SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Schlichting E) "

Sökning: WFRF:(Schlichting E)

  • Resultat 1-20 av 20
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Menden, MP, et al. (författare)
  • Community assessment to advance computational prediction of cancer drug combinations in a pharmacogenomic screen
  • 2019
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 10:1, s. 2674-
  • Tidskriftsartikel (refereegranskat)abstract
    • The effectiveness of most cancer targeted therapies is short-lived. Tumors often develop resistance that might be overcome with drug combinations. However, the number of possible combinations is vast, necessitating data-driven approaches to find optimal patient-specific treatments. Here we report AstraZeneca’s large drug combination dataset, consisting of 11,576 experiments from 910 combinations across 85 molecularly characterized cancer cell lines, and results of a DREAM Challenge to evaluate computational strategies for predicting synergistic drug pairs and biomarkers. 160 teams participated to provide a comprehensive methodological development and benchmarking. Winning methods incorporate prior knowledge of drug-target interactions. Synergy is predicted with an accuracy matching biological replicates for >60% of combinations. However, 20% of drug combinations are poorly predicted by all methods. Genomic rationale for synergy predictions are identified, including ADAM17 inhibitor antagonism when combined with PIK3CB/D inhibition contrasting to synergy when combined with other PI3K-pathway inhibitors in PIK3CA mutant cells.
  •  
4.
  • Botvinik-Nezer, Rotem, et al. (författare)
  • Variability in the analysis of a single neuroimaging dataset by many teams
  • 2020
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 582, s. 84-88
  • Tidskriftsartikel (refereegranskat)abstract
    • Data analysis workflows in many scientific domains have become increasingly complex and flexible. Here we assess the effect of this flexibility on the results of functional magnetic resonance imaging by asking 70 independent teams to analyse the same dataset, testing the same 9 ex-ante hypotheses(1). The flexibility of analytical approaches is exemplified by the fact that no two teams chose identical workflows to analyse the data. This flexibility resulted in sizeable variation in the results of hypothesis tests, even for teams whose statistical maps were highly correlated at intermediate stages of the analysis pipeline. Variation in reported results was related to several aspects of analysis methodology. Notably, a meta-analytical approach that aggregated information across teams yielded a significant consensus in activated regions. Furthermore, prediction markets of researchers in the field revealed an overestimation of the likelihood of significant findings, even by researchers with direct knowledge of the dataset(2-5). Our findings show that analytical flexibility can have substantial effects on scientific conclusions, and identify factors that may be related to variability in the analysis of functional magnetic resonance imaging. The results emphasize the importance of validating and sharing complex analysis workflows, and demonstrate the need for performing and reporting multiple analyses of the same data. Potential approaches that could be used to mitigate issues related to analytical variability are discussed. The results obtained by seventy different teams analysing the same functional magnetic resonance imaging dataset show substantial variation, highlighting the influence of analytical choices and the importance of sharing workflows publicly and performing multiple analyses.
  •  
5.
  • Dork, T, et al. (författare)
  • Two truncating variants in FANCC and breast cancer risk
  • 2019
  • Ingår i: Scientific reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 9:1, s. 12524-
  • Tidskriftsartikel (refereegranskat)abstract
    • Fanconi anemia (FA) is a genetically heterogeneous disorder with 22 disease-causing genes reported to date. In some FA genes, monoallelic mutations have been found to be associated with breast cancer risk, while the risk associations of others remain unknown. The gene for FA type C, FANCC, has been proposed as a breast cancer susceptibility gene based on epidemiological and sequencing studies. We used the Oncoarray project to genotype two truncating FANCC variants (p.R185X and p.R548X) in 64,760 breast cancer cases and 49,793 controls of European descent. FANCC mutations were observed in 25 cases (14 with p.R185X, 11 with p.R548X) and 26 controls (18 with p.R185X, 8 with p.R548X). There was no evidence of an association with the risk of breast cancer, neither overall (odds ratio 0.77, 95%CI 0.44–1.33, p = 0.4) nor by histology, hormone receptor status, age or family history. We conclude that the breast cancer risk association of these two FANCC variants, if any, is much smaller than for BRCA1, BRCA2 or PALB2 mutations. If this applies to all truncating variants in FANCC it would suggest there are differences between FA genes in their roles on breast cancer risk and demonstrates the merit of large consortia for clarifying risk associations of rare variants.
  •  
6.
  •  
7.
  •  
8.
  • Aquila, A., et al. (författare)
  • The linac coherent light source single particle imaging road map
  • 2015
  • Ingår i: Structural Dynamics. - : AIP Publishing. - 2329-7778. ; 2:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Intense femtosecond x-ray pulses from free-electron laser sources allow the imag-ing of individual particles in a single shot. Early experiments at the Linac CoherentLight Source (LCLS) have led to rapid progress in the field and, so far, coherentdiffractive images have been recorded from biological specimens, aerosols, andquantum systems with a few-tens-of-nanometers resolution. In March 2014, LCLSheld a workshop to discuss the scientific and technical challenges for reaching theultimate goal of atomic resolution with single-shot coherent diffractive imaging. This paper summarizes the workshop findings and presents the roadmap towardreaching atomic resolution, 3D imaging at free-electron laser sources.
  •  
9.
  • Banys-Paluchowski, M, et al. (författare)
  • Surgical Management of the Axilla in Clinically Node-Positive Breast Cancer Patients Converting to Clinical Node Negativity through Neoadjuvant Chemotherapy: Current Status, Knowledge Gaps, and Rationale for the EUBREAST-03 AXSANA Study
  • 2021
  • Ingår i: Cancers. - : MDPI AG. - 2072-6694. ; 13:7
  • Tidskriftsartikel (refereegranskat)abstract
    • In the last two decades, surgical methods for axillary staging in breast cancer patients have become less extensive, and full axillary lymph node dissection (ALND) is confined to selected patients. In initially node-positive patients undergoing neoadjuvant chemotherapy, however, the optimal management remains unclear. Current guidelines vary widely, endorsing different strategies. We performed a literature review on axillary staging strategies and their place in international recommendations. This overview defines knowledge gaps associated with specific procedures, summarizes currently ongoing clinical trials that address these unsolved issues, and provides the rationale for further research. While some guidelines have already implemented surgical de-escalation, replacing ALND with, e.g., sentinel lymph node biopsy (SLNB) or targeted axillary dissection (TAD) in cN+ patients converting to clinical node negativity, others recommend ALND. Numerous techniques are in use for tagging lymph node metastasis, but many questions regarding the marking technique, i.e., the optimal time for marker placement and the number of marked nodes, remain unanswered. The optimal number of SLNs to be excised also remains a matter of debate. Data on oncological safety and quality of life following different staging procedures are lacking. These results provide the rationale for the multinational prospective cohort study AXSANA initiated by EUBREAST, which started enrollment in June 2020 and aims at recruiting 3000 patients in 20 countries (NCT04373655; Funded by AGO-B, Claudia von Schilling Foundation for Breast Cancer Research, AWOgyn, EndoMag, Mammotome, and MeritMedical).
  •  
10.
  • Russnes, HG, et al. (författare)
  • Genomic architecture characterizes tumor progression paths and fate in breast cancer patients
  • 2010
  • Ingår i: Science translational medicine. - : American Association for the Advancement of Science (AAAS). - 1946-6242 .- 1946-6234. ; 2:38, s. 38ra47-
  • Tidskriftsartikel (refereegranskat)abstract
    • This study demonstrates the relation among structural genomic alterations, molecular subtype, and clinical behavior and shows that an objective score of genomic complexity can provide independent prognostic information in breast cancer.
  •  
11.
  •  
12.
  • Aquila, Andrew, et al. (författare)
  • Time-resolved protein nanocrystallography using an X-ray free-electron laser
  • 2012
  • Ingår i: Optics Express. - 1094-4087. ; 20:3, s. 2706-2716
  • Tidskriftsartikel (refereegranskat)abstract
    • We demonstrate the use of an X-ray free electron laser synchronized with an optical pump laser to obtain X-ray diffraction snapshots from the photoactivated states of large membrane protein complexes in the form of nanocrystals flowing in a liquid jet. Light-induced changes of Photosystem I-Ferredoxin co-crystals were observed at time delays of 5 to 10 µs after excitation. The result correlates with the microsecond kinetics of electron transfer from Photosystem I to ferredoxin. The undocking process that follows the electron transfer leads to large rearrangements in the crystals that will terminally lead to the disintegration of the crystals. We describe the experimental setup and obtain the first time-resolved femtosecond serial X-ray crystallography results from an irreversible photo-chemical reaction at the Linac Coherent Light Source. This technique opens the door to time-resolved structural studies of reaction dynamics in biological systems.
  •  
13.
  • Chapman, Henry N, et al. (författare)
  • Femtosecond X-ray protein nanocrystallography.
  • 2011
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 470:7332, s. 73-7
  • Tidskriftsartikel (refereegranskat)abstract
    • X-ray crystallography provides the vast majority of macromolecular structures, but the success of the method relies on growing crystals of sufficient size. In conventional measurements, the necessary increase in X-ray dose to record data from crystals that are too small leads to extensive damage before a diffraction signal can be recorded. It is particularly challenging to obtain large, well-diffracting crystals of membrane proteins, for which fewer than 300 unique structures have been determined despite their importance in all living cells. Here we present a method for structure determination where single-crystal X-ray diffraction 'snapshots' are collected from a fully hydrated stream of nanocrystals using femtosecond pulses from a hard-X-ray free-electron laser, the Linac Coherent Light Source. We prove this concept with nanocrystals of photosystem I, one of the largest membrane protein complexes. More than 3,000,000 diffraction patterns were collected in this study, and a three-dimensional data set was assembled from individual photosystem I nanocrystals (∼200nm to 2μm in size). We mitigate the problem of radiation damage in crystallography by using pulses briefer than the timescale of most damage processes. This offers a new approach to structure determination of macromolecules that do not yield crystals of sufficient size for studies using conventional radiation sources or are particularly sensitive to radiation damage.
  •  
14.
  • Duane Loh, N., et al. (författare)
  • Profiling structured beams using injected aerosols
  • 2012
  • Ingår i: Proceedings of SPIE. - : SPIE. - 9780819492210 ; , s. 850403-
  • Konferensbidrag (refereegranskat)abstract
    • Profiling structured beams produced by X-ray free-electron lasers (FELs) is crucial to both maximizing signal intensity for weakly scattering targets and interpreting their scattering patterns. Earlier ablative imprint studies describe how to infer the X-ray beam profile from the damage that an attenuated beam inflicts on a substrate. However, the beams in-situ profile is not directly accessible with imprint studies because the damage profile could be different from the actual beam profile. On the other hand, although a Shack-Hartmann sensor is capable of in-situ profiling, its lenses may be quickly damaged at the intense focus of hard X-ray FEL beams. We describe a new approach that probes the in-situ morphology of the intense FEL focus. By studying the translations in diffraction patterns from an ensemble of randomly injected sub-micron latex spheres, we were able to determine the non-Gaussian nature of the intense FEL beam at the Linac Coherent Light Source (SLAC National Laboratory) near the FEL focus. We discuss an experimental application of such a beam-profiling technique, and the limitations we need to overcome before it can be widely applied.
  •  
15.
  • Lee, Ho-Hsien, et al. (författare)
  • Expression, purification and crystallization of CTB-MPR, a candidate mucosal vaccine component against HIV-1
  • 2014
  • Ingår i: IUCrJ. - 2052-2525. ; 1:5, s. 305-317
  • Tidskriftsartikel (refereegranskat)abstract
    • CTB-MPR is a fusion protein between the B subunit of cholera toxin (CTB) andthe membrane-proximal region of gp41 (MPR), the transmembrane envelopeprotein ofHuman immunodeficiency virus 1(HIV-1), and has previously beenshown to induce the production of anti-HIV-1 antibodies with antiviralfunctions. To further improve the design of this candidate vaccine, X-raycrystallography experiments were performed to obtain structural informationabout this fusion protein. Several variants of CTB-MPR were designed,constructed and recombinantly expressed inEscherichia coli. The first variantcontained a flexible GPGP linker between CTB and MPR, and yielded crystalsthat diffracted to a resolution of 2.3 A ̊, but only the CTB region was detectedin the electron-density map. A second variant, in which the CTB was directlyattached to MPR, was shown to destabilize pentamer formation. A thirdconstruct containing a polyalanine linker between CTB and MPR proved tostabilize the pentameric form of the protein during purification. The purificationprocedure was shown to produce a homogeneously pure and monodispersesample for crystallization. Initial crystallization experiments led to pseudo-crystals which were ordered in only two dimensions and were disordered inthe third dimension. Nanocrystals obtained using the same precipitant showedpromising X-ray diffraction to 5 A ̊resolution in femtosecond nanocrystallo-graphy experiments at the Linac Coherent Light Source at the SLAC NationalAccelerator Laboratory. The results demonstrate the utility of femtosecondX-ray crystallography to enable structural analysis based on nano/microcrystalsof a protein for which no macroscopic crystals ordered in three dimensions havebeen observed before.
  •  
16.
  • Loh, N. D., et al. (författare)
  • Fractal morphology, imaging and mass spectrometry of single aerosol particles in flight
  • 2012
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 486:7404, s. 513-517
  • Tidskriftsartikel (refereegranskat)abstract
    • The morphology of micrometre-size particulate matter is of critical importance in fields ranging from toxicology(1) to climate science(2), yet these properties are surprisingly difficult to measure in the particles' native environment. Electron microscopy requires collection of particles on a substrate(3); visible light scattering provides insufficient resolution(4); and X-ray synchrotron studies have been limited to ensembles of particles(5). Here we demonstrate an in situ method for imaging individual sub-micrometre particles to nanometre resolution in their native environment, using intense, coherent X-ray pulses from the Linac Coherent Light Source(6) free-electron laser. We introduced individual aerosol particles into the pulsed X-ray beam, which is sufficiently intense that diffraction from individual particles can be measured for morphological analysis. At the same time, ion fragments ejected from the beam were analysed using mass spectrometry, to determine the composition of single aerosol particles. Our results show the extent of internal dilation symmetry of individual soot particles subject to non-equilibrium aggregation, and the surprisingly large variability in their fractal dimensions. More broadly, our methods can be extended to resolve both static and dynamic morphology of general ensembles of disordered particles. Such general morphology has implications in topics such as solvent accessibilities in proteins(7), vibrational energy transfer by the hydrodynamic interaction of amino acids(8), and large-scale production of nanoscale structures by flame synthesis(9).
  •  
17.
  • Martin, A. V., et al. (författare)
  • Femtosecond dark-field imaging with an X-ray free electron laser
  • 2012
  • Ingår i: Optics Express. - 1094-4087. ; 20:12, s. 13501-13512
  • Tidskriftsartikel (refereegranskat)abstract
    • The emergence of femtosecond diffractive imaging with X-ray lasers has enabled pioneering structural studies of isolated particles, such as viruses, at nanometer length scales. However, the issue of missing low frequency data significantly limits the potential of X-ray lasers to reveal sub-nanometer details of micrometer-sized samples. We have developed a new technique of dark-field coherent diffractive imaging to simultaneously overcome the missing data issue and enable us to harness the unique contrast mechanisms available in dark-field microscopy. Images of airborne particulate matter (soot) up to two microns in length were obtained using single-shot diffraction patterns obtained at the Linac Coherent Light Source, four times the size of objects previously imaged in similar experiments. This technique opens the door to femtosecond diffractive imaging of a wide range of micrometer-sized materials that exhibit irreproducible complexity down to the nanoscale, including airborne particulate matter, small cells, bacteria and gold-labeled biological samples.
  •  
18.
  • Martin, A. V., et al. (författare)
  • Noise-robust coherent diffractive imaging with a single diffraction pattern
  • 2012
  • Ingår i: Optics Express. - 1094-4087. ; 20:15, s. 16650-16661
  • Tidskriftsartikel (refereegranskat)abstract
    • The resolution of single-shot coherent diffractive imaging at X-ray free-electron laser facilities is limited by the low signal-to-noise level of diffraction data at high scattering angles. The iterative reconstruction methods, which phase a continuous diffraction pattern to produce an image, must be able to extract information from these weak signals to obtain the best quality images. Here we show how to modify iterative reconstruction methods to improve tolerance to noise. The method is demonstrated with the hybrid input-output method on both simulated data and single-shot diffraction patterns taken at the Linac Coherent Light Source. (C) 2012 Optical Society of America
  •  
19.
  • Nass, Karol, et al. (författare)
  • Indications of radiation damage in ferredoxin microcrystals using high-intensity X-FEL beams
  • 2015
  • Ingår i: Journal of Synchrotron Radiation. - 0909-0495 .- 1600-5775. ; 22:2, s. 225-238
  • Tidskriftsartikel (refereegranskat)abstract
    • Proteins that contain metal cofactors are expected to be highly radiation sensitive since the degree of X-ray absorption correlates with the presence of high-atomic-number elements and X-ray energy. To explore the effects of local damage in serial femtosecond crystallography (SFX), Clostridium ferredoxin was used as a model system. The protein contains two [4Fe–4S] clusters that serve as sensitive probes for radiation-induced electronic and structural changes. High-dose room-temperature SFX datasets were collected at the Linac Coherent Light Source of ferredoxin microcrystals. Difference electron density maps calculated from high-dose SFX and synchrotron data show peaks at the iron positions of the clusters, indicative of decrease of atomic scattering factors due to ionization. The electron density of the two [4Fe–4S] clusters differs in the FEL data, but not in the synchrotron data. Since the clusters differ in their detailed architecture, this observation is suggestive of an influence of the molecular bonding and geometry on the atomic displacement dynamics following initial photoionization. The experiments are complemented by plasma code calculations.
  •  
20.
  • Pedersoli, E., et al. (författare)
  • Mesoscale morphology of airborne core-shell nanoparticle clusters : x-ray laser coherent diffraction imaging
  • 2013
  • Ingår i: Journal of Physics B. - : IOP Publishing. - 0953-4075 .- 1361-6455. ; 46:16 SI, s. 164033-
  • Tidskriftsartikel (refereegranskat)abstract
    • Unraveling the complex morphology of functional materials like core-shell nanoparticles and its evolution in different environments is still a challenge. Only recently has the single-particle coherent diffraction imaging (CDI), enabled by the ultrabright femtosecond free-electron laser pulses, provided breakthroughs in understanding mesoscopic morphology of nanoparticulate matter. Here, we report the first CDI results for Co@SiO2 core-shell nanoparticles randomly clustered in large airborne aggregates, obtained using the x-ray free-electron laser at the Linac Coherent Light Source. Our experimental results compare favourably with simulated diffraction patterns for clustered Co@SiO2 nanoparticles with similar to 10 nm core diameter and similar to 30 nm shell outer diameter, which confirms the ability to resolve the mesoscale morphology of complex metastable structures. The findings in this first morphological study of core-shell nanomaterials are a solid base for future time-resolved studies of dynamic phenomena in complex nanoparticulate matter using x-ray lasers.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-20 av 20

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy