SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Scott Pat) "

Sökning: WFRF:(Scott Pat)

  • Resultat 1-25 av 41
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Akrami, Yashar, et al. (författare)
  • A Profile Likelihood Analysis of the Constrained MSSM with Genetic Algorithms
  • 2010
  • Ingår i: Journal of High Energy Physics (JHEP). - 1126-6708 .- 1029-8479. ; :4, s. 057-
  • Tidskriftsartikel (refereegranskat)abstract
    • The Constrained Minimal Supersymmetric Standard Model (CMSSM) is one of the simplest and most widely-studied supersymmetric extensions to the standard model of particle physics. Nevertheless, current data do not sufficiently constrain the model parameters in a way completely independent of priors, statistical measures and scanning techniques. We present a new technique for scanning supersymmetric parameter spaces, optimised for frequentist profile likelihood analyses and based on Genetic Algorithms. We apply this technique to the CMSSM, taking into account existing collider and cosmological data in our global fit. We compare our method to the MultiNest algorithm, an efficient Bayesian technique, paying particular attention to the best-fit points and implications for particle masses at the LHC and dark matter searches. Our global best-fit point lies in the focus point region. We find many high-likelihood points in both the stau co-annihilation and focus point regions, including a previously neglected section of the co-annihilation region at large m 0. We show that there are many high-likelihood points in the CMSSM parameter space commonly missed by existing scanning techniques, especially at high masses. This has a significant influence on the derived confidence regions for parameters and observables, and can dramatically change the entire statistical inference of such scans.
  •  
2.
  • Akrami, Yashar, 1980-, et al. (författare)
  • How well will ton-scale dark matter direct detection experiments constrain minimal supersymmetry?
  • 2011
  • Ingår i: Journal of Cosmology and Astroparticle Physics. - : IOP Publishing. - 1475-7516. ; :4, s. 012-
  • Tidskriftsartikel (refereegranskat)abstract
    • Weakly interacting massive particles (WIMPs) are amongst the most interesting dark matter (DM) candidates. Many DM candidates naturally arise in theories beyond the standard model (SM) of particle physics, like weak-scale supersymmetry (SUSY). Experiments aim to detect WIMPs by scattering, annihilation or direct production, and thereby determine the underlying theory to which they belong, along with its parameters. Here we examine the prospects for further constraining the Constrained Minimal Supersymmetric Standard Model (CMSSM) with future ton-scale direct detection experiments. We consider ton-scale extrapolations of three current experiments: CDMS, XENON and COUPP, with 1000 kg-years of raw exposure each. We assume energy resolutions, energy ranges and efficiencies similar to the current versions of the experiments, and include backgrounds at target levels. Our analysis is based on full likelihood constructions for the experiments. We also take into account present uncertainties on hadronic matrix elements for neutralino-quark couplings, and on halo model parameters. We generate synthetic data based on four benchmark points and scan over the CMSSM parameter space using nested sampling. We construct both Bayesian posterior PDFs and frequentist profile likelihoods for the model parameters, as well as the mass and various cross-sections of the lightest neutralino. Future ton-scale experiments will help substantially in constraining supersymmetry, especially when results of experiments primarily targeting spin-dependent nuclear scattering are combined with those directed more toward spin-independent interactions.
  •  
3.
  • Akrami, Yashar, 1980-, et al. (författare)
  • Statistical coverage for supersymmetric parameter estimation : a case study with direct detection of dark matter
  • 2011
  • Ingår i: Journal of Cosmology and Astroparticle Physics. - : IOP Publishing. - 1475-7516. ; :7, s. 002-
  • Tidskriftsartikel (refereegranskat)abstract
    • Models of weak-scale supersymmetry offer viable dark matter (DM) candidates. Their parameter spaces are however rather large and complex, such that pinning down the actual parameter values from experimental data can depend strongly on the employed statistical framework and scanning algorithm. In frequentist parameter estimation, a central requirement for properly constructed confidence intervals is that they cover true parameter values, preferably at exactly the stated confidence level when experiments are repeated infinitely many times. Since most widely-used scanning techniques are optimised for Bayesian statistics, one needs to assess their abilities in providing correct confidence intervals in terms of the statistical coverage. Here we investigate this for the Constrained Minimal Supersymmetric Standard Model (CMSSM) when only constrained by data from direct searches for dark matter. We construct confidence intervals from one-dimensional profile likelihoods and study the coverage by generating several pseudo-experiments for two benchmark sets of pseudo-true parameters. We use nested sampling to scan the parameter space and evaluate the coverage for the two benchmarks when either flat or logarithmic priors are imposed on gaugino and scalar mass parameters. We observe both under- and over-coverage, which in some cases vary quite dramatically when benchmarks or priors are modified. We show how most of the variation can be explained as the impact of explicit and implicit priors, where the latter are indirectly imposed by physicality conditions. For comparison, we also evaluate the coverage for Bayesian credible intervals, and (predictably) observe significant under-coverage in those cases.
  •  
4.
  • Allanach, Benjamin C., et al. (författare)
  • Simple and statistically sound strategies for analysing physical theories
  • 2022
  • Ingår i: Reports on progress in physics (Print). - : Institute of Physics Publishing (IOPP). - 0034-4885 .- 1361-6633. ; 85:5
  • Forskningsöversikt (refereegranskat)abstract
    • Physical theories that depend on many parameters or are tested against data from many different experiments pose unique challenges to statistical inference. Many models in particle physics, astrophysics and cosmology fall into one or both of these categories. These issues are often sidestepped with statistically unsound ad hoc methods, involving intersection of parameter intervals estimated by multiple experiments, and random or grid sampling of model parameters. Whilst these methods are easy to apply, they exhibit pathologies even in low-dimensional parameter spaces, and quickly become problematic to use and interpret in higher dimensions. In this article we give clear guidance for going beyond these procedures, suggesting where possible simple methods for performing statistically sound inference, and recommendations of readily-available software tools and standards that can assist in doing so. Our aim is to provide any physicists lacking comprehensive statistical training with recommendations for reaching correct scientific conclusions, with only a modest increase in analysis burden. Our examples can be reproduced with the code publicly available at Zenodo.
  •  
5.
  • Asplund, Martin, et al. (författare)
  • The Chemical Composition of the Sun
  • 2009
  • Ingår i: Annual Review of Astronomy and Astrophysics. - : Annual Reviews. - 0066-4146 .- 1545-4282. ; 47, s. 481-522
  • Forskningsöversikt (refereegranskat)abstract
    • The solar chemical composition is an important ingredient in our understanding of the formation, structure, and evolution of both the Sun and our Solar System. Furthermore, it is an essential reference standard against which the elemental contents of other astronomical objects are compared. In this review, we evaluate the current understanding of the solar photospheric composition. In particular, we present a redetermination of the abundances of nearly all available elements, using a realistic new three-dimensional (3D), time-dependent hydrodynamical model of the solar atmosphere. We have carefully considered the atomic input data and selection of spectral lines, and accounted for departures from local thermodynamic equilibrium (LTE) whenever possible. The end result is a comprehensive and homogeneous compilation of the solar elemental abundances. Particularly noteworthy findings are significantly lower abundances of C, N, O, and Ne compared to the widely used values of a decade ago. The new solar chemical composition is supported by a high degree of internal consistency between available abundance indicators, and by agreement with values obtained in the Solar Neighborhood and from the most pristine meteorites. There is, however, a stark conflict with standard models of the solar interior according to helio-seismology, a discrepancy that has yet to find a satisfactory resolution.
  •  
6.
  • Athron, Peter, et al. (författare)
  • A global fit of the MSSM with GAMBIT
  • 2017
  • Ingår i: European Physical Journal C. - : Springer Science and Business Media LLC. - 1434-6044 .- 1434-6052. ; 77:12
  • Tidskriftsartikel (refereegranskat)abstract
    • We study the seven-dimensional Minimal Super-symmetric Standard Model (MSSM7) with the new GAMBIT software framework, with all parameters defined at the weak scale. Our analysis significantly extends previous weak-scale, phenomenological MSSM fits, by adding more and newer experimental analyses, improving the accuracy and detail of theoretical predictions, including dominant uncertainties from the Standard Model, the Galactic dark matter halo and the quark content of the nucleon, and employing novel and highly-efficient statistical sampling methods to scan the parameter space. We find regions of the MSSM7 that exhibit co-annihilation of neutralinos with charginos, stops and sbottoms, as well as models that undergo resonant annihilation via both light and heavy Higgs funnels. We find high-likelihood models with light charginos, stops and sbottoms that have the potential to be within the future reach of the LHC. Large parts of our preferred parameter regions will also be accessible to the next generation of direct and indirect dark matter searches, making prospects for discovery in the near future rather good.
  •  
7.
  • Athron, Peter, et al. (författare)
  • GAMBIT : the global and modular beyond-the-standard-model inference tool
  • 2017
  • Ingår i: European Physical Journal C. - : Springer Science and Business Media LLC. - 1434-6044 .- 1434-6052. ; 77:11
  • Tidskriftsartikel (refereegranskat)abstract
    • We describe the open-source global fitting package GAMBIT: the Global And Modular Beyond-the-Standard-Model Inference Tool. GAMBIT combines extensive calculations of observables and likelihoods in particle and astroparticle physics with a hierarchical model database, advanced tools for automatically building analyses of essentially any model, a flexible and powerful system for interfacing to external codes, a suite of different statistical methods and parameter scanning algorithms, and a host of other utilities designed to make scans faster, safer and more easily-extendible than in the past. Here we give a detailed description of the framework, its design and motivation, and the current models and other specific components presently implemented in GAMBIT. Accompanying papers deal with individual modules and present flrst GAMBIT results. GAMBIT can be downloaded from gambit.hepforge.org.
  •  
8.
  • Athron, Peter, et al. (författare)
  • GAMBIT : the global and modular beyond-the-standard-model inference tool
  • 2018
  • Ingår i: European Physical Journal C. - : Springer Science and Business Media LLC. - 1434-6044 .- 1434-6052. ; 78:2
  • Tidskriftsartikel (refereegranskat)abstract
    • In Ref. (GAMBIT Collaboration: Athron et. al., Eur. Phys. J. C. arXiv: 1705.07908, 2017) we introduced the global-fitting framework GAMBIT. In this addendum, we describe a new minor version increment of this package. GAMBIT 1.1 includes full support for Mathematica backends, which we describe in some detail here. As an example, we backend SUSYHD (Vega and Villadoro, JHEP 07: 159, 2015), which calculates the mass of the Higgs boson in the MSSM from effective field theory. We also describe updated likelihoods in PrecisionBit and DarkBit, and updated decay data included in DecayBit.
  •  
9.
  • Athron, Peter, et al. (författare)
  • Global analyses of Higgs portal singlet dark matter models using GAMBIT
  • 2019
  • Ingår i: European Physical Journal C. - : Springer Science and Business Media LLC. - 1434-6044 .- 1434-6052. ; 79:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present global analyses of effective Higgs portal dark matter models in the frequentist and Bayesian statistical frameworks. Complementing earlier studies of the scalar Higgs portal, we use GAMBIT to determine the preferred mass and coupling ranges for models with vector, Majorana and Dirac fermion dark matter. We also assess the relative plausibility of all four models using Bayesian model comparison. Our analysis includes up-to-date likelihood functions for the dark matter relic density, invisible Higgs decays, and direct and indirect searches for weakly-interacting dark matter including the latest XENON1T data. We also account for important uncertainties arising from the local density and velocity distribution of dark matter, nuclear matrix elements relevant to direct detection, and Standard Model masses and couplings. In all Higgs portal models, we find parameter regions that can explain all of dark matter and give a good fit to all data. The case of vector dark matter requires the most tuning and is therefore slightly disfavoured from a Bayesian point of view. In the case of fermionic dark matter, we find a strong preference for including a CP-violating phase that allows suppression of constraints from direct detection experiments, with odds in favour of CP violation of the order of 100:1. Finally, we present DDCalc2.0.0, a tool for calculating direct detection observables and likelihoods for arbitrary non-relativistic effective operators.
  •  
10.
  • Athron, Peter, et al. (författare)
  • Global fits of GUT-scale SUSY models with GAMBIT
  • 2017
  • Ingår i: European Physical Journal C. - : Springer Science and Business Media LLC. - 1434-6044 .- 1434-6052. ; 77:12
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the most comprehensive global fits to date of three supersymmetric models motivated by grand unification: the Constrained Minimal Supersymmetric Standard Model (CMSSM), and its Non-Universal Higgs Mass generalisations NUHM1 and NUHM2. We include likelihoods from a number of direct and indirect dark matter searches, a large collection of electroweak precision and flavour observables, direct searches for supersymmetry at LEP and Runs I and II of the LHC, and constraints from Higgs observables. Our analysis improves on existing results not only in terms of the number of included observables, but also in the level of detail with which we treat them, our sampling techniques for scanning the parameter space, and our treatment of nuisance parameters. We show that stau co-annihilation is now ruled out in the CMSSM at more than 95% confidence. Stop co-annihilation turns out to be one of the most promising mechanisms for achieving an appropriate relic density of darkmatter in all threemodels, whilst avoiding all other constraints. We find high-likelihood regions of parameter space featuring light stops and charginos, making them potentially detectable in the near future at the LHC. We also show that tonne-scale direct detection will play a largely complementary role, probing large parts of the remaining viable parameter space, including essentially all models with multi-TeV neutralinos.
  •  
11.
  • Athron, Peter, et al. (författare)
  • SpecBit, DecayBit and PrecisionBit : GAMBIT modules for computing mass spectra, particle decay rates and precision observables
  • 2018
  • Ingår i: European Physical Journal C. - : Springer Science and Business Media LLC. - 1434-6044 .- 1434-6052. ; 78:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the GAMBIT modules SpecBit, DecayBit and PrecisionBit. Together they provide a new framework for linking publicly available spectrum generators, decay codes and other precision observable calculations in a physically and statistically consistent manner. This allows users to automatically run various combinations of existing codes as if they are a single package. The modular design allows software packages fulfilling the same role to be exchanged freely at runtime, with the results presented in a common format that can easily be passed to downstream dark matter, collider and flavour codes. These modules constitute an essential part of the broader GAMBIT framework, a major new software package for performing global fits. In this paper we present the observable calculations, data, and likelihood functions implemented in the three modules, as well as the conventions and assumptions used in interfacing them with external codes. We also present 3-BIT-HIT, a command-line utility for computing mass spectra, couplings, decays and precision observables in the MSSM, which shows how the three modules can easily be used independently of GAMBIT.
  •  
12.
  • Athron, Peter, et al. (författare)
  • Status of the scalar singlet dark matter model
  • 2017
  • Ingår i: European Physical Journal C. - : Springer Science and Business Media LLC. - 1434-6044 .- 1434-6052. ; 77:8
  • Tidskriftsartikel (refereegranskat)abstract
    • One of the simplest viable models for dark matter is an additional neutral scalar, stabilised by a symmetry. Using the GAMBIT package and combining results from four independent samplers, we present Bayesian and frequentist global fits of this model. We vary the singlet mass and coupling along with 13 nuisance parameters, including nuclear uncertainties relevant for direct detection, the local dark matter density, and selected quark masses and couplings. We include the dark matter relic density measured by Planck, direct searches with LUX, PandaX, SuperCDMS and XENON100, limits on invisible Higgs decays from the Large Hadron Collider, searches for high-energy neutrinos from dark matter annihilation in the Sun with IceCube, and searches for gamma rays from annihilation in dwarf galaxies with the Fermi-LAT. Viable solutions remain at couplings of order unity, for singlet masses between the Higgs mass and about 300 GeV, and at masses above 1 TeV. Only in the latter case can the scalar singlet constitute all of dark matter. Frequentist analysis shows that the low-mass resonance region, where the singlet is about half the mass of the Higgs, can also account for all of dark matter, and remains viable. However, Bayesian considerations show this region to be rather fine-tuned.
  •  
13.
  • Balázs, Csaba, et al. (författare)
  • ColliderBit : a GAMBIT module for the calculation of high-energy collider observables and likelihoods
  • 2017
  • Ingår i: European Physical Journal C. - : Springer Science and Business Media LLC. - 1434-6044 .- 1434-6052. ; 77:11
  • Tidskriftsartikel (refereegranskat)abstract
    • We describe ColliderBit, a new code for the calculation of high energy collider observables in theories of physics beyond the Standard Model (BSM). ColliderBit features a generic interface to BSM models, a unique parallelised Monte Carlo event generation scheme suitable for large-scale supercomputer applications, and a number of LHC analyses, covering a reasonable range of the BSM signatures currently sought by ATLAS and CMS. ColliderBit also calculates likelihoods for Higgs sector observables, and LEP searches for BSM particles. These features are provided by a combination of new code unique to ColliderBit, and interfaces to existing state-of-the-art public codes. ColliderBit is both an important part of the GAMBIT framework for BSM inference, and a standalone tool for efficiently applying collider constraints to theories of new physics.
  •  
14.
  • Balázs, Csaba, et al. (författare)
  • Cosmological constraints on decaying axion-like particles : a global analysis
  • 2022
  • Ingår i: Journal of Cosmology and Astroparticle Physics. - : IOP Publishing. - 1475-7516. ; :12
  • Tidskriftsartikel (refereegranskat)abstract
    • Axion-like particles (ALPs) decaying into photons are known to affect a wide range of astrophysical and cosmological observables. In this study we focus on ALPs with masses in the keV–MeV range and lifetimes between 104 and 1013 seconds, corresponding to decays between the end of Big Bang Nucleosynthesis and the formation of the Cosmic Microwave Background (CMB). Using the CosmoBit module of the global fitting framework GAMBIT, we combine state-of-the-art calculations of the irreducible ALP freeze-in abundance, primordial element abundances (including photodisintegration through ALP decays), CMB spectral distortions and anisotropies, and constraints from supernovae and stellar cooling. This approach makes it possible for the first time to perform a global analysis of the ALP parameter space while varying the parameters of ΛCDM as well as several nuisance parameters. We find a lower bound on the ALP mass of around ma > 300 keV, which can only be evaded if ALPs are stable on cosmological timescales. Future observations of CMB spectral distortions with a PIXIE-like mission are expected to improve this bound by two orders of magnitude.
  •  
15.
  • Beniwal, Ankit, et al. (författare)
  • Combined analysis of effective Higgs portal dark matter models
  • 2016
  • Ingår i: Physical Review D. - : American Physical Society. - 2470-0010 .- 2470-0029. ; 93:11
  • Tidskriftsartikel (refereegranskat)abstract
    • We combine and extend the analyses of effective scalar, vector, Majorana and Dirac fermion Higgs portal models of dark matter (DM), in which DM couples to the Standard Model (SM) Higgs boson via an operator of the form (ODMHH)-H-dagger. For the fermion models, we take an admixture of scalar.. and pseudoscalar (psi) over bari gamma(5)psi interaction terms. For each model, we apply constraints on the parameter space based on the Planck measured DM relic density and the LHC limits on the Higgs invisible branching ratio. For the first time, we perform a consistent study of the indirect detection prospects for these models based on the WMAP7/Planck observations of the cosmic microwave background, a combined analysis of 15 dwarf spheroidal galaxies by Fermi-LAT and the upcoming Cherenkov Telescope Array (CTA). We also perform a correct treatment of the momentum-dependent direct search cross section that arises from the pseudoscalar interaction term in the fermionic DM theories. We find, in line with previous studies, that current and future direct search experiments such as LUX and XENON1T can exclude much of the parameter space, and we demonstrate that a joint observation in both indirect and direct searches is possible for high mass weakly interacting massive particles. In the case of a pure pseudoscalar interaction of a fermionic DM candidate, future gamma-ray searches are the only class of experiment capable of probing the high mass range of the theory.
  •  
16.
  • Bernlochner, Florian U., et al. (författare)
  • FlavBit : a GAMBIT module for computing flavour observables and likelihoods
  • 2017
  • Ingår i: European Physical Journal C. - : Springer Science and Business Media LLC. - 1434-6044 .- 1434-6052. ; 77:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Flavour physics observables are excellent probes of new physics up to very high energy scales. Here we present FlavBit, the dedicated flavour physics module of the global-fitting package GAMBIT. FlavBit includes custom implementations of various likelihood routines for a wide range of flavour observables, including detailed uncertainties and correlations associated with LHCb measurements of rare, leptonic and semileptonic decays of B and D mesons, kaons and pions. It provides a generalised interface to external theory codes such as Superlso, allowing users to calculate flavour observables in and beyond the Standard Model, and then test them in detail against all relevant experimental data. We describe FlavBit and its constituent physics in some detail, then give examples from supersymmetry and effective field theory illustrating how it can be used both as a standalone library for flavour physics, and within GAMBIT.
  •  
17.
  • Bloor, Sanjay, et al. (författare)
  • The GAMBIT Universal Model Machine : from Lagrangians to likelihoods
  • 2021
  • Ingår i: European Physical Journal C. - : Springer Nature. - 1434-6044 .- 1434-6052. ; 81:12
  • Tidskriftsartikel (refereegranskat)abstract
    • We introduce the GAMBIT Universal Model Machine (GUM), a tool for automatically generating code for the global fitting software framework GAMBIT, based on Lagrangian-level inputs. GUM accepts models written symbolically in FeynRules and SARAH formats, and can use either tool along with MadG rap h and CaIcHEP to generate GAMBIT model, collider, dark matter, decay and spectrum code, as well as GAMBIT interfaces to corresponding versions of SPheno, micrOMEGAs, Pythia and Vevacious (C++). In this paper we describe the features, methods, usage, pathways, assumptions and current limitations of GUM. We also give a fully worked example, consisting of the addition of a Majorana fermion simplified dark matter model with a scalar mediator to GAMBIT via GUM, and carry out a corresponding fit.
  •  
18.
  • Bringmann, Torsten, et al. (författare)
  • DarkBit : a GAMBIT module for computing dark matter observables and likelihoods
  • 2017
  • Ingår i: European Physical Journal C. - : Springer Science and Business Media LLC. - 1434-6044 .- 1434-6052. ; 77:12
  • Tidskriftsartikel (refereegranskat)abstract
    • We introduce DarkBit, an advanced software code for computing dark matter constraints on various extensions to the Standard Model of particle physics, comprising both new native code and interfaces to external packages. This release includes a dedicated signal yield calculator for gamma-ray observations, which significantly extends current tools by implementing a cascade decay Monte Carlo, as well as a dedicated likelihood calculator for current and future experiments (gamLike). This provides a general solution for studying complex particle physics models that predict dark matter annihilation to a multitude of final states. We also supply a direct detection package that models a large range of direct detection experiments (DDCalc), and provides the corresponding likelihoods for arbitrary combinations of spin-independent and spin-dependent scattering processes. Finally, we provide custom relic density routines along with interfaces to DarkSUSY, micrOMEGAs, and the neutrino telescope likelihood package nulike. DarkBit is written in the framework of the Global And Modular Beyond the StandardModel Inference Tool (GAMBIT), providing seamless integration into a comprehensive statistical fitting framework that allows users to explore new models with both particle and astrophysics constraints, and a con-sistent treatment of systematic uncertainties. In this paper we describe its main functionality, provide a guide to getting started quickly, and show illustrative examples for results obtained with DarkBit (both as a standalone tool and as a GAMBIT module). This includes a quantitative comparison between two of the main dark matter codes (DarkSUSY and micrOMEGAs), and application of DarkBit's advanced direct and indirect detection routines to a simple effective dark matter model.
  •  
19.
  • Bringmann, Torsten, et al. (författare)
  • Improved constraints on the primordial power spectrum at small scales from ultracompact minihalos
  • 2012
  • Ingår i: Physical Review D. - 1550-7998 .- 1550-2368. ; 85:12, s. 125027-
  • Tidskriftsartikel (refereegranskat)abstract
    • For a Gaussian spectrum of primordial density fluctuations, ultracompact minihalos (UCMHs) of dark matter are expected to be produced in much greater abundance than, e.g., primordial black holes. Forming shortly after matter-radiation equality, these objects would develop very dense and spiky dark matter profiles. In the standard scenario where dark matter consists of thermally produced, weakly interacting massive particles, UCMHs could thus appear as highly luminous gamma-ray sources or leave an imprint in the cosmic microwave background by changing the reionization history of the Universe. We derive corresponding limits on the cosmic abundance of UCMHs at different epochs and translate them into constraints on the primordial power spectrum. We find the resulting constraints to be quite severe, especially at length scales much smaller than what can be directly probed by the cosmic microwave background or large-scale structure observations. We use our results to provide an updated compilation of the best available constraints on the power of density fluctuations on all scales, ranging from the present-day horizon to scales more than 20 orders of magnitude smaller.
  •  
20.
  •  
21.
  • Keddie, Amanda, et al. (författare)
  • What needs to happen for school autonomy to be mobilised to create more equitable public schools and systems of education?
  • 2023
  • Ingår i: The Australian Educational Researcher. - : Springer. - 0311-6999 .- 2210-5328. ; 50:5, s. 1571-1597
  • Tidskriftsartikel (refereegranskat)abstract
    • The series of responses in this article were gathered as part of an online mini conference held in September 2021 that sought to explore different ideas and articulations of school autonomy reform across the world (Australia, Canada, England, Ireland, the USA, Norway, Sweden and New Zealand). It centred upon an important question: what needs to happen for school autonomy to be mobilised to create more equitable public schools and systems of education? There was consensus across the group that school autonomy reform creates further inequities at school and system levels when driven by the logics of marketisation, competition, economic efficiency and public accountability. Against the backdrop of these themes, the conference generated discussion and debate where provocations and points of agreement and disagreement about issues of social justice and the mobilisation of school autonomy reform were raised. As an important output of this discussion, we asked participants to write a short response to the guiding conference question. The following are these responses which range from philosophical considerations, systems and governance perspectives, national particularities and teacher and principal perspectives.
  •  
22.
  • Malbet, F., et al. (författare)
  • Faint objects in motion: the new frontier of high precision astrometry
  • 2021
  • Ingår i: Experimental Astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 51:3, s. 845-886
  • Tidskriftsartikel (refereegranskat)abstract
    • Sky survey telescopes and powerful targeted telescopes play complementary roles in astronomy. In order to investigate the nature and characteristics of the motions of very faint objects, a flexibly-pointed instrument capable of high astrometric accuracy is an ideal complement to current astrometric surveys and a unique tool for precision astrophysics. Such a space-based mission will push the frontier of precision astrometry from evidence of Earth-mass habitable worlds around the nearest stars, to distant Milky Way objects, and out to the Local Group of galaxies. As we enter the era of the James Webb Space Telescope and the new ground-based, adaptive-optics-enabled giant telescopes, by obtaining these high precision measurements on key objects that Gaia could not reach, a mission that focuses on high precision astrometry science can consolidate our theoretical understanding of the local Universe, enable extrapolation of physical processes to remote redshifts, and derive a much more consistent picture of cosmological evolution and the likely fate of our cosmos. Already several missions have been proposed to address the science case of faint objects in motion using high precision astrometry missions: NEAT proposed for the ESA M3 opportunity, micro-NEAT for the S1 opportunity, and Theia for the M4 and M5 opportunities. Additional new mission configurations adapted with technological innovations could be envisioned to pursue accurate measurements of these extremely small motions. The goal of this White Paper is to address the fundamental science questions that are at stake when we focus on the motions of faint sky objects and to briefly review instrumentation and mission profiles.
  •  
23.
  • Martinez, Gregory D., et al. (författare)
  • Comparison of statistical sampling methods with ScannerBit, the GAMBIT scanning module
  • 2017
  • Ingår i: European Physical Journal C. - : Springer Science and Business Media LLC. - 1434-6044 .- 1434-6052. ; 77:11
  • Tidskriftsartikel (refereegranskat)abstract
    • We introduce ScannerBit, the statistics and sampling module of the public, open-source global fitting framework GAMBIT. ScannerBit provides a standardised interface to different sampling algorithms, enabling the use and comparison of multiple computational methods for inferring profile likelihoods, Bayesian posteriors, and other statistical quantities. The current version offers random, grid, raster, nested sampling, differential evolution, Markov Chain Monte Carlo (MCMC) and ensemble Monte Carlo samplers. We also announce the release of a new standalone differential evolution sampler, Diver, and describe its design, usage and interface to ScannerBit. We subject Diver and three other samplers (the nested sampler MultiNest, the MCMC GreAT, and the native ScannerBit implementation of the ensemble Monte Carlo algorithm T-Walk) to a battery of statistical tests. For this we use a realistic physical likelihood function, based on the scalar singlet model of dark matter. We examine the performance of each sampler as a function of its adjustable settings, and the dimensionality of the sampling problem. We evaluate performance on four metrics: optimality of the best fit found, completeness in exploring the best-fit region, number of likelihood evaluations, and total runtime. For Bayesian posterior estimation at high resolution, T-Walk provides the most accurate and timely mapping of the full parameter space. For profile likelihood analysis in less than about ten dimensions, we find that Diver and MultiNest score similarly in terms of best fit and speed, outperforming GreAT and T-Walk; in ten or more dimensions, Diver substantially outperforms the other three samplers on all metrics.
  •  
24.
  • Renk, Janina J., et al. (författare)
  • CosmoBit : a GAMBIT module for computing cosmological observables and likelihoods
  • 2021
  • Ingår i: Journal of Cosmology and Astroparticle Physics. - : IOP Publishing. - 1475-7516. ; :2
  • Tidskriftsartikel (refereegranskat)abstract
    • We introduce CosmoBit, a module within the open-source GAMBIT software framework for exploring connections between cosmology and particle physics with joint global fits. CosmoBit provides a flexible framework for studying various scenarios beyond ACDM, such as models of inflation, modifications of the effective number of relativistic degrees of freedom, exotic energy injection from annihilating or decaying dark matter, and variations of the properties of elementary particles such as neutrino masses and the lifetime of the neutron. Many observables and likelihoods in CosmoBit are computed via interfaces to AlterBBN, CLASS, DarkAges, MontePython, MultiModeCode, and plc. This makes it possible to apply a wide range of constraints from large-scale structure, Type Ia supernovae, Big Bang Nucleosynthesis and the cosmic microwave background. Parameter scans can be performed using the many different statistical sampling algorithms available within the GAMBIT framework, and results can be combined with calculations from other GAMBIT modules focused on particle physics and dark matter. We include extensive validation plots and a first application to scenarios with non-standard relativistic degrees of freedom and neutrino temperature, showing that the corresponding constraint on the sum of neutrino masses is much weaker than in the standard scenario.
  •  
25.
  • Renk, Janina J., 1990- (författare)
  • Delving in the Dark : Searching for Signatures of Non-Standard Physics in Cosmological and Astrophysical Observables
  • 2020
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The dark sectors of our Universe, dark matter and dark energy, together constitute about 96 % of the total energy content of the Universe. To date, we only have observational evidence for their existence. What is still lacking is a complete theoretical framework consistent with all observational data to embed a dark matter particle or component into the standard models of particle physics and cosmology, as well as an explanation for the nature or origin of dark energy.Since the discovery of these dark components decades ago, a variety of different theories have been proposed to overcome the shortcomings of our current standard models. To assess the viability of these non-standard theories, they ideally should be tested against all relevant available datasets. In this thesis, I show two examples of how cosmological and astrophysical observables are used to constrain or even rule out non-standard cosmological models. Further, I present the first software tool that provides a general framework to test non-standard physics with global fits to data from particle physics and cosmology simultaneously.The first example is minimally coupled covariant Galileons, a modification of General Relativity to explain dark energy without the need for a fine-tuned cosmological constant. I demonstrate how the combination of constraints arising from the integrated Sachs-Wolf effect and the propagation speed of gravitational waves can rule out all three branches of the theory.The second example shows how the existence and parameter space of cosmic superstrings can be constrained. These are the hypothesised fundamental building blocks of Type IIb Superstring theory, stretched out to cosmological scales during the phase of inflation. The theory can be tested through the unique microlensing signature of cosmic superstrings when crossing the line of sight of an observer monitoring a point-like source. I show how, based on simulations, we can estimate the expected detection rates from observations of distant Type Ia Supernovae and stars in Andromeda; from these estimates I assess the implications for the theory.Finally, I present CosmoBit, a new module for the Global and Modular Beyond-Standard Model Inference Tool (GAMBIT). \gambit allows the user to test a variety of extensions to the Standard Model of particle physics against data from, e.g. collider searches, dark matter direct and indirect detection experiments, as well as laboratory measurements of neutrino properties. CosmoBit augments this with the inclusion of cosmological likelihoods. This addition opens up the possibility to test a given model against data from, e.g. the Big Bang Nucleosynthesis proceeding minutes after the Big Bang, probes of the Cosmic Microwave Background ~ 380,000 years later, and (laboratory) measurements from the present day, 13.8 billion years after the Big Bang. Including measurements that span several different epochs and orders of magnitude in energy, the combination of CosmoBit with other GAMBIT modules provides a promising tool for shedding light on the dark sectors of the Universe.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 41
Typ av publikation
tidskriftsartikel (32)
konferensbidrag (4)
doktorsavhandling (2)
forskningsöversikt (2)
Typ av innehåll
refereegranskat (38)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Scott, Pat (35)
Edsjö, Joakim (14)
White, Martin (13)
Conrad, Jan (12)
Balazs, Csaba (12)
Farmer, Ben (12)
visa fler...
Kvellestad, Anders (12)
Savage, Christopher (9)
Athron, Peter (9)
Bringmann, Torsten (9)
Martinez, Gregory D. (8)
Jackson, Paul (8)
Cornell, Jonathan M. (8)
Gonzalo, Tomás E. (8)
Raklev, Are (8)
Rogan, Christopher (8)
Mahmoudi, Farvah (7)
Buckley, Andy (7)
Chrzaszcz, Marcin (7)
Kahlhoefer, Felix (6)
Krislock, Abram (6)
Bloor, Sanjay (5)
Zackrisson, Erik (4)
Fairbairn, M. (3)
Ripken, Joachim (3)
Vincent, Aaron C. (3)
Beniwal, Ankit (3)
Handley, Will (3)
Hoof, Sebastian (3)
Renk, Janina J. (3)
Stöcker, Patrick (3)
Asplund, Martin (3)
Danninger, Matthias (2)
Seo, Seon Hee (2)
O'Neill, S (2)
Lundberg, Johan (2)
Dickinson, Hugh (2)
Brandeker, Alexis (2)
Östlin, Göran (2)
Goobar, Ariel (2)
Freese, Katherine (2)
Wyrzykowski, Lukasz (2)
Michalik, Daniel (2)
Akrami, Yashar (2)
Akrami, Yashar, 1980 ... (2)
Spolyar, Douglas (2)
Fowlie, Andrew (2)
Hotinli, Selim (2)
Hobbs, David (2)
Le Poncin-Lafitte, C ... (2)
visa färre...
Lärosäte
Stockholms universitet (33)
Uppsala universitet (5)
Kungliga Tekniska Högskolan (4)
Luleå tekniska universitet (2)
Lunds universitet (2)
Chalmers tekniska högskola (1)
Språk
Engelska (41)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (36)
Teknik (2)
Samhällsvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy