorinated biphenyls (PCBs) and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). Estimated emissions were higher in summer than in winter. Emission estimates for Zurich can be extrapolated to annual averages for Switzerland of 312 kg·a–1 (39 mg·capita–1·a–1), 53 kg·a–1 (7 mg·capita–1·a–1), and 3 kg·a–1 (0.4 mg·capita–1·a–1, 94 g WHO98-TEQ·a–1, 65 g I-TEQ·a–1) for the six indicator PCBs (iPCBs), the twelve coplanar dioxin-like PCBs (dlPCBs), and the 17 2,3,7,8-chlorosubstituted PCDD/Fs, respectively. The emission rates of iPCBs are in agreement with existing emission inventories, whereas for PCDD/Fs the emissions are five times higher than the estimates from the Swiss national emission inventory. Emissions of dlPCBs in Switzerland are presented here for the first time. Our study also provides the first seasonally resolved emission rates of POPs, which were determined with our combined measurement and modeling approach. These findings highlight the relevance of ongoing sources of POPs, even decades after regulations aiming to reduce or eliminate sources were established.
  •  
12.
  • Boucher, Justin M., et al. (författare)
  • Toward a Comprehensive Global Emission Inventory of C-4-C-10 Perfluoroalkanesulfonic Acids (PFSAs) and Related Precursors : Focus on the Life Cycle of C-6- and C-10-Based Products
  • 2019
  • Ingår i: Environmental Science and Technology Letters. - : American Chemical Society (ACS). - 2328-8930. ; 6:1, s. 1-7
  • Tidskriftsartikel (refereegranskat)abstract
    • A first global emission inventory of C-4-C-10 perfluoroalkanesulfonic acids (PFSAs) released during the life cycle of perfluorohexanesulfonyl fluoride (PHxSF)- and perfluorodecanesulfonyl fluoride (PDSF)-based products is presented. This study complements previous research on emissions of PFSAs that focused largely on the life cycle of perfluorooctanesulfonyl fluoride (POSF) and its derivatives. It reviews and integrates existing information about the life cycle of PHxSF, PDSF, and their derivatives; the limited data available in the public domain point to potentially significant global production, uses, and releases of these substances. Between 1958 and 2015, ranges of total emissions of perfluorohexanesulfonic acid (PFHxS) and perfluorodecanesulfonic acid (PFDS) are estimated to be 120-1022 and 38-378 metric tons, respectively. With the new emission estimates as inputs in a global multimedia environmental fate model (CliMoChem), the model-derived environmental concentrations well capture the reported field concentrations, providing strong support for the plausibility of the developed emission inventories. The results highlight the ongoing environmental exposure to these substances and the need for more detailed data in the public domain about their production levels and uses.
  •  
13.
  • Buser, Andreas M., et al. (författare)
  • Concentrations in Ambient Air and Emissions of Cyclic Volatile Methylsiloxanes in Zurich, Switzerland
  • 2013
  • Ingår i: Environmental Science and Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 47:13, s. 7045-7051
  • Tidskriftsartikel (refereegranskat)abstract
    • Tens of thousands of tonnes of cyclic volatile methylsiloxanes (cVMS) are used each year globally, which leads to high and continuous cVMS emissions to air. However, field measurements of cVMS in air and empirical information about emission rates to air are still limited. Here we present measurements of decamethylcyclopentasfloxane (D-5) and dodecamethylcyclohexasiloxane (D-6) in air for Zurich, Switzerland. The measurements were performed in January and February 2011 over a period of eight days and at two sites (city center and background) with a temporal resolution of 6-12 h. Concentrations of Ds and D-6 are higher in the center of Zurich and range from 100 to 650 ng m(-3) and from 10 to 79 ng m(-3), respectively. These values are among the highest levels of D-5 and D-6 reported in the literature. In a second step, we used a multimedia environmental fate model parametrized for the region of Zurich to interpret the levels and time trends in the cVMS concentrations and to back calculate the emission rates of D-5 and D-6 from the city of Zurich. The average emission rates obtained for D-5 and D-6 are 120 kg d(-1) and 14 kg d(-1), respectively, which corresponds to per capita emissions of 310 mg capita(-1) d(-1) for D-5 and 36 mg capita(-1) d(-1) for D-6.
  •  
14.
  • Buser, Andreas M., et al. (författare)
  • Emissions of decamethylcyclopentasiloxane from Chicago
  • 2014
  • Ingår i: Chemosphere. - : Elsevier BV. - 0045-6535 .- 1879-1298. ; 107, s. 473-475
  • Tidskriftsartikel (refereegranskat)abstract
    • Decamethylcyclopentasiloxane (D-5) is a high-production-volume chemical that is emitted to air in tens of thousands of tonnes each year globally. However, specific information about emission rates to air is still limited. Here we present an estimate of D5 emissions from the city of Chicago based on measurements that have recently been published. We used a multimedia environmental fate model parameterized for Chicago to back-calculate the emission rate of D5 from the measurements. Our estimated average emission rate for D-5 is 500 (2.5-to-97.5-percentile interval: 260-1100) kg d(-1). The corresponding per-capita emissions of 190 (100-420) mg capita(-1) d(-1) agree well with previous estimates for Europe and North America.
  •  
15.
  • Buser, Andreas M., et al. (författare)
  • Good modeling practice guidelines for applying multimedia models in chemical assessments
  • 2012
  • Ingår i: Integrated Environmental Assessment and Management. - : Wiley. - 1551-3777 .- 1551-3793. ; 8:4, s. 703-708
  • Tidskriftsartikel (refereegranskat)abstract
    • Multimedia mass balance models of chemical fate in the environment have been used for over 3 decades in a regulatory context to assist decision making. As these models become more comprehensive, reliable, and accepted, there is a need to recognize and adopt principles of Good Modeling Practice (GMP) to ensure that multimedia models are applied with transparency and adherence to accepted scientific principles. We propose and discuss 6 principles of GMP for applying existing multimedia models in a decision-making context, namely 1) specification of the goals of the model assessment, 2) specification of the model used, 3) specification of the input data, 4) specification of the output data, 5) conduct of a sensitivity and possibly also uncertainty analysis, and finally 6) specification of the limitations and limits of applicability of the analysis. These principles are justified and discussed with a view to enhancing the transparency and quality of model-based assessments.
  •  
16.
  • Castro, Mafalda (författare)
  • Chlorinated Paraffins: improved understanding of their bioaccumulation and toxicity in Daphnia magna
  • 2020
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Chlorinated paraffins (CPs) are industrial chemicals, mainly used as flame retardants, plasticizers and metal cutting fluids. Their production has reached historically high levels in the last decade, with an annual production exceeding one million tonnes. In 2017, short chain chlorinated paraffins (SCCPs) were regulated due to their Persistent, Bioaccumulative and Toxic (PBT) properties, while medium and long chain chlorinated paraffins (MC and LCCPs) were suggested as alternatives. The high hydrophobicity of CPs, which complicates bioaccumulation and aquatic toxicity testing, has hindered proper hazard identification by regulatory authorities. This project was initiated in response to the insufficient understanding of bioaccumulative and toxicological properties of these chemicals, which have even surpassed the environmental levels of legacy Persistent Organic Pollutants (POPs) in certain regions.The research presented in this thesis, contributes to filling these knowledge gaps by adapting methods for reliable bioaccumulation and aquatic toxicity assessment. In Paper I, passive dosing, traditionally used for other highly hydrophobic compounds, was adapted and validated for CPs. SC, MC and LCCPs partitioned from silicone into water and, when the crustacean Daphnia magna was introduced into the test system, the CPs were observed to be effectively taken up by the test organism. This passive-dosing approach was further used in Paper II, to investigate the bioconcentration and bioaccumulation potential in D. magna. All tested CPs were found to bioaccumulate in daphnids, including highly hydrophobic, long chained CP congeners. The two most bioaccumulative CPs in Paper II (CP-52 and Huels70C) were thereafter used in a chronic toxicity study (Paper III) and significantly decreased population growth and disrupted fatty acid metabolism of D. magna. Finally, in Paper IV, liposome-mediated delivery of chemicals to aquatic biota was adapted for the first time for organic contaminants, including CPs. This approach yielded stable body burdens of the tested chemicals in D. magna and allowed for kinetic and toxicity assessments.Overall, two alternative bioaccumulation and aquatic toxicity testing methods were successfully adapted for technically challenging (industrial) chemicals. These methods allowed the determination of endpoints of scientific and regulatory interest, such as the high bioaccumulation and toxicity potential of CPs, but were also used to demonstrate their metabolic disruption potential in small crustaceans. 
  •  
17.
  • Cordner, Alissa, et al. (författare)
  • PFAS Contamination in Europe : Generating Knowledge and Mapping Known and Likely Contamination with “Expert-Reviewed” Journalism
  • 2024
  • Ingår i: Environmental Science and Technology. - 0013-936X .- 1520-5851. ; 58:15, s. 6616-6627
  • Tidskriftsartikel (refereegranskat)abstract
    • While the extent of environmental contamination by per- and polyfluoroalkyl substances (PFAS) has mobilized considerable efforts around the globe in recent years, publicly available data on PFAS in Europe were very limited. In an unprecedented experiment of “expert-reviewed journalism” involving 29 journalists and seven scientific advisers, a cross-border collaborative project, the “Forever Pollution Project” (FPP), drew on both scientific methods and investigative journalism techniques such as open-source intelligence (OSINT) and freedom of information (FOI) requests to map contamination across Europe, making public data that previously had existed as “unseen science”. The FPP identified 22,934 known contamination sites, including 20 PFAS manufacturing facilities, and 21,426 “presumptive contamination sites”, including 13,745 sites presumably contaminated with fluorinated aqueous film-forming foam (AFFF) discharge, 2911 industrial facilities, and 4752 sites related to PFAS-containing waste. Additionally, the FPP identified 231 “known PFAS users”, a new category for sites with an intermediate level of evidence of PFAS use and considered likely to be contamination sources. However, the true extent of contamination in Europe remains significantly underestimated due to a lack of comprehensive geolocation, sampling, and publicly available data. This model of knowledge production and dissemination offers lessons for researchers, policymakers, and journalists about cross-field collaborations and data transparency.
  •  
18.
  • Cousins, Ian, et al. (författare)
  • Outside the Safe Operating Space of a New Planetary Boundary for Per- and Polyfluoroalkyl Substances (PFAS)
  • 2022
  • Ingår i: Environmental Science and Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 56:16, s. 11172-11179
  • Tidskriftsartikel (refereegranskat)abstract
    • It is hypothesized that environmental contamination by per- and polyfluoroalkyl substances (PFAS) defines a separate planetary boundary and that this boundary has been exceeded. This hypothesis is tested by comparing the levels of four selected perfluoroalkyl acids (PFAAs) (i.e., perfluorooctanesulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorohexanesulfonic acid (PFHxS), and perfluorononanoic acid (PFNA)) in various global environmental media (i.e., rainwater, soils, and surface waters) with recently proposed guideline levels. On the basis of the four PFAAs considered, it is concluded that (1) levels of PFOA and PFOS in rainwater often greatly exceed US Environmental Protection Agency (EPA) Lifetime Drinking Water Health Advisory levels and the sum of the aforementioned four PFAAs (Σ4 PFAS) in rainwater is often above Danish drinking water limit values also based on Σ4 PFAS; (2) levels of PFOS in rainwater are often above Environmental Quality Standard for Inland European Union Surface Water; and (3) atmospheric deposition also leads to global soils being ubiquitously contaminated and to be often above proposed Dutch guideline values. It is, therefore, concluded that the global spread of these four PFAAs in the atmosphere has led to the planetary boundary for chemical pollution being exceeded. Levels of PFAAs in atmospheric deposition are especially poorly reversible because of the high persistence of PFAAs and their ability to continuously cycle in the hydrosphere, including on sea spray aerosols emitted from the oceans. Because of the poor reversibility of environmental exposure to PFAS and their associated effects, it is vitally important that PFAS uses and emissions are rapidly restricted.
  •  
19.
  •  
20.
  • Cousins, Ian T., et al. (författare)
  • Finding essentiality feasible : common questions and misinterpretations concerning the "essential-use" concept
  • 2021
  • Ingår i: Environmental Science. - : Royal Society of Chemistry (RSC). - 2050-7887 .- 2050-7895. ; 23:8, s. 1079-1087
  • Forskningsöversikt (refereegranskat)abstract
    • The essential-use concept is a tool that can guide the phase-out of per- and polyfluoroalkyl substances (PFAS) and potentially other substances of concern. This concept is a novel approach to chemicals management that determines whether using substances of concern, such as PFAS, is truly essential for a given functionality. To assess the essentiality of a particular use case, three considerations need to be addressed: (1) the function (chemical, end use and service) that the chemical provides in the use case, (2) whether the function is necessary for health and safety and critical for the functioning of society and (3) if the function is necessary, whether there are viable alternatives for the chemical for this particular use. A few illustrative examples of the three-step process are provided for use cases of PFAS. The essential-use concept takes chemicals management away from a substance-by-substance approach to a group approach. For PFAS and other substances of concern, it offers a more rapid pathway toward effective management or phase-out. Parts of the concept of essential use have already been widely applied in global treaties and international regulations and it has also been recently used by product manufacturers and retailers to phase out substances of concern from supply chains. Herein some of the common questions and misinterpretations regarding the practical application of the essential-use concept are reviewed, and answers and further clarifications are provided.
  •  
21.
  • Cousins, Ian T., et al. (författare)
  • Strategies for grouping per- and polyfluoroalkyl substances (PFAS) to protect human and environmental health
  • 2020
  • Ingår i: Environmental Science. - : Royal Society of Chemistry (RSC). - 2050-7887 .- 2050-7895. ; 22:7, s. 1444-1460
  • Forskningsöversikt (refereegranskat)abstract
    • Grouping strategies are needed for per- and polyfluoroalkyl substances (PFAS), in part, because it would be time and resource intensive to test and evaluate the more than 4700 PFAS on the global market on a chemical-by-chemical basis. In this paper we review various grouping strategies that could be used to inform actions on these chemicals and outline the motivations, advantages and disadvantages for each. Grouping strategies are subdivided into (1) those based on the intrinsic properties of the PFAS (e.g.persistence, bioaccumulation potential, toxicity, mobility, molecular size) and (2) those that inform risk assessment through estimation of cumulative exposure and/or effects. The most precautionary grouping approach of those reviewed within this article suggests phasing out PFAS based on their high persistence alone (the so-called P-sufficient approach). The least precautionary grouping approach reviewed advocates only grouping PFAS for risk assessment that have the same toxicological effects, modes and mechanisms of action, and elimination kinetics, which would need to be well documented across different PFAS. It is recognised that, given jurisdictional differences in chemical assessment philosophies and methodologies, no one strategy will be generally acceptable. The guiding question we apply to the reviewed grouping strategies is: grouping for what purpose? The motivation behind the grouping (e.g.determining use in productsvs.setting guideline levels for contaminated environments) may lead to different grouping decisions. This assessment provides the necessary context for grouping strategies such that they can be adopted as they are, or built on further, to protect human and environmental health from potential PFAS-related effects.
  •  
22.
  • Cousins, Ian T., et al. (författare)
  • The concept of essential use for determining when uses of PFASs can be phased out
  • 2019
  • Ingår i: Environmental Science. - : Royal Society of Chemistry (RSC). - 2050-7887 .- 2050-7895. ; 21:11, s. 1803-1815
  • Forskningsöversikt (refereegranskat)abstract
    • Because of the extreme persistence of per- and polyfluoroalkyl substances (PFASs) and their associated risks, the Madrid Statement argues for stopping their use where they are deemed not essential or when safer alternatives exist. To determine when uses of PFASs have an essential function in modern society, and when they do not, is not an easy task. Here, we: (1) develop the concept of essential use based on an existing approach described in the Montreal Protocol, (2) apply the concept to various uses of PFASs to determine the feasibility of elimination or substitution of PFASs in each use category, and (3) outline the challenges for phasing out uses of PFASs in society. In brief, we developed three distinct categories to describe the different levels of essentiality of individual uses. A phase-out of many uses of PFASs can be implemented because they are not necessary for the betterment of society in terms of health and safety, or because functional alternatives are currently available that can be substituted into these products or applications. Some specific uses of PFASs would be considered essential because they provide for vital functions and are currently without established alternatives. However, this essentiality should not be considered as permanent; rather, constant efforts are needed to search for alternatives. We provide a description of several ongoing uses of PFASs and discuss whether these uses are essential or non-essential according to the three essentiality categories. It is not possible to describe each use case of PFASs in detail in this single article. For follow-up work, we suggest further refining the assessment of the use cases of PFASs covered here, where necessary, and expanding the application of this concept to all other uses of PFASs. The concept of essential use can also be applied in the management of other chemicals, or groups of chemicals, of concern.
  •  
23.
  • Cousins, Ian T., et al. (författare)
  • The high persistence of PFAS is sufficient for their management as a chemical class
  • 2020
  • Ingår i: Environmental Science. - : Royal Society of Chemistry (RSC). - 2050-7887 .- 2050-7895. ; 22:12, s. 2307-2312
  • Forskningsöversikt (refereegranskat)abstract
    • Per- and polyfluoroalkyl substances (PFAS) are a class of synthetic organic substances with diverse structures, properties, uses, bioaccumulation potentials and toxicities. Despite this high diversity, all PFAS are alike in that they contain perfluoroalkyl moieties that are extremely resistant to environmental and metabolic degradation. The vast majority of PFAS are therefore either non-degradable or transform ultimately into stable terminal transformation products (which are still PFAS). Under the European chemicals regulation this classifies PFAS as very persistent substances (vP). We argue that this high persistence is sufficient concern for their management as a chemical class, and for all non-essential uses of PFAS to be phased out. The continual release of highly persistent PFAS will result in increasing concentrations and increasing probabilities of the occurrence of known and unknown effects. Once adverse effects are identified, the exposure and associated effects will not be easily reversible. Reversing PFAS contamination will be technically challenging, energy intensive, and costly for society, as is evident in the efforts to remove PFAS from contaminated land and drinking water sources.
  •  
24.
  • Cousins, Ian T., et al. (författare)
  • The precautionary principle and chemicals management : The example of perfluoroalkyl acids in groundwater
  • 2016
  • Ingår i: Environment International. - : Elsevier BV. - 0160-4120 .- 1873-6750. ; 94, s. 331-340
  • Forskningsöversikt (refereegranskat)abstract
    • Already in the late 1990s microgram-per-liter levels of perfluorooctane sulfonate (PFOS) were measured in water samples from areas where fire-fighting foams were used or spilled. Despite these early warnings, the problems of groundwater, and thus drinking water, contaminated with perfluoroalkyl and polyfluoroalkyl substances (PFASs) including PFOS are only beginning to be addressed. It is clear that this PFAS contamination is poorly reversible and that the societal costs of clean-up will be high. This inability to reverse exposure in a reasonable timeframe is a major motivation for application of the precautionary principle in chemicals management. We conclude that exposure can be poorly reversible; 1) due to slow elimination kinetics in organisms, or 2) due to poorly reversible environmental contamination that leads to continuous exposure. In the second case, which is relevant for contaminated groundwater, the reversibility of exposure is not related to the magnitude of a chemical's bioaccumulation potential. We argue therefore that all PFASs entering groundwater, irrespective of their perfluoroalkyl chain length and bioaccumulation potential, will result in poorly reversible exposures and risks as well as further clean-up costs for society. To protect groundwater resources for future generations, society should consider a precautionary approach to chemicals management and prevent the use and release of highly persistent and mobile chemicals such as PFASs. (C) 2016 Elsevier Ltd. All rights reserved.
  •  
25.
  • Cousins, Ian T., et al. (författare)
  • Why is high persistence alone a major cause of concern?
  • 2019
  • Ingår i: Environmental Science. - : Royal Society of Chemistry (RSC). - 2050-7887 .- 2050-7895. ; 21:5, s. 781-792
  • Forskningsöversikt (refereegranskat)abstract
    • Persistence is a hazard criterion for chemicals enshrined in chemical regulation worldwide. In this paper, we argue that the higher the persistence of a chemical, the greater the emphasis that it should be given in chemicals assessment and decision making. We provide case studies for three classes of highly persistent chemicals (chlorofluorocarbons, polychlorinated biphenyls, and per-and polyfluoroalkyl substances) to exemplify problems unique to highly persistent chemicals, despite their otherwise diverse properties. Many well-known historical chemical pollution problems were the result of the release of highly persistent chemicals. Using evaluative modeling calculations, we demonstrate that if a chemical is highly persistent, its continuous release will lead to continuously increasing contamination irrespective of the chemical's physical-chemical properties. We argue that these increasing concentrations will result in increasing probabilities of the occurrence of known and unknown effects and that, once adverse effects are identified, it will take decades, centuries or even longer to reverse contamination and therefore effects. Based on our findings we propose that high persistence alone should be established as a sufficient basis for regulation of a chemical, which we term the P-sufficient approach. We argue that regulation on high persistence alone is not over-precautionary given the historical and ongoing problems that persistent chemicals have caused. Regulation of highly persistent chemicals, for example by restriction of emissions, would not only be precautionary, but would serve to prevent poorly reversible future impacts.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 62
Typ av publikation
tidskriftsartikel (47)
forskningsöversikt (10)
annan publikation (2)
doktorsavhandling (2)
konferensbidrag (1)
Typ av innehåll
refereegranskat (52)
övrigt vetenskapligt/konstnärligt (9)
populärvet., debatt m.m. (1)
Författare/redaktör
Scheringer, Martin (58)
Wang, Zhanyun (28)
Cousins, Ian T. (22)
Lohmann, Rainer (14)
MacLeod, Matthew (11)
Trier, Xenia (10)
visa fler...
Herzke, Dorte (9)
Goldenman, Gretta (9)
Glüge, Juliane (9)
Hungerbuehler, Konra ... (8)
Ng, Carla A. (8)
Backhaus, Thomas, 19 ... (7)
Bergman, Åke (6)
Miller, Mark (6)
Suzuki, Noriyuki (6)
Cousins, Ian (6)
Bogdal, Christian (6)
Buser, Andreas M. (6)
Hungerbuhler, Konrad (6)
DeWitt, Jamie C. (6)
Vandenberg, Laura N. (5)
Boucher, Justin M. (5)
Patton, Sharyle (5)
Wagner, Martin (4)
Carney Almroth, Beth ... (4)
Ågerstrand, Marlene (4)
Hung, Hayley (4)
Diamond, Miriam L (4)
MacLeod, Matthew, 19 ... (4)
Schäffer, Andreas (4)
Diamond, Miriam (4)
Holoubek, Ivan (4)
Muncke, Jane (4)
Venier, Marta (4)
Fiedler, Heidelore, ... (3)
Molander, Sverker, 1 ... (3)
Arvidsson, Rickard, ... (3)
Fletcher, Tony (3)
Andersson, Anna-Mari ... (3)
Martin, Olwenn V. (3)
Vighi, Marco (3)
Heindel, Jerrold J. (3)
Vlahos, Penny (3)
Harner, Tom (3)
Gerecke, Andreas C. (3)
Grimalt, Joan O. (3)
Cousins, Ian, 1968- (3)
Vierke, Lena (3)
Geueke, Birgit (3)
Groh, Ksenia (3)
visa färre...
Lärosäte
Stockholms universitet (50)
Göteborgs universitet (8)
Örebro universitet (6)
Sveriges Lantbruksuniversitet (4)
Umeå universitet (3)
Chalmers tekniska högskola (3)
visa fler...
Karolinska Institutet (3)
Linköpings universitet (2)
Lunds universitet (2)
Karlstads universitet (2)
Uppsala universitet (1)
RISE (1)
visa färre...
Språk
Engelska (61)
Odefinierat språk (1)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (55)
Medicin och hälsovetenskap (7)
Teknik (6)
Samhällsvetenskap (3)
Lantbruksvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy