SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Schmitt Kopplin Philippe) "

Sökning: WFRF:(Schmitt Kopplin Philippe)

  • Resultat 1-25 av 25
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Harlacher, Eva, et al. (författare)
  • Increased levels of a mycophenolic acid metabolite in patients with kidney failure negatively affect cardiomyocyte health.
  • 2024
  • Ingår i: Frontiers in cardiovascular medicine. - 2297-055X. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • Chronic kidney disease (CKD) significantly increases cardiovascular risk and mortality, and the accumulation of uremic toxins in the circulation upon kidney failure contributes to this increased risk. We thus performed a screening for potential novel mediators of reduced cardiovascular health starting from dialysate obtained after hemodialysis of patients with CKD. The dialysate was gradually fractionated to increased purity using orthogonal chromatography steps, with each fraction screened for a potential negative impact on the metabolic activity of cardiomyocytes using a high-throughput MTT-assay, until ultimately a highly purified fraction with strong effects on cardiomyocyte health was retained. Mass spectrometry and nuclear magnetic resonance identified the metabolite mycophenolic acid-β-glucuronide (MPA-G) as a responsible substance. MPA-G is the main metabolite from the immunosuppressive agent MPA that is supplied in the form of mycophenolate mofetil (MMF) to patients in preparation for and after transplantation or for treatment of autoimmune and non-transplant kidney diseases. The adverse effect of MPA-G on cardiomyocytes was confirmed in vitro, reducing the overall metabolic activity and cellular respiration while increasing mitochondrial reactive oxygen species production in cardiomyocytes at concentrations detected in MMF-treated patients with failing kidney function. This study draws attention to the potential adverse effects of long-term high MMF dosing, specifically in patients with severely reduced kidney function already displaying a highly increased cardiovascular risk.
  •  
2.
  • Andersson, Anna, et al. (författare)
  • Molecular changes among non-volatile disinfection by-products between drinking water treatment and consumer taps
  • 2021
  • Ingår i: Environmental Science. - : Royal Society of Chemistry. - 2053-1400 .- 2053-1419. ; 7:12, s. 2335-2345
  • Tidskriftsartikel (refereegranskat)abstract
    • The formation of disinfection by-products (DBPs) during drinking water treatment has been associated with various health concerns but the total DBP exposure is still unknown. In this study, molecular level non-target analysis by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) was used to study non-volatile DBPs, and how their composition changes during water distribution in four drinking water treatment plants (DWTPs) in Sweden using different types of raw water and disinfection processes. The largest portion of tap water DBP compositions were detected also at the DWTPs, highlighting that these DBP formulae were rather stable and contribute to human DBP exposure. Yet the number of detected DBPs decreased 14-48% between drinking water treatment and consumer taps in the three plants in which no mixing of water from other DWTPs in the distribution system occurred showing active DBP processing in the water distribution network. While considerable amounts of bromine-containing DBPs were detected upon chemical disinfection in some DWTPs, few of them were detected in the tap water samples, likely due to debromination by hydrolytic reactions. The overall fewer non-volatile DBPs detected in tap waters, along with changed distribution among chlorine and bromine DBPs, demonstrate that DBP mixtures are highly dynamic and that DBP measurements at DWTPs do not adequately reflect exposure at the point-of-use. Clearly, more knowledge about changes of DBP mixtures through the distribution system is needed to improve DBP exposure assessments.
  •  
3.
  • Andersson, Anna, et al. (författare)
  • Selective removal of natural organic matter during drinking water production changes the composition of disinfection by-products
  • 2020
  • Ingår i: Environmental Science. - : ROYAL SOC CHEMISTRY. - 2053-1400 .- 2053-1419. ; 6:3, s. 779-794
  • Tidskriftsartikel (refereegranskat)abstract
    • Disinfection by-products (DBPs) are potentially toxic compounds formed upon chemical disinfection of drinking water. Controlling the levels and characteristics of dissolved organic matter (DOM) as precursor material for DBPs is a major target to reduce DBP formation. A pilot-scale treatment including suspended ion exchange (SIX (R)), a ceramic microfilter (CeraMac (R)) with in-line coagulation and optional pre-ozonation followed by granular activated carbon (GAC) filtration was compared with a conventional full-scale treatment based on DOM removal and DBP formation using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), rapid fractionation, liquid chromatography organic carbon detection (LC-OCD), adsorbable organic halogens (AOX) and trihalomethane (THM) analysis. The new treatment combination showed different selectivity for DOM removal, compared to the conventional, leading to changes in composition of the DBPs formed. SIX (R) and GAC had the largest impacts on reducing AOX and THM formation potentials but the high adsorptive capacity of GAC affected the diversity of detected DBPs most. Chlorination and chloramination of pilot treated water with doses normally used in Sweden produced low levels of AOX compared to the full-scale treatment, but FT-ICR MS revealed an abundance of brominated DBP species in contrast with the conventional treatment, which were dominated by chlorinated DBPs. This finding was largely linked to the high DOM removal by the pilot treatment, causing an increased Br-/C ratio and a higher formation of HOBr. Potential increases in Br-DBPs are important to consider in minimizing health risks associated with DBPs, because of the supposed higher toxicity of Br-DBPs compared to Cl-DBPs.
  •  
4.
  • Andersson, Anna, et al. (författare)
  • Waterworks-specific composition of drinking water disinfection by-products
  • 2019
  • Ingår i: Environmental Science. - Cambridge : Royal Society of Chemistry. - 2053-1400 .- 2053-1419. ; :5, s. 861-872
  • Tidskriftsartikel (refereegranskat)abstract
    • Reactions between chemical disinfectants and natural organic matter (NOM) upon drinking water treatment result in formation of potentially harmful disinfection by-products (DBPs). The diversity of DBPs formed is high and a large portion remains unknown. Previous studies have shown that non-volatile DBPs are important, as much of the total toxicity from DBPs has been related to this fraction. To further understand the composition and variation of DBPs associated with this fraction, non-target analysis with ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) was employed to detect DBPs at four Swedish waterworks using different types of raw water and treatments. Samples were collected five times covering a full year. A common group of DBPs formed at all four waterworks was detected, suggesting a similar pool of DBP precursors in all raw waters that might be related to phenolic moieties. However, the largest proportion (64–92%) of the assigned chlorinated and brominated molecular formulae were unique, i.e. were solely found in one of the four waterworks. In contrast, the compositional variations of NOM in the raw waters and samples collected prior to chemical disinfection were rather limited.This indicated that waterworks-specific DBPs presumably originated from matrix effects at the point of disinfection, primarily explained by differences in bromide levels, disinfectants (chlorine versus chloramine) and different relative abundances of isomers among the NOM compositions studied. The large variation of observed DBPs in the toxicologically relevant non-volatile fraction indicates that non-targeted monitoring strategies might be valuable to ensure relevant DBP monitoring in the future.
  •  
5.
  • Fernández-Remolar, David C., et al. (författare)
  • Productivity contribution of Paleozoic woodlands to the formation of shale hosted massive sulfide deposits in the Iberian Pyrite Belt (Tharsis, Spain)
  • 2018
  • Ingår i: Journal of Geophysical Research - Biogeosciences. - : John Wiley & Sons. - 2169-8953 .- 2169-8961. ; 123:3, s. 1017-1040
  • Tidskriftsartikel (refereegranskat)abstract
    • The geological materials produced during catastrophic and destructive events are an essential source of paleobiological knowledge. The paleobiological information recorded by such events can be rich in information on the size, diversity, and structure of paleocommunities. In this regard, the geobiological study of late Devonian organic matter sampled in Tharsis (Iberian Pyrite Belt) provided some new insights into a Paleozoic woodland community,which was recorded as massive sulfides and black shale deposits affected by a catastrophic event. Sample analysis using TOF-SIMS (Time of Flight Secondary Ion Mass Spectrometer), and complemented by GC/MS (Gas Chromatrograph/Mass Spectrometer) identified organic compounds showing a very distinct distribution in the rock. While phytochemical compounds occur homogeneously in the sample matrix that is composed of black shale, the microbial-derived organics are more abundant in the sulfide nodules. The co-occurrence of sulfur bacteria compounds and the overwhelming presence of phytochemicals provide support for the hypothesis that the formation of the massive sulfides resulted from a high rate of vegetal debris production and its oxidation through sulfate reduction under suboxic to anoxic conditions. A continuous supply of iron from hydrothermal activity coupled with microbial activity was strictly necessary to produce this massive orebody. A rough estimate of the woodland biomass was made possible by accounting for the microbial sulfur production activity recorded in the metallic sulfide. As a result, the biomass size of the late Devonian woodland community was comparable to modern woodlands like the Amazon or Congo rainforests.
  •  
6.
  • Fernández-Remolar, David C., et al. (författare)
  • Unveiling microbial preservation under hyperacidic and oxidizing conditions in the Oligocene Rio Tinto deposit
  • 2021
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322 .- 2045-2322. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The preservation of biosignatures on Mars is largely associated with extensive deposits of clays formed under mild early Noachian conditions (> 3.9 Ga). They were followed by widespread precipitation of acidic sulfates considered adverse for biomolecule preservation. In this paper, an exhaustive mass spectrometry investigation of ferric subsurface materials in the Rio Tinto gossan deposit (~ 25 Ma) provides evidence of well-preserved molecular biosignatures under oxidative and acidic conditions. Time of flight secondary ion mass spectrometry (ToF–SIMS) analysis shows a direct association between physical-templating biological structures and molecular biosignatures. This relation implies that the quality of molecular preservation is exceptional and provides information on microbial life formerly operating in the shallow regions of the Rio Tinto subsurface. Consequently, low-pH oxidative environments on Mars could also record molecular information about ancient life in the same way as the Noachian clay-rich deposits.
  •  
7.
  • Gonsior, Michael, et al. (författare)
  • Changes in Dissolved Organic Matter during the Treatment Processes of a Drinking Water Plant in Sweden and Formation of Previously Unknown Disinfection Byproducts
  • 2014
  • Ingår i: Environmental Science and Technology. - : American Chemical Society. - 0013-936X .- 1520-5851. ; 48:21, s. 12714-12722
  • Tidskriftsartikel (refereegranskat)abstract
    • The changes in dissolved organic matter (DOM) throughout the treatment processes in a drinking water treatment plant in Sweden and the formation of disinfection byproducts (DBPs) were evaluated by using ultra-high-resolution mass spectrometry (resolution of similar to 500000 at m/z 400) and nuclear magnetic resonance (NMR). Mass spectrometric results revealed that flocculation induced substantial changes in the DOM and caused quantitative removal of DOM constituents that usually are associated with DBP formation While half of the chromophoric DOM (CDOM) was removed by flocculation, similar to 4-5 mg L-1 total organic carbon remained in the finished water. A conservative approach revealed the formation of similar to 800 mass spectrometry ions with unambiguous molecular formula assignments that contained at least one halogen atom. These molecules likely represented new DBPs, which could not be prevented by the flocculation process. The most abundant m/z peaks, associated with formed DBPs, could be assigned to C5HO3Cl3, C5HO3Cl2Br, C5HO3ClBr2 using isotope simulation patterns. Other halogen-containing formulas suggested the presence of halogenated polyphenolic and aromatic acid-type structures, which was supported by possible structures that matched the lower molecular mass range (maximum of 10 carbon atoms) of these DBPs. H-1 NMR before and after disinfection revealed an similar to 2% change in the overall H-1 NMR signals supporting a significant change in the DOM caused by disinfection. This study underlines the fact that a large and increasing number of people are exposed to a very diverse pool of organohalogens through water by both drinking and uptake through the skin upon contact. Nontarget analytical approaches are indispensable for revealing the magnitude of this exposure and to test alternative ways to reduce it.
  •  
8.
  • Gonsior, Michael, et al. (författare)
  • Chemodiversity of dissolved organic matter in the Amazon Basin
  • 2016
  • Ingår i: Biogeosciences. - : COPERNICUS GESELLSCHAFT MBH. - 1726-4170 .- 1726-4189. ; 13:14, s. 4279-4290
  • Tidskriftsartikel (refereegranskat)abstract
    • Regions in the Amazon Basin have been associated with specific biogeochemical processes, but a detailed chemical classification of the abundant and ubiquitous dissolved organic matter (DOM), beyond specific indicator compounds and bulk measurements, has not yet been established. We sampled water from different locations in the Negro, Madeira/Jamari and Tapajos River areas to characterize the molecular DOM composition and distribution. Ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) combined with excitation emission matrix (EEM) fluorescence spectroscopy and parallel factor analysis (PARAFAC) revealed a large proportion of ubiquitous DOM but also unique area-specific molecular signatures. Unique to the DOM of the Rio Negro area was the large abundance of high molecular weight, diverse hydrogen-deficient and highly oxidized molecular ions deviating from known lignin or tannin compositions, indicating substantial oxidative processing of these ultimately plant-derived polyphenols indicative of these black waters. In contrast, unique signatures in the Madeira/Jamari area were defined by presumably labile sulfur-and nitrogen-containing molecules in this white water river system. Waters from the Tapajos main stem did not show any substantial unique molecular signatures relative to those present in the Rio Madeira and Rio Negro, which implied a lower organic molecular complexity in this clear water tributary, even after mixing with the main stem of the Amazon River. Beside ubiquitous DOM at average H / C and O / C elemental ratios, a distinct and significant unique DOM pool prevailed in the black, white and clear water areas that were also highly correlated with EEM-PARAFAC components and define the frameworks for primary production and other aspects of aquatic life.
  •  
9.
  • Gonsior, Michael, et al. (författare)
  • Molecular characterization of effluent organic matter identified by ultrahigh resolution mass spectrometry
  • 2011
  • Ingår i: WATER RESEARCH. - : Elsevier Science B.V., Amsterdam.. - 0043-1354. ; 45:9, s. 2943-2953
  • Tidskriftsartikel (refereegranskat)abstract
    • Effluent dissolved organic matter (EfOM) collected from the secondary-treated wastewater of the Orange County Sanitation District (OCSD) located in Fountain Valley, California, USA was compared to natural organic matter collected from the Suwannee River (SRNOM), Florida using ultrahigh resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). Furthermore, the two different treatment processes at OCSD, activated sludge and trickling filter, were separately investigated. The blend of these two effluents was further evaluated after it had passed through the microfiltration process of the Advanced Water Purification Facility (AWPF) at Orange County Water District (OCWD). EfOM contained 872 different m/z peaks that were unambiguously assigned to exact molecular formulae containing a single sulfur atom and carbon, hydrogen and oxygen atoms (CHOS formulae). In contrast, the SRNOM sample only contained 152 CHOS formulae. The trend in CHO molecular compositions was opposite with 2500 CHO formulae assigned for SRNOM but only about 1000 for EfOM. The CHOS-derived mass peaks with highest abundances in EfOM could be attributed to surfactants such as linear alkyl benzene sulfonates (LAS), their co-products dialkyl tetralin sulfonates (DATS) and their biodegraded metabolites such as sulfophenyl carboxylic acids (SPC). The differences between the treatments were found minor with greater differences between sampling dates than treatment methods used. (C) 2011 Elsevier Ltd. All rights reserved.
  •  
10.
  • Jansson, Janet, et al. (författare)
  • Metabolomics reveals metabolic biomarkers of Crohn's disease
  • 2009
  • Ingår i: PloS one. - : Public Library of Science (PLoS). - 1932-6203. ; 4:7, s. e6386-
  • Tidskriftsartikel (refereegranskat)abstract
    • The causes and etiology of Crohn's disease (CD) are currently unknown although both host genetics and environmental factors play a role. Here we used non-targeted metabolic profiling to determine the contribution of metabolites produced by the gut microbiota towards disease status of the host. Ion Cyclotron Resonance Fourier Transform Mass Spectrometry (ICR-FT/MS) was used to discern the masses of thousands of metabolites in fecal samples collected from 17 identical twin pairs, including healthy individuals and those with CD. Pathways with differentiating metabolites included those involved in the metabolism and or synthesis of amino acids, fatty acids, bile acids and arachidonic acid. Several metabolites were positively or negatively correlated to the disease phenotype and to specific microbes previously characterized in the same samples. Our data reveal novel differentiating metabolites for CD that may provide diagnostic biomarkers and/or monitoring tools as well as insight into potential targets for disease therapy and prevention.
  •  
11.
  • Jenniskens, Peter, et al. (författare)
  • The impact and recovery of asteroid 2018 LA
  • 2021
  • Ingår i: Meteoritics and Planetary Science. - : John Wiley & Sons. - 1086-9379 .- 1945-5100. ; 56:4, s. 844-893
  • Tidskriftsartikel (refereegranskat)abstract
    • The June 2, 2018 impact of asteroid 2018 LA over Botswana is only the second asteroid detected in space prior to impacting over land. Here, we report on the successful recovery of meteorites. Additional astrometric data refine the approach orbit and define the spin period and shape of the asteroid. Video observations of the fireball constrain the asteroid's position in its orbit and were used to triangulate the location of the fireball's main flare over the Central Kalahari Game Reserve. Twenty‐three meteorites were recovered. A consortium study of eight of these classifies Motopi Pan as an HED polymict breccia derived from howardite, cumulate and basaltic eucrite, and diogenite lithologies. Before impact, 2018 LA was a solid rock of ~156 cm diameter with high bulk density ~2.85 g cm−3, a relatively low albedo pV ~ 0.25, no significant opposition effect on the asteroid brightness, and an impact kinetic energy of ~0.2 kt. The orbit of 2018 LA is consistent with an origin at Vesta (or its Vestoids) and delivery into an Earth‐impacting orbit via the ν6 resonance. The impact that ejected 2018 LA in an orbit toward Earth occurred 22.8 ± 3.8 Ma ago. Zircons record a concordant U‐Pb age of 4563 ± 11 Ma and a consistent 207Pb/206Pb age of 4563 ± 6 Ma. A much younger Pb‐Pb phosphate resetting age of 4234 ± 41 Ma was found. From this impact chronology, we discuss what is the possible source crater of Motopi Pan and the age of Vesta's Veneneia impact basin.
  •  
12.
  • Köhler, Stephan, et al. (författare)
  • Upgrading coagulation with hollow-fibre nanofiltration for improved organic matter removal during surface water treatment.
  • 2016
  • Ingår i: Water Research. - : Elsevier BV. - 1879-2448 .- 0043-1354. ; 89, s. 232-240
  • Tidskriftsartikel (refereegranskat)abstract
    • Rising organic matter concentrations in surface waters in many Nordic countries require current drinking water treatment processes to be adapted. Accordingly, the use of a novel nanofiltration (NF) membrane was studied during a nine month period in pilot scale at a large drinking water treatment plant in Stockholm, Sweden. A chemically resistant hollow-fibre NF membrane was fed with full scale process water from a rapid sand filter after aluminum sulfate coagulation. The combined coagulation and NF process removed more than 90% of the incoming lake water dissolved organic carbon (DOC) (8.7 mg C L(-1)), and 96% of the absorbance at 254 nm (A254) (0.28 cm(-1) incoming absorbance). Including granulated active carbon GAC) filter, the complete pilot plant treatment process we observed decreases in DOC concentration (8.7-0.5 mg C L(-1)), SUVA (3.1-1.7 mg(-1) L m(-1)), and the average nominal molecular mass (670-440 Da). Meanwhile, water hardness was practically unaffected (<20% reduction). Humic substances (HS) and biopolymers were almost completely eliminated (6510-140 and 260 to 10 μg C L(-1) respectively) and low molecular weight (LMW) neutrals decreased substantially (880-190 μg C L(-1)). Differential excitation emission matrices (EEMs), which illustrate the removal of fluorescing organic matter (FDOM) over a range of excitation and emission wavelengths, demonstrate that coagulation removed 35 ± 2% of protein-like material and 65 ± 2% of longer emission wavelength, humic-like FDOM. The subsequent NF treatment was somewhat less selective but still preferentially targeted humic-like FDOM (83 ± 1%) to a larger extent than protein-like material (66 ± 3%). The high selectivity of organic matter during coagulation compared to NF separation was confirmed from analyses with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS), and liquid chromatography with organic carbon detection (LC-OCD), as coagulation exclusively targeted oxidized organic matter components while NF removed both chemically reduced and oxidized components. DOC removal and change in DOC character in the GAC filters showed marked differences with slower saturation and more pronounced shifts in DOC character using NF as pre-treatment. Fluorescence derived parameters showed a similar decrease over time of GAC performance for the first 150 days but also indicated ongoing change of DOM character in the post NF GAC filtrate over time even after LC-OCD indicated steady state with respect to outgoing carbon. During our trial iron concentrations were low (<30 ppb) and thus A254 could be directly related to the concentration of HS (R(2) = 0.9). The fluorescence derived freshness index (β:α) proved to be an excellent variable for estimating the fraction of HS present in all samples. Given the recommended limit of 4 mg L(-1) for chemical oxygen demand (COD) for Swedish drinking water, coagulation will need to be supplemented with one or more treatment steps irrespective whether climate change will lead to drier or wetter conditions in order to maintain sufficient DOC removal with the current increasing concentrations in raw waters.
  •  
13.
  • Lavonen, Elin, et al. (författare)
  • Selective Chlorination of Natural Organic Matter: Identification of Previously Unknown Disinfection Byproducts
  • 2013
  • Ingår i: Environmental Science and Technology. - : American Chemical Society. - 0013-936X .- 1520-5851. ; 47:5, s. 2264-2271
  • Tidskriftsartikel (refereegranskat)abstract
    • Natural organic matter (NOM) serve as precursors for disinfection byproducts (DBPs) in drinking water production making NOM removal essential in predisinfection treatment processes. We identified molecular formulas of chlorinated DBPs after chlorination and chloramination in four Swedish surface water treatment plants (WTPs) using ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). Chlorine-containing formulas were detected before and after disinfection and were therefore classified to identify DBPs. In total, 499 DBPs were detected, of which 230 have not been reported earlier. The byproducts had, as a group, significantly lower ratio of hydrogen to carbon (H/C) and significantly higher average carbon oxidation state (Cos), double bond equivalents per carbon (DBE/C) and ratio of oxygen to carbon (O/C) compared to Cl-containing components present before disinfection and CHO formulas in samples taken both before and after disinfection. Electrophilic substitution, the proposed most significant reaction pathway for chlorination of NOM, results in carbon oxidation and decreased H/C while O/C and DBE/C is left unchanged. Because the identified DBPs had significantly higher DBE/C and O/C than the CHO formulas we concluded that chlorination of NOM during disinfection is selective toward components with relatively high double bond equivalency and number of oxygen atoms per carbon. Furthermore, choice of disinfectant, dose, and predisinfection treatment at the different WTPs resulted in distinct patterns in the occurrence of DBP formulas.
  •  
14.
  • Li, Siyu, et al. (författare)
  • Comprehensive assessment of dissolved organic matter processing in the Amazon River and its major tributaries revealed by positive and negative electrospray mass spectrometry and NMR spectroscopy
  • 2023
  • Ingår i: Science of the Total Environment. - : ELSEVIER. - 0048-9697 .- 1879-1026. ; 857
  • Tidskriftsartikel (refereegranskat)abstract
    • Rivers are natural biogeochemical systems shaping the fates of dissolved organic matter (DOM) from leaving soils to reaching the oceans. This study focuses on Amazon basin DOM processing employing negative and positive electro-spray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI[+/-] FT-ICR MS) and nuclear mag-netic resonance spectroscopy (NMR) to reveal effects of major processes on the compositional space and structural characteristics of black, white and clear water systems. These include non-conservative mixing at the confluences of (1) Solimoes and the Negro River, (2) the Amazon River and the Madeira River, and (3) in-stream processing of Amazon River DOM between the Madeira River and the Tapajos River. The Negro River (black water) supplies more highly oxygenated and high molecular weight compounds, whereas the Solimoes and Madeira Rivers (white water) contribute more CHNO and CHOS molecules to the Amazon River main stem. Aliphatic CHO and abundant CHNO compounds prevail in Tapajos River DOM (clear water), likely originating from primary production. Sorption onto particles and heterotrophic microbial degradation are probably the principal mechanisms for the observed changes in DOM composition in the Amazon River and its tributaries.
  •  
15.
  • Li, Siyu, et al. (författare)
  • Dearomatization drives complexity generation in freshwater organic matter
  • 2024
  • Ingår i: Nature. - : NATURE PORTFOLIO. - 0028-0836 .- 1476-4687. ; 628:8009
  • Tidskriftsartikel (refereegranskat)abstract
    • Dissolved organic matter (DOM) is one of the most complex, dynamic and abundant sources of organic carbon, but its chemical reactivity remains uncertain 1-3 . Greater insights into DOM structural features could facilitate understanding its synthesis, turnover and processing in the global carbon cycle 4,5 . Here we use complementary multiplicity-edited 13C nuclear magnetic resonance (NMR) spectra to quantify key substructures assembling the carbon skeletons of DOM from four main Amazon rivers and two mid-size Swedish boreal lakes. We find that one type of reaction mechanism, oxidative dearomatization (ODA), widely used in organic synthetic chemistry to create natural product scaffolds 6-10 , is probably a key driver for generating structural diversity during processing of DOM that are rich in suitable polyphenolic precursor molecules. Our data suggest a high abundance of tetrahedral quaternary carbons bound to one oxygen and three carbon atoms (OCqC3 units). These units are rare in common biomolecules but could be readily produced by ODA of lignin-derived and tannin-derived polyphenols. Tautomerization of (poly)phenols by ODA creates non-planar cyclohexadienones, which are subject to immediate and parallel cycloadditions. This combination leads to a proliferation of structural diversity of DOM compounds from early stages of DOM processing, with an increase in oxygenated aliphatic structures. Overall, we propose that ODA is a key reaction mechanism for complexity acceleration in the processing of DOM molecules, creation of new oxygenated aliphatic molecules and that it could be prevalent in nature. Using complementary multiplicity-edited 13C nuclear magnetic resonance spectra, oxidative dearomatization is shown to be a key driver for generating structural diversity during processing of dissolved organic matter and the data also suggest high abundance of OCqC3 units.
  •  
16.
  • Li, Siyu, et al. (författare)
  • Distinct Non-conservative Behavior of Dissolved Organic Matter after Mixing Solimoes/Negro and Amazon/Tapajo s River Waters
  • 2023
  • Ingår i: ACS - ES & T Water. - : AMER CHEMICAL SOC. - 2690-0637. ; 3:8, s. 2083-2095
  • Tidskriftsartikel (refereegranskat)abstract
    • Positive and negative electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry and H-1 NMR revealed major compositional and structural changes of dissolved organic matter (DOM) after mixing two sets of river waters in Amazon confluences: the Solimoes and Negro Rivers (S + N) and the Amazon and Tapajo s Rivers (A + T). We also studied the effects of water mixing ratios and incubation time on the composition and structure of DOM molecules. NMR spectra demonstrated large-scale structural transformations in the case of S + N mixing, with gain of pure and functionalized aliphatic units and loss of all other structures after 1d incubation. A + T mixing resulted in comparatively minor structural alterations, with a major gain of small aliphatic biomolecular binding motifs. Remarkably, structural alterations from mixing to 1d incubation were in essence reversed from 1d to 5d incubation for both S + N and A + T mixing experiments. Heterotrophic bacterial production (HBP) in endmembers S, N, and S + N mixtures remained near 0.03 mu gC L-1 h(-1), whereas HBP in A, T, and A + T were about five times higher. High rates of dark carbon fixation took place at S + N mixing in particular. In-depth biogeochemical characterization revealed major distinctions between DOM biogeochemical changes and temporal evolution at these key confluence sites within the Amazon basin.
  •  
17.
  • Postigo, Cristina, et al. (författare)
  • Unraveling the chemodiversity of halogenated disinfection by-products formed during drinking water treatment using target and non-target screening tools
  • 2021
  • Ingår i: Journal of Hazardous Materials. - : ELSEVIER. - 0304-3894 .- 1873-3336. ; 401
  • Tidskriftsartikel (refereegranskat)abstract
    • To date, there is no analytical approach available that allows the full identification and characterization of highly complex disinfection by-product (DBP) mixtures. This study aimed at investigating the chemodiversity of drinking water halogenated DBPs using diverse analytical tools: measurement of adsorbable organic halogen (AOX) and mass spectrometry (MS)-based target and non-target analytical workflows. Water was sampled before and after chemical disinfection (chlorine or chloramine) at four drinking water treatment plants in Sweden. The target analysis had the highest sensitivity, although it could only partially explain the AOX formed in the disinfected waters. Non-target Fourier transform ion cyclotron resonance (FT-ICR) MS analysis indicated that only up to 19 Cl and/or Br-CHO formulae were common to all disinfected waters. Unexpectedly, a high diversity of halogenated DBPs (presumed halogenated polyphenolic and highly unsaturated compounds) was found in chloraminated surface water, comparable to that found in chlorinated surface water. Overall, up to 86 DBPs (including isobaric species) were tentatively identified using liquid chromatography (LC)-Orbitrap MS. Although further work is needed to confirm their identity and assess their relevance in terms of toxicity, they can be used to design suspect lists to improve the characterization of disinfected water halogenated mixtures.
  •  
18.
  • Samgina, Tatyana Y., et al. (författare)
  • Novel Cysteine Tags for the Sequencing of Non-Tryptic Disulfide Peptides of Anurans : ESI-MS Study of Fragmentation Efficiency
  • 2011
  • Ingår i: Journal of the American Society for Mass Spectrometry. - : American Chemical Society (ACS). - 1044-0305 .- 1879-1123. ; 22:12, s. 2246-2255
  • Tidskriftsartikel (refereegranskat)abstract
    • Mass spectrometry faces considerable difficulties in de novo sequencing of long non-tryptic peptides with S-S bonds. Long disulfide-containing peptides brevinins 1E and 2Ec from frog Rana ridibunda were reduced and alkylated with nine novel and three known derivatizing agents. Eight of the novel reagents are maleimide derivatives. Modified samples were subjected to MS/MS studies on FT-ICR and Orbitrap mass spectrometers using CAD/HCD or ECD/ETD techniques. Procedures, fragmentation patterns, and sequence coverage for two peptides modified with 12 tags are described. ECD/ETD and CAD fragmentation revealed complementary sequence information. Higher-energy collisionally activated dissociation (HCD) sufficiently enhanced y-ions formation for brevinin 1E, but not for brevinin 2Ec. Some novel tags [N-benzylmaleimide, N-(2,6-dimethylphenyl)maleimide] along with known N-phenylmaleimide and iodoacetic acid showed high total sequence coverage taking into account combined ETD and HCD fragmentation. Moreover, modification of long (34 residues) brevinin 2Ec with N-benzylmaleimide or N-(2,6-dimethylphenyl) maleimide yielded high sequence coverage and full C-terminal sequence determination with ECD alone.
  •  
19.
  • Shakeri Yekta, Sepehr, et al. (författare)
  • Characterization of dissolved organic matter in full scale continuous stirred tank biogas reactors using ultrahigh resolution mass spectrometry: a qualitative overview.
  • 2012
  • Ingår i: Environmental Science and Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 46:22, s. 12711-12719
  • Tidskriftsartikel (refereegranskat)abstract
    • Dissolved organic matter (DOM) was characterized in eight full scale continuous stirred tank biogas reactors (CSTBR) using solid-phase extraction and electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FT-ICR-MS). An overview of the DOM molecular complexity in the samples from biogas reactors with conventional operational conditions and various substrate profiles is provided by assignments of unambiguous exact molecular formulas for each measured mass peak. Analysis of triplicate samples for each reactor demonstrated the reproducibility of the solid-phase extraction procedure and ESI-FT-ICR-MS which allowed precise evaluation of the DOM molecular differences among the different reactors. Cluster analysis on mass spectrometric data set showed that the biogas reactors treating sewage sludge had distinctly different DOM characteristics compared to the codigesters treating a combination of organic wastes. Furthermore, the samples from thermophilic and mesophilic codigesters had different DOM composition in terms of identified masses and corresponding intensities. Despite the differences, the results demonstrated that compositionally linked organic compounds comprising 28-59% of the total number of assigned formulas for the samples were shared in all the reactors. This suggested that the shared assigned formulas in studied CSTBRs might be related to common biochemical transformation in anaerobic digestion process and therefore, performance of the CSTBRs.
  •  
20.
  • Sixt, Barbara Susanne, et al. (författare)
  • Metabolic features of Protochlamydia amoebophila elementary bodies--a link between activity and infectivity in Chlamydiae
  • 2013
  • Ingår i: PLoS Pathogens. - : Public Library of Science (PLoS). - 1553-7366 .- 1553-7374. ; 9:8
  • Tidskriftsartikel (refereegranskat)abstract
    • The Chlamydiae are a highly successful group of obligate intracellular bacteria, whose members are remarkably diverse, ranging from major pathogens of humans and animals to symbionts of ubiquitous protozoa. While their infective developmental stage, the elementary body (EB), has long been accepted to be completely metabolically inert, it has recently been shown to sustain some activities, including uptake of amino acids and protein biosynthesis. In the current study, we performed an in-depth characterization of the metabolic capabilities of EBs of the amoeba symbiont Protochlamydia amoebophila. A combined metabolomics approach, including fluorescence microscopy-based assays, isotope-ratio mass spectrometry (IRMS), ion cyclotron resonance Fourier transform mass spectrometry (ICR/FT-MS), and ultra-performance liquid chromatography mass spectrometry (UPLC-MS) was conducted, with a particular focus on the central carbon metabolism. In addition, the effect of nutrient deprivation on chlamydial infectivity was analyzed. Our investigations revealed that host-free P. amoebophila EBs maintain respiratory activity and metabolize D-glucose, including substrate uptake as well as host-free synthesis of labeled metabolites and release of labeled CO2 from (13)C-labeled D-glucose. The pentose phosphate pathway was identified as major route of D-glucose catabolism and host-independent activity of the tricarboxylic acid (TCA) cycle was observed. Our data strongly suggest anabolic reactions in P. amoebophila EBs and demonstrate that under the applied conditions D-glucose availability is essential to sustain metabolic activity. Replacement of this substrate by L-glucose, a non-metabolizable sugar, led to a rapid decline in the number of infectious particles. Likewise, infectivity of Chlamydia trachomatis, a major human pathogen, also declined more rapidly in the absence of nutrients. Collectively, these findings demonstrate that D-glucose is utilized by P. amoebophila EBs and provide evidence that metabolic activity in the extracellular stage of chlamydiae is of major biological relevance as it is a critical factor affecting maintenance of infectivity.
  •  
21.
  • Unsalan, Ozan, et al. (författare)
  • The Sariçiçek howardite fall in Turkey : Source crater of HED meteorites on Vesta and impact risk of Vestoids
  • 2019
  • Ingår i: Meteoritics and Planetary Science. - Hoboken : John Wiley & Sons. - 1086-9379 .- 1945-5100. ; 54:5, s. 953-1008
  • Tidskriftsartikel (refereegranskat)abstract
    • The Sariçiçek howardite meteorite shower consisting of 343 documented stones occurred on September 2, 2015 in Turkey and is the first documented howardite fall. Cosmogenic isotopes show that Sariçiçek experienced a complex cosmic‐ray exposure history, exposed during ~12–14 Ma in a regolith near the surface of a parent asteroid, and that an ~1 m sized meteoroid was launched by an impact 22 ± 2 Ma ago to Earth (as did one‐third of all HED meteorites). SIMS dating of zircon and baddeleyite yielded 4550.4 ± 2.5 Ma and 4553 ± 8.8 Ma crystallization ages for the basaltic magma clasts. The apatite U‐Pb age of 4525 ± 17 Ma, K‐Ar age of ~3.9 Ga, and the U,Th‐He ages of 1.8 ± 0.7 and 2.6 ± 0.3 Ga are interpreted to represent thermal metamorphic and impact‐related resetting ages, respectively. Petrographic; geochemical; and O‐, Cr‐, and Ti‐isotopic studies confirm that Sariçiçek belongs to the normal clan of HED meteorites. Petrographic observations and analysis of organic material indicate a small portion of carbonaceous chondrite material in the Sariçiçek regolith and organic contamination of the meteorite after a few days on soil. Video observations of the fall show an atmospheric entry at 17.3 ± 0.8 km s−1 from NW; fragmentations at 37, 33, 31, and 27 km altitude; and provide a pre‐atmospheric orbit that is the first dynamical link between the normal HED meteorite clan and the inner Main Belt. Spectral data indicate the similarity of Sariçiçek with the Vesta asteroid family (V‐class) spectra, a group of asteroids stretching to delivery resonances, which includes (4) Vesta. Dynamical modeling of meteoroid delivery to Earth shows that the complete disruption of a ~1 km sized Vesta family asteroid or a ~10 km sized impact crater on Vesta is required to provide sufficient meteoroids ≤4 m in size to account for the influx of meteorites from this HED clan. The 16.7 km diameter Antionia impact crater on Vesta was formed on terrain of the same age as given by the 4He retention age of Sariçiçek. Lunar scaling for crater production to crater counts of its ejecta blanket show it was formed ~22 Ma ago.
  •  
22.
  • Valle, Juliana, et al. (författare)
  • Extensive processing of sediment pore water dissolved organic matter during anoxic incubation as observed by high-field mass spectrometry (FTICR-MS)
  • 2018
  • Ingår i: Water Research. - : PERGAMON-ELSEVIER SCIENCE LTD. - 0043-1354 .- 1879-2448. ; 129, s. 252-263
  • Tidskriftsartikel (refereegranskat)abstract
    • Dissolved organic matter (DOM) contained in lake sediments is a carbon source for many microbial degradation processes, including aerobic and anaerobic mineralization. During anaerobic degradation, DOM is partially consumed and transformed into new molecules while the greenhouse gases methane (CH4) and carbon dioxide (CO2) are produced. In this study, we used ultrahigh resolution mass spectrometry to trace differences in the composition of solid-phase extractable (PPL resin) pore water DOM (SPE-DOM) isolated from surface sediments of three boreal lakes before and after 40 days of anoxic incubation, with concomitant determination of CH4 and CO2 evolution. CH4 and CO2 production detected by gas chromatography varied considerably among replicates and accounted for fractions of similar to 2-4 x 10(-4) of sedimentary organic carbon for CO2 and similar to 0.8-2.4 x 10(-5) for CH4. In contrast, the relative changes of key bulk parameters during incubation, such as relative proportions of molecular series, elemental ratios, average mass and unsaturation, were regularly in the percent range (1-3% for compounds decreasing and 4-10% for compounds increasing), i.e. several orders of magnitude higher than mineralization alone. Computation of the average carbon oxidation state in CHO molecules of lake pore water DOM revealed rather non-selective large scale transformations of organic matter during incubation, with depletion of highly oxidized and highly reduced CHO molecules, and formation of rather non-labile fulvic acid type molecules. In general, proportions of CHO compounds slightly decreased. Nearly saturated CHO and CHOS lipid-like substances declined during incubation: these rather commonplace molecules were less specific indicators of lake sediment alteration than the particular compounds, such as certain oxygenated aromatics and carboxyl-rich alicyclic acids (CRAM) found more abundant after incubation. There was a remarkable general increase in many CHNO compounds during incubation across all lakes. Differences in DOM transformation between lakes corresponded with lake size and water residence time. While in the small lake Svarttjarn, CRAM increased during incubation, lignin-and tannin-like compounds were enriched in the large lake Bisen, suggesting selective preservation of these rather non-labile aromatic compounds rather than recent synthesis. SPE-DOM after incubation may represent freshly synthesized compounds, leftover bulk DOM which is primarily composed of intrinsically refractory molecules and/or microbial metabolites which were not consumed in our experiments. In spite of a low fraction of the total DOM being mineralized to CO2 and CH4, the more pronounced change in molecular DOM composition during the incubation indicates that diagenetic modification of organic matter can be substantial compared to complete mineralization. (C) 2017 Elsevier Ltd. All rights reserved.
  •  
23.
  • Valle, Juliana, et al. (författare)
  • Molecular differences between water column and sediment porewater SPE-DOM in ten Swedish boreal lakes
  • 2020
  • Ingår i: Water Research. - : Elsevier. - 0043-1354 .- 1879-2448. ; 170
  • Tidskriftsartikel (refereegranskat)abstract
    • Boreal lakes are considered hot spots of dissolved organic matter (DOM) processing within the globalcarbon cycle. This study has used FT-ICR mass spectrometry and comprehensive data evaluation to assessthe molecular differences of SPE-DOM between lake column water SPE-DOM and sedimentary porewater SPE-DOM in 10 Swedish boreal lakes of the Malingsbo area, which were selected for their largediversity of physicochemical and morphological characteristics. While lake column water is well mixedand fairly oxygenated, sedimentary pore water is subject to depletion of oxygen and to confinement ofmolecules. Robust trends were deduced from molecular compositions present in all compartments andin all 10 lakes (“common compositions”) with recognition of relative abundance. Sedimentary pore waterSPE-DOM featured higher proportions of heteroatoms N and S, higher average H/C ratios in presence ofhigher DBE/C ratios, and higher average oxygenation than lake column water SPE-DOM. These trendswere observed in all lakes except Ljustj€arn, which is a ground water fed kettle lake with an unique lakebiogeochemistry. Analogous trends were also observed in case of single or a few lakes and operated alsofor compounds present solely in either lake column water or sedimentary pore water. Unique compoundsdetected in either compartments and/or in a few lakes showed higher molecular diversity thanthe “common compositions”. Processing of DOM molecules in sediments included selective preservationfor polyphenolic compounds and microbial resynthesis of selected molecules of considerable diversity.
  •  
24.
  • Wuensch, Urban, 1986, et al. (författare)
  • The Molecular Fingerprint of Fluorescent Natural Organic Matter Offers Insight into Biogeochemical Sources and Diagenetic State
  • 2018
  • Ingår i: Analytical Chemistry. - : American Chemical Society (ACS). - 0003-2700 .- 1520-6882. ; 90:24, s. 14188-14198
  • Tidskriftsartikel (refereegranskat)abstract
    • Investigating the biogeochemistry of dissolved organic matter (DOM) requires the synthesis of data from several complementary analytical techniques. The traditional approach to data synthesis is to search for correlations between measurements made on the same sample using different instruments. In contrast, data fusion simultaneously decomposes data from multiple instruments into the underlying shared and unshared components. Here, Advanced Coupled Matrix and Tensor Factorization (ACMTF) was used to identify the molecular fingerprint of DOM fluorescence fractions in Arctic fjords. ACMTF explained 99.84% of the variability with six fully shared components. Individual molecular formulas were linked to multiple fluorescence components and vice versa. Molecular fingerprints differed in diversity and oceanographic patterns, suggesting a link to the biogeochemical sources and diagenetic state of DOM. The fingerprints obtained through ACMTF were more specific compared to traditional correlation analysis and yielded greater compositional insight. Multivariate data fusion aligns extremely complex, heterogeneous DOM data sets and thus facilitates a more holistic understanding of DOM biogeochemistry.
  •  
25.
  • Zeichner, Sarah S., et al. (författare)
  • Polycyclic aromatic hydrocarbons in samples of Ryugu formed in the interstellar medium
  • 2023
  • Ingår i: Science. - : AMER ASSOC ADVANCEMENT SCIENCE. - 0036-8075 .- 1095-9203. ; 382:6677, s. 1411-1415
  • Tidskriftsartikel (refereegranskat)abstract
    • Polycyclic aromatic hydrocarbons (PAHs) contain less than or similar to 20% of the carbon in the interstellar medium. They are potentially produced in circumstellar environments (at temperatures greater than or similar to 1000 kelvin), by (similar to 10 kelvin) interstellar clouds, or by processing of carbon-rich dust grains. We report isotopic properties of PAHs extracted from samples of the asteroid Ryugu and the meteorite Murchison. The doubly-C-13 substituted compositions (Delta 2x(13)C values) of the PAHs naphthalene, fluoranthene, and pyrene are 9 to 51 parts per thousand higher than values expected for a stochastic distribution of isotopes. The Delta 2x(13)C values are higher than expected if the PAHs formed in a circumstellar environment, but consistent with formation in the interstellar medium. By contrast, the PAHs phenanthrene and anthracene in Ryugu samples have Delta 2x(13)C values consistent with formation by higher-temperature reactions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 25
Typ av publikation
tidskriftsartikel (25)
Typ av innehåll
refereegranskat (25)
Författare/redaktör
Schmitt-Kopplin, Phi ... (25)
Gonsior, Michael (14)
Harir, Mourad (12)
Hertkorn, Norbert (12)
Bastviken, David (9)
Enrich Prast, Alex (5)
visa fler...
Andersson, Anna (4)
Lavonen, Elin (4)
Stavklint, Helena (3)
Kylin, Henrik (2)
Köhler, Stephan (2)
Nilsson, Kerstin (2)
Machado-Silva, Faust ... (2)
Bastviken, David, 19 ... (2)
Brown, Peter (2)
Granvik, Mikael (2)
Liu, Yu (2)
Busemann, Henner (2)
Tranvik, Lars J. (1)
Persson, Kenneth M (1)
Enrich Prast, Alex, ... (1)
Zubarev, Roman A (1)
Peters, Björn (1)
Malmberg, Per, 1974 (1)
Lahtinen, Panu (1)
Ahrens, Lutz (1)
Wiberg, Karin (1)
Joblin, Christine (1)
Wolf, Christian (1)
Sanchez-Garcia, Laur ... (1)
Tysk, Curt (1)
Halfvarson, Jonas (1)
Richter, Andreas (1)
Rosso, Diego (1)
Amils, R. I. (1)
Floege, Jürgen (1)
Ashiq, Muhammad Jams ... (1)
Karlsson, Susanne, 1 ... (1)
Kylin, Henrik, 1959- (1)
Powers, Leanne (1)
Hellstrom, Daniel (1)
Pettersson, Amma (1)
Pettersson, Ämma (1)
Suhonen, Heikki (1)
Dicksved, Johan (1)
Artemenko, Konstanti ... (1)
Uysal, Ibrahim (1)
Shakeri Yekta, Sepeh ... (1)
Huang, Ting (1)
Sixt, Barbara Susann ... (1)
visa färre...
Lärosäte
Linköpings universitet (15)
Sveriges Lantbruksuniversitet (4)
Luleå tekniska universitet (3)
Uppsala universitet (2)
Chalmers tekniska högskola (2)
Göteborgs universitet (1)
visa fler...
Umeå universitet (1)
Örebro universitet (1)
Lunds universitet (1)
Karolinska Institutet (1)
visa färre...
Språk
Engelska (25)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (17)
Teknik (7)
Medicin och hälsovetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy