SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sendeski Mauricio) "

Sökning: WFRF:(Sendeski Mauricio)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Carlström, Mattias, et al. (författare)
  • Nitric oxide deficiency and increased adenosine response of afferent arterioles in hydronephrotic mice with hypertension
  • 2008
  • Ingår i: Hypertension. - : American Heart Association. - 0194-911X .- 1524-4563. ; 51:5, s. 1386-1392
  • Forskningsöversikt (refereegranskat)abstract
    • Afferent arterioles were used to investigate the role of adenosine, angiotensin II, NO, and reactive oxygen species in the pathogenesis of increased tubuloglomerular feedback response in hydronephrosis. Hydronephrosis was induced in wild-type mice, superoxide dismutase-1 overexpressed mice (superoxide-dismutase-1 transgenic), and deficient mice (superoxide dismutase-1 knockout). Isotonic contractions in isolated perfused arterioles and mRNA expression of NO synthase isoforms, adenosine, and angiotensin II receptors were measured. In wild-type mice, N(G)-nitro-L-arginine methyl ester (L-NAME) did not change the basal arteriolar diameter of hydronephrotic kidneys (-6%) but reduced it in control (-12%) and contralateral arterioles (-43%). Angiotensin II mediated a weaker maximum contraction of hydronephrotic arterioles (-18%) than in control (-42%) and contralateral arterioles (-49%). The maximum adenosine-induced constriction was stronger in hydronephrotic (-19%) compared with control (-8%) and contralateral kidneys (+/-0%). The response to angiotensin II became stronger in the presence of adenosine in hydronephrotic kidneys and attenuated in contralateral arterioles. L-NAME increased angiotensin II responses of all of the groups but less in hydronephrotic kidneys. The mRNA expression of endothelial NO synthase and inducible NO synthase was upregulated in the hydronephrotic arterioles. No differences were found for adenosine or angiotensin II receptors. In superoxide dismutase-1 transgenic mice, strong but similar L-NAME response (-40%) was observed for all of the groups. This response was totally abolished in arterioles of hydronephrotic superoxide dismutase-1 knockout mice. In conclusion, hydronephrosis is associated with changes in the arteriolar reactivity of both hydronephrotic and contralateral kidneys. Increased oxidative stress, reduced NO availability, and stronger reactivity to adenosine of the hydronephrotic kidney may contribute to the enhanced tubuloglomerular feedback responsiveness in hydronephrosis and be involved in the development of hypertension.
  •  
2.
  • Gao, Xiang, et al. (författare)
  • Adenosine A(1)-receptor deficiency diminishes afferent arteriolar and blood pressure responses during nitric oxide inhibition and angiotensin II treatment
  • 2011
  • Ingår i: American Journal of Physiology. Regulatory Integrative and Comparative Physiology. - : American Physiological Society. - 0363-6119 .- 1522-1490. ; 301:6, s. R1669-R1681
  • Tidskriftsartikel (refereegranskat)abstract
    • Adenosine mediates tubuloglomerular feedback responses via activation of A(1)-receptors on the renal afferent arteriole. Increased preglomerular reactivity, due to reduced nitric oxide (NO) production or increased levels of ANG II and reactive oxygen species (ROS), has been linked to hypertension. Using A(1)-receptor knockout (A(1)(-/-)) and wild-type (A(1)(+/+)) mice we investigated the hypothesis that A(1)-receptors modulate arteriolar and blood pressure responses during NO synthase (NOS) inhibition or ANG II treatment. Blood pressure and renal afferent arteriolar responses were measured in nontreated mice and in mice with prolonged N(omega)-nitro-L-arginine methyl ester hydrochloride (L-NAME) or ANG II treatment. The hypertensive responses to L-NAME and ANG II were clearly attenuated in A(1)(-/-) mice. Arteriolar contractions to L-NAME (10(-4) mol/l; 15 min) and cumulative ANG II application (10(-12) to 10(-6) mol/l) were lower in A(1)(-/-) mice. Simultaneous treatment with tempol (10(-4) mol/l; 15 min) attenuated arteriolar responses in A(1)(+/+) but not in A(1)(-/-) mice, suggesting differences in ROS formation. Chronic treatment with L-NAME or ANG II did not alter arteriolar responses in A(1)(-/-) mice, but enhanced maximal contractions in A(1)(+/+) mice. In addition, chronic treatments were associated with higher plasma levels of dimethylarginines (asymmetrical and symmetrical) and oxidative stress marker malondialdehyde in A(1)(+/+) mice, and gene expression analysis showed reduced upregulation of NOS-isoforms and greater upregulation of NADPH oxidases. In conclusion, adenosine A(1)-receptors enhance preglomerular responses during NO inhibition and ANG II treatment. Interruption of A(1)-receptor signaling blunts L-NAME and ANG II-induced hypertension and oxidative stress and is linked to reduced responsiveness of afferent arterioles.
  •  
3.
  • Lai, En Yin, et al. (författare)
  • Adenosine restores angiotensin II-induced contractions by receptor-independent enhancement of calcium sensitivity in renal arterioles
  • 2006
  • Ingår i: Circulation Research. - 0009-7330 .- 1524-4571. ; 99:10, s. 1117-1124
  • Tidskriftsartikel (refereegranskat)abstract
    • Adenosine is coupled to energy metabolism and regulates tissue blood flow by modulating vascular resistance. In this study, we investigated isolated, perfused afferent arterioles of mice, which were subjected to desensitization during repeated applications of angiotensin II. Exogenously applied adenosine restores angiotensin II-induced contractions by increasing calcium sensitivity of the arterioles, along with augmented phosphorylation of the regulatory unit of the myosin light chain. Adenosine restores angiotensin II-induced contractions via intracellular action, because inhibition of adenosine receptors do not prevent restoration, but inhibition of NBTI sensitive adenosine transporters does. Restoration was prevented by inhibition of Rho-kinase, protein kinase C, and the p38 mitogen-activated protein kinase, which modulate myosin light chain phosphorylation and thus calcium sensitivity in the smooth muscle. Furthermore, adenosine application increased the intracellular ATP concentration in LuciHEK cells. The results of the study suggest that restoration of the angiotensin II-induced contraction by adenosine is attributable to the increase of the calcium sensitivity by phosphorylation of the myosin light chain. This can be an important component of vascular control during ischemic and hypoxic conditions. Additionally, this mechanism may contribute to the mediation of the tubuloglomerular feedback by adenosine in the juxtaglomerular apparatus of the kidney.
  •  
4.
  • Patzak, Andreas, et al. (författare)
  • Adenosine enhances long term the contractile response to angiotensin II in afferent arterioles
  • 2007
  • Ingår i: American Journal of Physiology. Regulatory Integrative and Comparative Physiology. - : American Physiological Society. - 0363-6119 .- 1522-1490. ; 293:6, s. R2232-R2242
  • Tidskriftsartikel (refereegranskat)abstract
    • Adenosine (Ado) enhances ANG II-induced constrictions of afferent arterioles (Af) by receptor-dependent and -independent pathways. Here, we test the hypothesis that transient Ado treatment has a sustained effect on Af contractility, resulting in increased ANG II responses after longer absence of Ado. Treatment with Ado (cumulative from 10(-11) to 10(-4) mol/l) and consecutive washout for 10 or 30 min increased constrictions on ANG II in isolated, perfused Af. Cytosolic calcium transients on ANG II were not enhanced in Ado-treated vessels. Selective or global inhibition of A(1)- and A(2)-adenosine receptors did not inhibit the Ado effect. Nitrobenzylthioinosine (an Ado transport inhibitor) clearly reduced the Ado-mediated responses. Selective inhibition of p38 MAPK with SB-203580 also prevented the Ado effect. Inosine treatment did not influence arteriolar reactivity to ANG II. Contractile responses of Af on norepinephrine and endothelin-1 were not influenced by Ado. Phosphorylation of the p38 MAPK and of the regulatory unit of 20-kDa myosin light chain was enhanced after Ado treatment and ANG II in Af. However, phosphorylation of p38 MAPK induced by norepinephrine or endothelin-1 was reduced in vessels treated with Ado, whereas 20-kDa myosin light chain was unchanged. The results suggest an intracellular, long-lasting mechanism including p38 MAPK activation responsible for the increase of ANG II-induced contractions by Ado. The effect is not calcium dependent and specific for ANG II. The prolonged enhancement of the ANG II sensitivity of Af may be important for tubuloglomerular feedback.
  •  
5.
  • Schildroth, Janice, et al. (författare)
  • Endothelin type A and B receptors in the control of afferent and efferent arterioles in mice
  • 2011
  • Ingår i: Nephrology, Dialysis and Transplantation. - : Oxford University Press (OUP). - 0931-0509 .- 1460-2385. ; 26:3, s. 779-789
  • Tidskriftsartikel (refereegranskat)abstract
    • Background. Endothelin 1 contributes to renal blood flow control and pathogenesis of kidney diseases. The differential effects, however, of endothelin 1 (ET-1) on afferent (AA) and efferent arterioles (EA) remain to be established. Methods. We investigated endothelin type A and B receptor (ETA-R, ETB-R) functions in the control of AA and EA. Arterioles of ETB-R deficient, rescued mice [ETB (-/-)] and wild types [ETB(+/+)] were microperfused. Results. ET-1 constricted AA stronger than EA in ETB (-/-) and ETB(+/+) mice. Results in AA: ET-1 induced similar constrictions in ETB(-/-) and ETB(+/+) mice. BQ-123 (ETA-R antagonist) inhibited this response in both groups. ALA-ET-1 and IRL1620 (ETB-R agonists) had no effect on arteriolar diameter. L-NAME did neither affect basal diameters nor ET-1 responses. Results in EA: ET-1 constricted EA stronger in ETB(+/+) compared to ETB(-/-). BQ-123 inhibited the constriction completely only in ETB(-/-). ALA-ET-1 and IRL1620 constricted only arterioles of ETB(+/+) mice. L-NAME decreased basal diameter in ETB(+/+), but not in ETB(-/-) mice and increased the ET-1 response similarly in both groups. The L-NAME actions indicate a contribution of ETB-R in basal nitric oxide (NO) release in EA and suggest dilatory action of ETA-R in EA. Conclusions. ETA-R mediates vasoconstriction in AA and contributes to vasoconstriction in EA in this mouse model. ETB-R has no effect in AA but mediates basal NO release and constriction in EA. The stronger effect of ET-1 on AA supports observations of decreased glomerular filtration rate to ET-1 and indicates a potential contribution of ET-1 to the pathogenesis of kidney diseases.
  •  
6.
  • Sendeski, Mauricio, et al. (författare)
  • Iodixanol, Constriction of Medullary Descending Vasa Recta, and Risk for Contrast Medium-induced Nephropathy
  • 2009
  • Ingår i: Radiology. - : Radiological Society of North America (RSNA). - 0033-8419 .- 1527-1315. ; 251:3, s. 697-704
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: To determine whether a type of contrast medium (CM), iodixanol, modifies outer medullary descending vasa recta (DVR) vasoreactivity and nitric oxide (NO) production in isolated microperfused DVR. Materials and Methods: Animal handling conformed to the Animal Care Committee Guidelines of all participating institutions. Single specimens of DVR were isolated from rats and perfused with a buffered solution containing iodixanol. A concentration of 23 mg of iodine per milliliter was chosen to mimic that expected to be used in usual examinations in humans. Luminal diameter was determined by using video microscopy, and NO was measured by using fluorescent techniques. Results: Iodixanol led to 52% reduction of DVR luminal diameter, a narrowing that might interfere with passage of erythrocytes in vivo. Vasoconstriction induced by angiotensin II was enhanced by iodixanol. Moreover, iodixanol decreased NO bioavailability by more than 82%. Use of 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl (a superoxide dismutase mimetic) prevented both vasoconstriction with iodixanol alone and increased constriction with angiotensin II caused by CM. Conclusion: Iodixanol in doses typically used for coronary interventions constricts DVR, intensifies angiotensin II-induced constriction, and reduces bioavailability of NO. CM-induced nephropathy may be related to these events and scavenging of reactive oxygen species might exert a therapeutic benefit by preventing the adverse effects that a CM has on medullary perfusion.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy