SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Schoenen S.) "

Sökning: WFRF:(Schoenen S.)

  • Resultat 1-25 av 86
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • 2017
  • Ingår i: Physical Review D. - 2470-0010 .- 2470-0029. ; 96:2
  • Tidskriftsartikel (refereegranskat)
  •  
2.
  •  
3.
  •  
4.
  • Aartsen, M. G., et al. (författare)
  • Multiwavelength follow-up of a rare IceCube neutrino multiplet
  • 2017
  • Ingår i: Astronomy and Astrophysics. - : EDP SCIENCES S A. - 0004-6361 .- 1432-0746. ; 607
  • Tidskriftsartikel (refereegranskat)abstract
    • On February 17, 2016, the IceCube real-time neutrino search identified, for the first time, three muon neutrino candidates arriving within 100 s of one another, consistent with coming from the same point in the sky. Such a triplet is expected once every 13.7 years as a random coincidence of background events. However, considering the lifetime of the follow-up program the probability of detecting at least one triplet from atmospheric background is 32%. Follow-up observatories were notified in order to search for an electromagnetic counterpart. Observations were obtained by Swift's X-ray telescope, by ASAS-SN, LCO and MASTER at optical wavelengths, and by VERITAS in the very-high-energy gamma-ray regime. Moreover, the Swift BAT serendipitously observed the location 100 s after the first neutrino was detected, and data from the Fermi LAT and HAWC observatory were analyzed. We present details of the neutrino triplet and the follow-up observations. No likely electromagnetic counterpart was detected, and we discuss the implications of these constraints on candidate neutrino sources such as gamma-ray bursts, core-collapse supernovae and active galactic nucleus flares. This study illustrates the potential of and challenges for future follow-up campaigns.
  •  
5.
  • Aartsen, M. G., et al. (författare)
  • Very high-energy gamma-ray follow-up program using neutrino triggers from IceCube
  • 2016
  • Ingår i: Journal of Instrumentation. - 1748-0221. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • We describe and report the status of a neutrino-triggered program in IceCube that generates real-time alerts for gamma-ray follow-up observations by atmospheric-Cherenkov telescopes (MAGIC and VERITAS). While IceCube is capable of monitoring the whole sky continuously, high-energy gamma-ray telescopes have restricted fields of view and in general are unlikely to be observing a potential neutrino-flaring source at the time such neutrinos are recorded. The use of neutrino-triggered alerts thus aims at increasing the availability of simultaneous multi-messenger data during potential neutrino flaring activity, which can increase the discovery potential and constrain the phenomenological interpretation of the high-energy emission of selected source classes (e. g. blazars). The requirements of a fast and stable online analysis of potential neutrino signals and its operation are presented, along with first results of the program operating between 14 March 2012 and 31 December 2015.
  •  
6.
  • Adrian-Martinez, S., et al. (författare)
  • The First Combined Search For Neutrino Point-Sources In The Southern Hemisphere With The Antares And Icecube Neutrino Telescopes
  • 2016
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 823:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the results of searches for point-like sources of neutrinos based on the first combined analysis of data from both the ANTARES and IceCube neutrino telescopes. The combination of both detectors, which differ in size and location, forms a window in the southern sky where the sensitivity to point sources improves by up to a factor of 2 compared with individual analyses. Using data recorded by ANTARES from 2007 to 2012, and by IceCube from 2008 to 2011, we search for sources of neutrino emission both across the southern sky and from a preselected list of candidate objects. No significant excess over background has been found in these searches, and flux upper limits for the candidate sources are presented for E-2.5 and E-2 power-law spectra with different energy cut-offs.
  •  
7.
  • Aartsen, M. G., et al. (författare)
  • PINGU : a vision for neutrino and particle physics at the South Pole
  • 2017
  • Ingår i: Journal of Physics G. - : IOP Publishing. - 0954-3899 .- 1361-6471. ; 44:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The Precision IceCube Next Generation Upgrade (PINGU) is a proposed low-energy in-fill extension to the IceCube Neutrino Observatory. With detection technology modeled closely on the successful IceCube example, PINGU will provide a 6 Mton effective mass for neutrino detection with an energy threshold of a few GeV. With an unprecedented sample of over 60 000 atmospheric neutrinos per year in this energy range, PINGU will make highly competitive measurements of neutrino oscillation parameters in an energy range over an order of magnitude higher than long-baseline neutrino beam experiments. PINGU will measure the mixing parameters theta(23) and Delta m(32)(2), including the octant of theta(23) for a wide range of values, and determine the neutrino mass ordering at 3 sigma median significance within five years of operation. PINGU's high precision measurement of the rate of nu(T) appearance will provide essential tests of the unitarity of the 3 x 3 PMNS neutrino mixing matrix. PINGU will also improve the sensitivity of searches for low mass dark matter in the Sun, use neutrino tomography to directly probe the composition of the Earth's core, and improve IceCube's sensitivity to neutrinos from Galactic supernovae. Reoptimization of the PINGU design has permitted substantial reduction in both cost and logistical requirements while delivering performance nearly identical to configurations previously studied.
  •  
8.
  • Aartsen, M. G., et al. (författare)
  • The IceCube Neutrino Observatory : instrumentation and online systems
  • 2017
  • Ingår i: Journal of Instrumentation. - : IOP PUBLISHING LTD. - 1748-0221. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • The IceCube Neutrino Observatory is a cubic-kilometer-scale high-energy neutrino detector built into the ice at the South Pole. Construction of IceCube, the largest neutrino detector built to date, was completed in 2011 and enabled the discovery of high-energy astrophysical neutrinos. We describe here the design, production, and calibration of the IceCube digital optical module (DOM), the cable systems, computing hardware, and our methodology for drilling and deployment. We also describe the online triggering and data filtering systems that select candidate neutrino and cosmic ray events for analysis. Due to a rigorous pre-deployment protocol, 98.4% of the DOMs in the deep ice are operating and collecting data. IceCube routinely achieves a detector uptime of 99% by emphasizing software stability and monitoring. Detector operations have been stable since construction was completed, and the detector is expected to operate at least until the end of the next decade.
  •  
9.
  • Aartsen, M. G., et al. (författare)
  • Neutrino emission from the direction of the blazar TXS 0506+056 prior to the IceCube-170922A alert
  • 2018
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 361:6398, s. 147-151
  • Tidskriftsartikel (refereegranskat)abstract
    • A high-energy neutrino event detected by IceCube on 22 September 2017 was coincident in direction and time with a gamma-ray flare from the blazar TXS 0506+056. Prompted by this association, we investigated 9.5 years of IceCube neutrino observations to search for excess emission at the position of the blazar. We found an excess of high-energy neutrino events, with respect to atmospheric backgrounds, at that position between September 2014 and March 2015. Allowing for time-variable flux, this constitutes 3.5 sigma evidence for neutrino emission from the direction of TXS 0506+056, independent of and prior to the 2017 flaring episode. This suggests that blazars are identifiable sources of the high-energy astrophysical neutrino flux.
  •  
10.
  • Abbasi, R., et al. (författare)
  • IceTop : The surface component of IceCube
  • 2013
  • Ingår i: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier BV. - 0168-9002 .- 1872-9576. ; 700, s. 188-220
  • Tidskriftsartikel (refereegranskat)abstract
    • IceTop, the surface component of the IceCube Neutrino Observatory at the South Pole, is an air shower array with an area of 1 km(2). The detector allows a detailed exploration of the mass composition of primary cosmic rays in the energy range from about 100 TeV to 1 EeV by exploiting the correlation between the shower energy measured in IceTop and the energy deposited by muons in the deep ice. In this paper we report on the technical design, construction and installation, the trigger and data acquisition systems as well as the software framework for calibration, reconstruction and simulation. Finally the first experience from commissioning and operating the detector and the performance as an air shower detector will be discussed.
  •  
11.
  • Aartsen, M. G., et al. (författare)
  • A Search for Neutrino Emission from Fast Radio Bursts with Six Years of IceCube Data
  • 2018
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 857:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a search for coincidence between IceCube TeV neutrinos and fast radio bursts (FRBs). During the search period from 2010 May 31 to 2016 May 12, a total of 29 FRBs with 13 unique locations have been detected in the whole sky. An unbinned maximum likelihood method was used to search for spatial and temporal coincidence between neutrinos and FRBs in expanding time windows, in both the northern and southern hemispheres. No significant correlation was found in six years of IceCube data. Therefore, we set upper limits on neutrino fluence emitted by FRBs as a function of time window duration. We set the most stringent limit obtained to date on neutrino fluence from FRBs with an E-2 energy spectrum assumed, which is 0.0021 GeV cm(-2) per burst for emission timescales up to similar to 10(2) s from the northern hemisphere stacking search.
  •  
12.
  • Aartsen, M. G., et al. (författare)
  • All-sky Search for Time-integrated Neutrino Emission from Astrophysical Sources with 7 yr of IceCube Data
  • 2017
  • Ingår i: Astrophysical Journal. - : IOP PUBLISHING LTD. - 0004-637X .- 1538-4357. ; 835:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Since the recent detection of an astrophysical flux of high-energy neutrinos, the question of its origin has not yet fully been answered. Much of what is known about this flux comes from a small event sample of high neutrino purity, good energy resolution, but large angular uncertainties. In searches for point-like sources, on the other hand, the best performance is given by using large statistics and good angular reconstructions. Track-like muon events produced in neutrino interactions satisfy these requirements. We present here the results of searches for point-like sources with neutrinos using data acquired by the IceCube detector over 7 yr from 2008 to 2015. The discovery potential of the analysis in the northern sky is now significantly below E(nu)(2)d phi/dE(nu) = 10(-12) TeV cm(-2) s(-1), on average 38% lower than the sensitivity of the previously published analysis of 4 yr exposure. No significant clustering of neutrinos above background expectation was observed, and implications for prominent neutrino source candidates are discussed.
  •  
13.
  • Aartsen, M. G., et al. (författare)
  • Constraints on Galactic Neutrino Emission with Seven Years of IceCube Data
  • 2017
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 849:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The origins of high-energy astrophysical neutrinos remain a mystery despite extensive searches for their sources. We present constraints from seven years of IceCube Neutrino Observatory muon data on the neutrino flux coming from the Galactic plane. This flux is expected from cosmic-ray interactions with the interstellar medium or near localized sources. Two methods were developed to test for a spatially extended flux from the entire plane, both of which are maximum likelihood fits but with different signal and background modeling techniques. We consider three templates for Galactic neutrino emission based primarily on gamma-ray observations and models that cover a wide range of possibilities. Based on these templates and in the benchmark case of an unbroken E-2.5 power-law energy spectrum, we set 90% confidence level upper limits, constraining the possible Galactic contribution to the diffuse neutrino flux to be relatively small, less than 14% of the flux reported in Aartsen et al. above 1 TeV. A stacking method is also used to test catalogs of known high-energy Galactic gamma-ray sources.
  •  
14.
  • Aartsen, M. G., et al. (författare)
  • Differential limit on the extremely-high-energy cosmic neutrino flux in the presence of astrophysical background from nine years of IceCube data
  • 2018
  • Ingår i: Physical Review D. - : AMER PHYSICAL SOC. - 2470-0010 .- 2470-0029. ; 98:6
  • Tidskriftsartikel (refereegranskat)abstract
    • We report a quasidifferential upper limit on the extremely-high-energy (EHE) neutrino flux above 5 x 10(6) GeV based on an analysis of nine years of IceCube data. The astrophysical neutrino flux measured by IceCube extends to PeV energies, and it is a background flux when searching for an independent signal flux at higher energies, such as the cosmogenic neutrino signal. We have developed a new method to place robust limits on the EHE neutrino flux in the presence of an astrophysical background, whose spectrum has yet to be understood with high precision at PeV energies. A distinct event with a deposited energy above 10(6) GeV was found in the new two-year sample, in addition to the one event previously found in the seven-year EHE neutrino search. These two events represent a neutrino flux that is incompatible with predictions for a cosmogenic neutrino flux and are considered to be an astrophysical background in the current study. The obtained limit is the most stringent to date in the energy range between 5 x 10(6) and 2 x 10(10) GeV. This result constrains neutrino models predicting a three-flavor neutrino flux of E-nu(2)phi(nu e+nu mu+nu tau) similar or equal to 2 x 10(-8) GeV/cm(2) sec sr at 10(9) GeV. A significant part of the parameter space for EHE neutrino production scenarios assuming a proton-dominated composition of ultra-high-energy cosmic rays is disfavored independently of uncertain models of the extragalactic background light which previous IceCube constraints partially relied on.
  •  
15.
  • Aartsen, M. G., et al. (författare)
  • Extending the Search for Muon Neutrinos Coincident with Gamma-Ray Bursts in IceCube Data
  • 2017
  • Ingår i: Astrophysical Journal. - : IOP PUBLISHING LTD. - 0004-637X .- 1538-4357. ; 843:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present an all-sky search for muon neutrinos produced during the prompt γ-ray emission of 1172 gamma-ray bursts (GRBs) with the IceCube Neutrino Observatory. The detection of these neutrinos would constitute evidence for ultra-high-energy cosmic-ray (UHECR) production in GRBs, as interactions between accelerated protons and the prompt γ-ray field would yield charged pions, which decay to neutrinos. A previously reported search for muon neutrino tracks from northern hemisphere GRBs has been extended to include three additional years of IceCube data. A search for such tracks from southern hemisphere GRBs in five years of IceCube data has been introduced to enhance our sensitivity to the highest energy neutrinos. No significant correlation between neutrino events and observed GRBs is seen in the new data. Combining this result with previous muon neutrino track searches and a search for cascade signature events from all neutrino flavors, we obtain new constraints for single-zone fireball models of GRB neutrino and UHECR production.
  •  
16.
  • Aartsen, M. G., et al. (författare)
  • First search for dark matter annihilations in the Earth with the IceCube detector
  • 2017
  • Ingår i: European Physical Journal C. - : Springer Science and Business Media LLC. - 1434-6044 .- 1434-6052. ; 77:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the results of the first IceCube search for dark matter annihilation in the center of the Earth. Weakly interacting massive particles (WIMPs), candidates for dark matter, can scatter off nuclei inside the Earth and fall below its escape velocity. Over time the captured WIMPs will be accumulated and may eventually self-annihilate. Among the annihilation products only neutrinos can escape from the center of the Earth. Large-scale neutrino telescopes, such as the cubic kilometer IceCube Neutrino Observatory located at the South Pole, can be used to search for such neutrino fluxes. Data from 327 days of detector livetime during 2011/2012 were analyzed. No excess beyond the expected background from atmospheric neutrinos was detected. The derived upper limits on the annihilation rate of WIMPs in the Earth (Gamma(A) = 1.12 x 10(14) s(-1) for WIMP masses of 50 GeV annihilating into tau leptons) and the resulting muon flux are an order of magnitude stronger than the limits of the last analysis performed with data from IceCube's predecessor AMANDA. The limits can be translated in terms of a spin-independent WIMP-nucleon cross section. For a WIMP mass of 50GeV this analysis results in the most restrictive limits achieved with IceCube data.
  •  
17.
  • Aartsen, M. G., et al. (författare)
  • Neutrino interferometry for high-precision tests of Lorentz symmetry with IceCube
  • 2018
  • Ingår i: Nature Physics. - : NATURE PUBLISHING GROUP. - 1745-2473 .- 1745-2481. ; 14:9, s. 961-966
  • Tidskriftsartikel (refereegranskat)abstract
    • Lorentz symmetry is a fundamental spacetime symmetry underlying both the standard model of particle physics and general relativity. This symmetry guarantees that physical phenomena are observed to be the same by all inertial observers. However, unified theories, such as string theory, allow for violation of this symmetry by inducing new spacetime structure at the quantum gravity scale. Thus, the discovery of Lorentz symmetry violation could be the first hint of these theories in nature. Here we report the results of the most precise test of spacetime symmetry in the neutrino sector to date. We use high-energy atmospheric neutrinos observed at the IceCube Neutrino Observatory to search for anomalous neutrino oscillations as signals of Lorentz violation. We find no evidence for such phenomena. This allows us to constrain the size of the dimension-four operator in the standard-model extension for Lorentz violation to the 10(-28) level and to set limits on higher-dimensional operators in this framework. These are among the most stringent limits on Lorentz violation set by any physical experiment.
  •  
18.
  • Aartsen, M. G., et al. (författare)
  • Observation And Characterization Of A Cosmic Muon Neutrino Flux From The Northern Hemisphere Using Six Years Of Icecube Data
  • 2016
  • Ingår i: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 0004-637X .- 1538-4357. ; 833:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The IceCube Collaboration has previously discovered a high-energy astrophysical neutrino flux using neutrino events with interaction vertices contained within the instrumented volume of the IceCube detector. We present a complementary measurement using charged current muon neutrino events where the interaction vertex can be outside this volume. As a consequence of the large muon range the effective area is significantly larger but the field of view is restricted to the Northern Hemisphere. IceCube data from 2009 through 2015 have been analyzed using a likelihood approach based on the reconstructed muon energy and zenith angle. At the highest neutrino energies between 194 TeV and 7.8 PeV a significant astrophysical contribution is observed, excluding a purely atmospheric origin of these events at 5.6 sigma significance. The data are well described by an isotropic, unbroken power-law flux with a normalization at 100 TeV neutrino energy of (0.90(-0.27)(+0.30)) x 10(-18) GeV-1 cm(-2) s(-1) sr(-1) and a hard spectral index of gamma = 2.13 +/- 0.13. The observed spectrum is harder in comparison to previous IceCube analyses with lower energy thresholds which may indicate a break in the astrophysical neutrino spectrum of unknown origin. The highest-energy event observed has a reconstructed muon energy of (4.5 +/- 1.2) PeV which implies a probability of less than 0.005% for this event to be of atmospheric origin. Analyzing the arrival directions of all events with reconstructed muon energies above 200 TeV no correlation with known gamma-ray sources was found. Using the high statistics of atmospheric neutrinos we report the current best constraints on a prompt atmospheric muon neutrino flux originating from charmed meson decays which is below 1.06 in units of the flux normalization of the model in Enberg et al.
  •  
19.
  • Aartsen, M. G., et al. (författare)
  • Search for Astrophysical Sources of Neutrinos Using Cascade Events in IceCube
  • 2017
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 846:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The IceCube neutrino observatory has established the existence of a flux of high-energy astrophysical neutrinos, which is inconsistent with the expectation from atmospheric backgrounds at a significance greater than 5 sigma. This flux has been observed in analyses of both track events from muon neutrino interactions and cascade events from interactions of all neutrino flavors. Searches for astrophysical neutrino sources have focused on track events due to the significantly better angular resolution of track reconstructions. To date, no such sources have been confirmed. Here we present the first search for astrophysical neutrino sources using cascades interacting in IceCube with deposited energies as small as 1 TeV. No significant clustering was observed in a selection of 263 cascades collected from 2010 May to 2012 May. We show that compared to the classic approach using tracks, this statistically independent search offers improved sensitivity to sources in the southern sky, especially if the emission is spatially extended or follows a soft energy spectrum. This enhancement is due to the low background from atmospheric neutrinos forming cascade events and the additional veto of atmospheric neutrinos at declinations less than or similar to-30 degrees.
  •  
20.
  • Aartsen, M. G., et al. (författare)
  • Search for neutrinos from dark matter self-annihilations in the center of the Milky Way with 3 years of IceCube/DeepCore
  • 2017
  • Ingår i: European Physical Journal C. - : SPRINGER. - 1434-6044 .- 1434-6052. ; 77:9
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a search for a neutrino signal from dark matter self-annihilations in the Milky Way using the Ice-Cube Neutrino Observatory (IceCube). In 1005 days of data we found no significant excess of neutrinos over the background of neutrinos produced in atmospheric air showers from cosmic ray interactions. We derive upper limits on the velocity averaged product of the darkmatter self-annihilation cross section and the relative velocity of the dark matter particles . Upper limits are set for darkmatter particle candidate masses ranging from 10GeV up to 1TeV while considering annihilation through multiple channels. This work sets the most stringent limit on a neutrino signal from dark matter with mass between 10 and 100GeV, with a limit of 1.18 . 10-23 cm(3)s(-1) for 100GeV dark matter particles self-annihilating via iota(+)iota(-) t-to neutrinos (assuming the Navarro-Frenk-White dark matter halo profile).
  •  
21.
  • Aartsen, M. G., et al. (författare)
  • Search for nonstandard neutrino interactions with IceCube DeepCore
  • 2018
  • Ingår i: Physical Review D. - : AMER PHYSICAL SOC. - 2470-0010 .- 2470-0029. ; 97:7
  • Tidskriftsartikel (refereegranskat)abstract
    • As atmospheric neutrinos propagate through the Earth, vacuumlike oscillations are modified by Standard Model neutral-and charged-current interactions with electrons. Theories beyond the Standard Model introduce heavy, TeV-scale bosons that can produce nonstandard neutrino interactions. These additional interactions may modify the Standard Model matter effect producing a measurable deviation from the prediction for atmospheric neutrino oscillations. The result described in this paper constrains nonstandard interaction parameters, building upon a previous analysis of atmospheric muon-neutrino disappearance with three years of IceCube DeepCore data. The best fit for the muon to tau flavor changing term is epsilon(mu tau) = -0.0005, with a 90% C.L. allowed range of -0.0067 < epsilon(mu tau) < 0.0081. This result is more restrictive than recent limits from other experiments for.mu t. Furthermore, our result is complementary to a recent constraint on epsilon(mu tau) using another publicly available IceCube high-energy event selection. Together, they constitute the world's best limits on nonstandard interactions in the mu - tau sector.
  •  
22.
  • Aartsen, M. G., et al. (författare)
  • Search for sterile neutrino mixing using three years of IceCube DeepCore data
  • 2017
  • Ingår i: Physical Review D. - : AMER PHYSICAL SOC. - 2470-0010 .- 2470-0029. ; 95:11
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a search for a light sterile neutrino using three years of atmospheric neutrino data from the DeepCore detector in the energy range of approximately 10-60 GeV. DeepCore is the low-energy subarray of the IceCube Neutrino Observatory. The standard three-neutrino paradigm can be probed by adding an additional light (Delta m(41)(2) similar to 1 eV(2)) sterile neutrino. Sterile neutrinos do not interact through the standard weak interaction and, therefore, cannot be directly detected. However, their mixing with the three active neutrino states leaves an imprint on the standard atmospheric neutrino oscillations for energies below 100 GeV. A search for such mixing via muon neutrino disappearance is presented here. The data are found to be consistent with the standard three-neutrino hypothesis. Therefore, we derive limits on the mixing matrix elements at the level of vertical bar U mu(4)vertical bar(2) < 0.11 and vertical bar U-tau 4 vertical bar(2) < 0.15 (90% C. L.) for the sterile neutrino mass splitting Delta m(41)(2) = 1.0 eV(2).
  •  
23.
  • Aartsen, M. G., et al. (författare)
  • SEARCH FOR TIME-INDEPENDENT NEUTRINO EMISSION FROM ASTROPHYSICAL SOURCES WITH 3 yr OF IceCube DATASearch for time-independent neutrino emission from astrophysical sources with 3 yr of icecube data
  • 2013
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 779:2, s. 132-
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the results of a search for neutrino point sources using the IceCube data collected between 2008 April and 2011 May with three partially completed configurations of the detector: the 40-, 59-, and 79-string configurations. The live-time of this data set is 1040 days. An unbinned maximum likelihood ratio test was used to search for an excess of neutrinos above the atmospheric background at any given direction in the sky. By adding two more years of data with improved event selection and reconstruction techniques, the sensitivity was improved by a factor of 3.5 or more with respect to the previously published results obtained with the 40-string configuration of IceCube. We performed an all-sky survey and a dedicated search using a catalog of a priori selected objects observed by other telescopes. In both searches, the data are compatible with the background-only hypothesis. In the absence of evidence for a signal, we set upper limits on the flux of muon neutrinos. For an E-2 neutrino spectrum, the observed limits are (0.9-5) x 10(-12) TeV-1 cm(-2) s(-1) for energies between 1 TeV and 1 PeV in the northern sky and (0.9-23.2) x 10(-12) TeV-1 cm(-2) s(-1) for energies between 10(2) TeV and 10(2) PeV in the southern sky. We also report upper limits for neutrino emission from groups of sources that were selected according to theoretical models or observational parameters and analyzed with a stacking approach. Some of the limits presented already reach the level necessary to quantitatively test current models of neutrino emission.
  •  
24.
  • Aartsen, M. G., et al. (författare)
  • The Contribution Of Fermi-2Lac Blazars To Diffuse Tev-Pev Neutrino Flux
  • 2017
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 835:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The recent discovery of a diffuse cosmic neutrino flux extending up to PeV energies raises the question of which astrophysical sources generate this signal. Blazars are one class of extragalactic sources which may produce such high-energy neutrinos. We present a likelihood analysis searching for cumulative neutrino emission from blazars in the 2nd Fermi-LAT AGN catalog (2LAC) using IceCube neutrino data set 2009-12, which was optimized for the detection of individual sources. In contrast to those in previous searches with IceCube, the populations investigated contain up to hundreds of sources, the largest one being the entire blazar sample in the 2LAC catalog. No significant excess is observed, and upper limits for the cumulative flux from these populations are obtained. These constrain the maximum contribution of 2LAC blazars to the observed astrophysical neutrino flux to 27% or less between around 10 TeV and 2 PeV, assuming the equipartition of flavors on Earth and a single power-law spectrum with a spectral index of -2.5. We can still exclude the fact that 2LAC blazars (and their subpopulations) emit more than 50% of the observed neutrinos up to a spectral index as hard as -2.2 in the same energy range. Our result takes into account the fact that the neutrino source count distribution is unknown, and it does not assume strict proportionality of the neutrino flux to the measured 2LAC gamma-ray signal for each source. Additionally, we constrain recent models for neutrino emission by blazars.
  •  
25.
  • Aartsen, M. G., et al. (författare)
  • The IceCube realtime alert system
  • 2017
  • Ingår i: Astroparticle physics. - : Elsevier BV. - 0927-6505 .- 1873-2852. ; 92, s. 30-41
  • Tidskriftsartikel (refereegranskat)abstract
    • Although high-energy astrophysical neutrinos were discovered in 2013, their origin is still unknown. Aiming for the identification of an electromagnetic counterpart of a rapidly fading source, we have implemented a realtime analysis framework for the IceCube neutrino observatory. Several analyses selecting neutrinos of astrophysical origin are now operating in realtime at the detector site in Antarctica and are producing alerts for the community to enable rapid follow-up observations. The goal of these observations is to locate the astrophysical objects responsible for these neutrino signals. This paper highlights the infrastructure in place both at the South Pole site and at IceCube facilities in the north that have enabled this fast follow-up program to be implemented. Additionally, this paper presents the first realtime analyses to be activated within this framework, highlights their sensitivities to astrophysical neutrinos and background event rates, and presents an outlook for future discoveries.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 86

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy