SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Seth Gaurav) "

Sökning: WFRF:(Seth Gaurav)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Widemann, Thomas, et al. (författare)
  • Venus Evolution Through Time : Key Science Questions, Selected Mission Concepts and Future Investigations
  • 2023
  • Ingår i: Space Science Reviews. - : SPRINGER. - 0038-6308 .- 1572-9672. ; 219:7
  • Forskningsöversikt (refereegranskat)abstract
    • In this work we discuss various selected mission concepts addressing Venus evolution through time. More specifically, we address investigations and payload instrument concepts supporting scientific goals and open questions presented in the companion articles of this volume. Also included are their related investigations (observations & modeling) and discussion of which measurements and future data products are needed to better constrain Venus' atmosphere, climate, surface, interior and habitability evolution through time. A new fleet of Venus missions has been selected, and new mission concepts will continue to be considered for future selections. Missions under development include radar-equipped ESA-led EnVision M5 orbiter mission (European Space Agency 2021), NASA-JPL's VERITAS orbiter mission (Smrekar et al. 2022a), NASA-GSFC's DAVINCI entry probe/flyby mission (Garvin et al. 2022a). The data acquired with the VERITAS, DAVINCI, and EnVision from the end of this decade will fundamentally improve our understanding of the planet's long term history, current activity and evolutionary path. We further describe future mission concepts and measurements beyond the current framework of selected missions, as well as the synergies between these mission concepts, ground-based and space-based observatories and facilities, laboratory measurements, and future algorithmic or modeling activities that pave the way for the development of a Venus program that extends into the 2040s (Wilson et al. 2022).
  •  
2.
  • Beal, Jacob, et al. (författare)
  • Robust estimation of bacterial cell count from optical density
  • 2020
  • Ingår i: Communications Biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 3:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data.
  •  
3.
  • Keasar, Chen, et al. (författare)
  • An analysis and evaluation of the WeFold collaborative for protein structure prediction and its pipelines in CASP11 and CASP12
  • 2018
  • Ingår i: Scientific Reports. - : NATURE PUBLISHING GROUP. - 2045-2322. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Every two years groups worldwide participate in the Critical Assessment of Protein Structure Prediction (CASP) experiment to blindly test the strengths and weaknesses of their computational methods. CASP has significantly advanced the field but many hurdles still remain, which may require new ideas and collaborations. In 2012 a web-based effort called WeFold, was initiated to promote collaboration within the CASP community and attract researchers from other fields to contribute new ideas to CASP. Members of the WeFold coopetition (cooperation and competition) participated in CASP as individual teams, but also shared components of their methods to create hybrid pipelines and actively contributed to this effort. We assert that the scale and diversity of integrative prediction pipelines could not have been achieved by any individual lab or even by any collaboration among a few partners. The models contributed by the participating groups and generated by the pipelines are publicly available at the WeFold website providing a wealth of data that remains to be tapped. Here, we analyze the results of the 2014 and 2016 pipelines showing improvements according to the CASP assessment as well as areas that require further adjustments and research.
  •  
4.
  • Menkveld, Albert J., et al. (författare)
  • Nonstandard Errors
  • 2024
  • Ingår i: JOURNAL OF FINANCE. - : Wiley-Blackwell. - 0022-1082 .- 1540-6261. ; 79:3, s. 2339-2390
  • Tidskriftsartikel (refereegranskat)abstract
    • In statistics, samples are drawn from a population in a data-generating process (DGP). Standard errors measure the uncertainty in estimates of population parameters. In science, evidence is generated to test hypotheses in an evidence-generating process (EGP). We claim that EGP variation across researchers adds uncertainty-nonstandard errors (NSEs). We study NSEs by letting 164 teams test the same hypotheses on the same data. NSEs turn out to be sizable, but smaller for more reproducible or higher rated research. Adding peer-review stages reduces NSEs. We further find that this type of uncertainty is underestimated by participants.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy