SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Schlegel TT) "

Search: WFRF:(Schlegel TT)

  • Result 1-25 of 30
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  • Dabrowski, W, et al. (author)
  • Decompressive Craniectomy Improves QTc Interval in Traumatic Brain Injury Patients
  • 2020
  • In: International journal of environmental research and public health. - : MDPI AG. - 1660-4601. ; 17:22
  • Journal article (peer-reviewed)abstract
    • Background: Traumatic brain injury (TBI) is commonly associated with cardiac dysfunction, which may be reflected by abnormal electrocardiograms (ECG) and/or contractility. TBI-related cardiac disorders depend on the type of cerebral injury, the region of brain damage and the severity of the intracranial hypertension. Decompressive craniectomy (DC) is commonly used to reduce intra-cranial hypertension (ICH). Although DC decreases ICH rapidly, its effect on ECG has not been systematically studied. The aim of this study was to analyze the changes in ECG in patients undergoing DC. Methods: Adult patients without previously known cardiac diseases treated for isolated TBI with DC were studied. ECG variables, such as: spatial QRS-T angle (spQRS-T), corrected QT interval (QTc), QRS and T axes (QRSax and Tax, respectively), STJ segment and the index of cardio-electrophysiological balance (iCEB) were analyzed before DC and at 12–24 h after DC. Changes in ECG were analyzed according to the occurrence of cardiac arrhythmias and 28-day mortality. Results: 48 patients (17 female and 31 male) aged 18–64 were studied. Intra-cranial pressure correlated with QTc before DC (p < 0.01, r = 0.49). DC reduced spQRS-T (p < 0.001) and QTc interval (p < 0.01), increased Tax (p < 0.01) and changed STJ in a majority of leads but did not affect QRSax and iCEB. The iCEB was relatively increased before DC in patients who eventually experienced cardiac arrhythmias after DC (p < 0.05). Higher post-DC iCEB was also noted in non-survivors (p < 0.05), although iCEB values were notably heart rate-dependent. Conclusions: ICP positively correlates with QTc interval in patients with isolated TBI, and DC for relief of ICH reduces QTc and spQRS-T. However, DC might also increase risk for life-threatening cardiac arrhythmias, especially in ICH patients with notably prolonged QTc before and increased iCEB after DC.
  •  
7.
  •  
8.
  • Dabrowski, W, et al. (author)
  • Plasma Hyperosmolality Prolongs QTc Interval and Increases Risk for Atrial Fibrillation in Traumatic Brain Injury Patients
  • 2020
  • In: Journal of clinical medicine. - : MDPI AG. - 2077-0383. ; 9:5
  • Journal article (peer-reviewed)abstract
    • Introduction: Hyperosmotic therapy with mannitol is frequently used for treatment cerebral edema, and 320 mOsm/kg H2O has been recommended as a high limit for therapeutic plasma osmolality. However, plasma hyperosmolality may impair cardiac function, increasing the risk of cardiac events. The aim of this study was to analyze the relation between changes in plasma osmolality and electrocardiographic variables and cardiac arrhythmia in patients treated for isolated traumatic brain injury (iTBI). Methods: Adult iTBI patients requiring mannitol infusion following cerebral edema, and with a Glasgow Coma Score below 8, were included. Plasma osmolality was measured with Osmometr 800 CLG. Spatial QRS-T angle (spQRS-T), corrected QT interval (QTc) and STJ segment were calculated from digital resting 12-lead ECGs and analyzed in relation to four levels of plasma osmolality: (A) <280 mOsm/kg H2O; (B) 280–295 mOsm/kg H2O; (C) 295–310 mOsm/kg H2O; and (D) >310 mOsm/kg H2O. All parameters were measured during five consecutive days of treatment. Results: 94 patients aged 18-64 were studied. Increased plasma osmolality correlated with prolonged QTc (p < 0.001), intensified disorders in STJ and increased the risk for cardiac arrhythmia. Moreover, plasma osmolality >313 mOms/kg H2O significantly increased the risk of QTc prolongation >500 ms. Conclusion: In patients treated for iTBI, excessively increased plasma osmolality contributes to electrocardiographic disorders including prolonged QTc, while also correlating with increased risk for cardiac arrhythmias.
  •  
9.
  •  
10.
  • Dabrowski, W, et al. (author)
  • Suppression of Electrographic Seizures Is Associated with Amelioration of QTc Interval Prolongation in Patients with Traumatic Brain Injury
  • 2021
  • In: Journal of clinical medicine. - : MDPI AG. - 2077-0383. ; 10:22
  • Journal article (peer-reviewed)abstract
    • Introduction: Disorders in electroencephalography (EEG) are commonly noted in patients with traumatic brain injury (TBI) and may be associated with electrocardiographic disturbances. Electrographic seizures (ESz) are the most common features in these patients. This study aimed to explore the relationship between ESz and possible changes in QTc interval and spatial QRS-T angle both during ESz and after ESz resolution. Methods: Adult patients with TBI were studied. Surface 12-lead ECGs were recorded using a Cardiax device during ESz events and 15 min after their effective suppression using barbiturate infusion. The ESz events were diagnosed using Masimo Root or bispectral index (BIS) devices. Results: Of the 348 patients considered for possible inclusion, ESz were noted in 72, with ECG being recorded in 21. Prolonged QTc was noted during ESz but significantly ameliorated after ESz suppression (540.19 ± 60.68 ms vs. 478.67 ± 38.52 ms, p < 0.001). The spatial QRS-T angle was comparable during ESz and after treatment. Regional cerebral oximetry increased following ESz suppression (from 58.4% ± 6.2 to 60.5% ± 4.2 (p < 0.01) and from 58.2% ± 7.2 to 60.8% ± 4.8 (p < 0.05) in the left and right hemispheres, respectively). Conclusion: QTc interval prolongation occurs during ESz events in TBI patients but both it and regional cerebral oximetry are improved after suppression of seizures.
  •  
11.
  •  
12.
  • Gladding, PA, et al. (author)
  • Metabolomics and a Breath Sensor Identify Acetone as a Biomarker for Heart Failure
  • 2023
  • In: Biomolecules. - : MDPI AG. - 2218-273X. ; 13:1
  • Journal article (peer-reviewed)abstract
    • Background: Multi-omics delivers more biological insight than targeted investigations. We applied multi-omics to patients with heart failure with reduced ejection fraction (HFrEF). Methods: 46 patients with HFrEF and 20 controls underwent metabolomic profiling, including liquid/gas chromatography mass spectrometry (LC-MS/GC-MS) and solid-phase microextraction (SPME) volatilomics in plasma and urine. HFrEF was defined using left ventricular global longitudinal strain, ejection fraction and NTproBNP. A consumer breath acetone (BrACE) sensor validated results in n = 73. Results: 28 metabolites were identified by GCMS, 35 by LCMS and 4 volatiles by SPME in plasma and urine. Alanine, aspartate and glutamate, citric acid cycle, arginine biosynthesis, glyoxylate and dicarboxylate metabolism were altered in HFrEF. Plasma acetone correlated with NT-proBNP (r = 0.59, 95% CI 0.4 to 0.7), 2-oxovaleric and cis-aconitic acid, involved with ketone metabolism and mitochondrial energetics. BrACE > 1.5 ppm discriminated HF from other cardiac pathology (AUC 0.8, 95% CI 0.61 to 0.92, p < 0.0001). Conclusion: Breath acetone discriminated HFrEF from other cardiac pathology using a consumer sensor, but was not cardiac specific.
  •  
13.
  • Gladding, PA, et al. (author)
  • Multiomics, virtual reality and artificial intelligence in heart failure
  • 2021
  • In: Future cardiology. - : Future Medicine Ltd. - 1744-8298 .- 1479-6678. ; 17:8, s. 1335-1347
  • Journal article (peer-reviewed)abstract
    • Aim: Multiomics delivers more biological insight than targeted investigations. We applied multiomics to patients with heart failure (HF) and reduced ejection fraction (HFrEF), with machine learning applied to advanced ECG (AECG) and echocardiography artificial intelligence (Echo AI). Patients & methods: In total, 46 patients with HFrEF and 20 controls underwent metabolomic profiling, including liquid/gas chromatography–mass spectrometry and solid-phase microextraction volatilomics in plasma and urine. HFrEF was defined using left ventricular (LV) global longitudinal strain, EF and N-terminal pro hormone BNP. AECG and Echo AI were performed over 5 min, with a subset of patients undergoing a virtual reality mental stress test. Results: A-ECG had similar diagnostic accuracy as N-terminal pro hormone BNP for HFrEF (area under the curve = 0.95, 95% CI: 0.85–0.99), and correlated with global longitudinal strain (r = -0.77, p < 0.0001), while Echo AI-generated measurements correlated well with manually measured LV end diastolic volume r = 0.77, LV end systolic volume r = 0.8, LVEF r = 0.71, indexed left atrium volume r = 0.71 and indexed LV mass r = 0.6, p < 0.005. AI-LVEF and other HFrEF biomarkers had a similar discrimination for HFrEF (area under the curve AI-LVEF = 0.88; 95% CI: -0.03 to 0.15; p = 0.19). Virtual reality mental stress test elicited arrhythmic biomarkers on AECG and indicated blunted autonomic responsiveness (alpha 2 of RR interval variability, p = 1 × 10-4) in HFrEF. Conclusion: Multiomics-related machine learning shows promise for the assessment of HF.
  •  
14.
  •  
15.
  •  
16.
  •  
17.
  • Jaroszynski, A, et al. (author)
  • Heat Shock Protein 27 Levels Predict Myocardial Inhomogeneities in Hemodialysis Patients
  • 2022
  • In: Mediators of inflammation. - : Hindawi Limited. - 1466-1861 .- 0962-9351. ; 2022, s. 5618867-
  • Journal article (peer-reviewed)abstract
    • Background. Sudden cardiac death (SCD) is the single major cause of death in hemodialysis (HD) patients. QRS-T angle is an established marker of global repolarization heterogeneity associated with electrical instability and SCD. Heat shock protein 27 (HSP27) plays an important, protective role against noxious factors in the cardiovascular (CV) system. This study is aimed at assessing whether low HSP27 is associated with myocardial inhomogeneities in HD patients, as expressed by increases in the spatial QRS-T angle. Methods. Clinical data and biochemical, echocardiographic, and electrocardiographic parameters were evaluated in 182 HD patients. Patients were split into normal and abnormal QRS-T angle groups. Results. Patients with abnormally high QRS-T angles were older and had higher prevalence of diabetes as well as myocardial infarction, higher left ventricular mass index (LVMI) and C-reactive protein, worse oxidant/antioxidant status, and lower ejection fraction and HSP27. Multiple regression analysis revealed that abnormal QRS-T values were independently, negatively associated with serum HSP27 and positively associated with LVMI. Conclusions. Low HSP27 levels are associated with increased heterogeneity of myocardial action potential, as expressed by increased spatial QRS-T angle.
  •  
18.
  •  
19.
  • Maanja, M, et al. (author)
  • An electrocardiography score predicts heart failure hospitalization or death beyond that of cardiovascular magnetic resonance imaging
  • 2022
  • In: Scientific reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 12:1, s. 18364-
  • Journal article (peer-reviewed)abstract
    • The electrocardiogram (ECG) and cardiovascular magnetic resonance imaging (CMR) provide powerful prognostic information. The aim was to determine their relative prognostic value. Patients (n = 783) undergoing CMR and 12-lead ECG with a QRS duration < 120 ms were included. Prognosis scores for one-year event-free survival from hospitalization for heart failure or death were derived using continuous ECG or CMR measures, and multivariable logistic regression, and compared. Patients (median [interquartile range] age 55 [43–64] years, 44% female) had 155 events during 5.7 [4.4–6.6] years. The ECG prognosis score included (1) frontal plane QRS-T angle, and (2) heart rate corrected QT duration (QTc) (log-rank 55). The CMR prognosis score included (1) global longitudinal strain, and (2) extracellular volume fraction (log-rank 85). The combination of positive scores for both ECG and CMR yielded the highest prognostic value (log-rank 105). Multivariable analysis showed an association with outcomes for both the ECG prognosis score (log-rank 8.4, hazard ratio [95% confidence interval] 1.29 [1.09–1.54]) and the CMR prognosis score (log-rank 47, hazard ratio 1.90 [1.58–2.28]). An ECG prognosis score predicted outcomes independently of CMR. Combining the results of ECG and CMR using both prognosis scores improved the overall prognostic performance.
  •  
20.
  •  
21.
  •  
22.
  • Maanja, M, et al. (author)
  • Improved evaluation of left ventricular hypertrophy using the spatial QRS-T angle by electrocardiography
  • 2022
  • In: Scientific reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 12:1, s. 15106-
  • Journal article (peer-reviewed)abstract
    • Electrocardiographic (ECG) signs of left ventricular hypertrophy (LVH) lack sensitivity. The aim was to identify LVH based on an abnormal spatial peaks QRS-T angle, evaluate its diagnostic performance compared to conventional ECG criteria for LVH, and its prognostic performance. This was an observational study with four cohorts with a QRS duration < 120 ms. Based on healthy volunteers (n = 921), an abnormal spatial peaks QRS-T angle was defined as ≥ 40° for females and ≥ 55° for males. In other healthy volunteers (n = 461), the specificity of the QRS-T angle to detect LVH was 96% (females) and 98% (males). In patients with at least moderate LVH by cardiac imaging (n = 225), the QRS-T angle had a higher sensitivity than conventional ECG criteria (93–97% vs 13–56%, p < 0.001 for all). In clinical consecutive patients (n = 783), of those who did not have any LVH, 238/556 (43%) had an abnormal QRS-T angle. There was an association with hospitalization for heart failure or all-cause death in univariable and multivariable analysis. An abnormal QRS-T angle rarely occurred in healthy volunteers, was a mainstay of moderate or greater LVH, was common in clinical patients without LVH but with cardiac co-morbidities, and associated with outcomes.
  •  
23.
  •  
24.
  •  
25.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-25 of 30

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view