SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Selker John S.) "

Sökning: WFRF:(Selker John S.)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Troch, Peter A., et al. (författare)
  • The importance of hydraulic groundwater theory in catchment hydrology : The legacy of Wilfried Brutsaert and Jean-Yves Parlange
  • 2013
  • Ingår i: Water resources research. - : American Geophysical Union (AGU). - 0043-1397 .- 1944-7973. ; 49:9, s. 5099-5116
  • Forskningsöversikt (refereegranskat)abstract
    • Based on a literature overview, this paper summarizes the impact and legacy of the contributions of Wilfried Brutsaert and Jean-Yves Parlange (Cornell University) with respect to the current state-of-the-art understanding in hydraulic groundwater theory. Forming the basis of many applications in catchment hydrology, ranging from drought flow analysis to surface water-groundwater interactions, hydraulic groundwater theory simplifies the description of water flow in unconfined riparian and perched aquifers through assumptions attributed to Dupuit and Forchheimer. Boussinesq (1877) derived a general equation to study flow dynamics of unconfined aquifers in uniformly sloping hillslopes, resulting in a remarkably accurate and applicable family of results, though often challenging to solve due to its nonlinear form. Under certain conditions, the Boussinesq equation can be solved analytically allowing compact representation of soil and geomorphological controls on unconfined aquifer storage and release dynamics. The Boussinesq equation has been extended to account for flow divergence/convergence as well as for nonuniform bedrock slope (concave/convex). The extended Boussinesq equation has been favorably compared to numerical solutions of the three-dimensional Richards equation, confirming its validity under certain geometric conditions. Analytical solutions of the linearized original and extended Boussinesq equations led to the formulation of similarity indices for baseflow recession analysis, including scaling rules, to predict the moments of baseflow response. Validation of theoretical recession parameters on real-world streamflow data is complicated due to limited measurement accuracy, changing boundary conditions, and the strong coupling between the saturated aquifer with the overlying unsaturated zone. However, recent advances are shown to have mitigated several of these issues. The extended Boussinesq equation has been successfully applied to represent baseflow dynamics in catchment-scale hydrological models, and it is currently considered to represent lateral redistribution of groundwater in land surface schemes applied in global circulation models. From the review, it is clear that Wilfried Brutsaert and Jean-Yves Parlange stimulated a body of research that has led to several fundamental discoveries and practical applications with important contributions in hydrological modeling.
  •  
2.
  • Vercauteren, Nikki, et al. (författare)
  • Evolution of superficial lake water temperature profile under diurnal radiative forcing
  • 2011
  • Ingår i: Water resources research. - 0043-1397 .- 1944-7973. ; 47, s. W09522-
  • Tidskriftsartikel (refereegranskat)abstract
    • In lentic water bodies, such as lakes, the water temperature near the surface typically increases during the day, and decreases during the night as a consequence of the diurnal radiative forcing (solar and infrared radiation). These temperature variations penetrate vertically into the water, transported mainly by heat conduction enhanced by eddy diffusion, which may vary due to atmospheric conditions, surface wave breaking, and internal dynamics of the water body. These two processes can be described in terms of an effective thermal diffusivity, which can be experimentally estimated. However, the transparency of the water (depending on turbidity) also allows solar radiation to penetrate below the surface into the water body, where it is locally absorbed (either by the water or by the deployed sensors). This process makes the estimation of effective thermal diffusivity from experimental water temperature profiles more difficult. In this study, we analyze water temperature profiles in a lake with the aim of showing that assessment of the role played by radiative forcing is necessary to estimate the effective thermal diffusivity. To this end we investigate diurnal water temperature fluctuations with depth. We try to quantify the effect of locally absorbed radiation and assess the impact of atmospheric conditions (wind speed, net radiation) on the estimation of the thermal diffusivity. The whole analysis is based on the results of fiber optic distributed temperature sensing, which allows unprecedented high spatial resolution measurements (similar to 4 mm) of the temperature profile in the water and near the water surface.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy