SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sharma Yashvi) "

Sökning: WFRF:(Sharma Yashvi)

  • Resultat 1-25 av 28
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Anand, Shreya, et al. (författare)
  • Collapsars as Sites of r-process Nucleosynthesis : Systematic Photometric Near-infrared Follow-up of Type Ic-BL Supernovae
  • 2024
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 962:1
  • Tidskriftsartikel (refereegranskat)abstract
    • One of the open questions following the discovery of GW170817 is whether neutron star (NS) mergers are the only astrophysical sites capable of producing r-process elements. Simulations have shown that 0.01–0.1 M⊙ of r-process material could be generated in the outflows originating from the accretion disk surrounding the rapidly rotating black hole that forms as a remnant to both NS mergers and collapsing massive stars associated with long-duration gamma-ray bursts (collapsars). The hallmark signature of r-process nucleosynthesis in the binary NS merger GW170817 was its long-lasting near-infrared (NIR) emission, thus motivating a systematic photometric study of the light curves of broad-lined stripped-envelope (Ic-BL) supernovae (SNe) associated with collapsars. We present the first systematic study of 25 SNe Ic-BL—including 18 observed with the Zwicky Transient Facility and 7 from the literature—in the optical/NIR bands to determine what quantity of r-process material, if any, is synthesized in these explosions. Using semi-analytic models designed to account for r-process production in SNe Ic-BL, we perform light curve fitting to derive constraints on the r-process mass for these SNe. We also perform independent light curve fits to models without the r-process. We find that the r-process-free models are a better fit to the light curves of the objects in our sample. Thus, we find no compelling evidence of r-process enrichment in any of our objects. Further high-cadence infrared photometric studies and nebular spectroscopic analysis would be sensitive to smaller quantities of r-process ejecta mass or indicate whether all collapsars are completely devoid of r-process nucleosynthesis.
  •  
2.
  • Andreoni, Igor, et al. (författare)
  • GROWTH on S190814bv : Deep Synoptic Limits on the Optical/Near-infrared Counterpart to a Neutron Star-Black Hole Merger
  • 2020
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 890:2
  • Tidskriftsartikel (refereegranskat)abstract
    • On 2019 August 14, the Advanced LIGO and Virgo interferometers detected the high-significance gravitational wave (GW) signal S190814bv. The GW data indicated that the event resulted from a neutron star-black hole (NSBH) merger, or potentially a low-mass binary BH merger. Due to the low false-alarm rate and the precise localization (23 deg(2) at 90%), S190814bv presented the community with the best opportunity yet to directly observe an optical/near-infrared counterpart to an NSBH merger. To search for potential counterparts, the GROWTH Collaboration performed real-time image subtraction on six nights of public Dark Energy Camera images acquired in the 3 weeks following the merger, covering >98% of the localization probability. Using a worldwide network of follow-up facilities, we systematically undertook spectroscopy and imaging of optical counterpart candidates. Combining these data with a photometric redshift catalog, we ruled out each candidate as the counterpart to S190814bv and placed deep, uniform limits on the optical emission associated with S190814bv. For the nearest consistent GW distance, radiative transfer simulations of NSBH mergers constrain the ejecta mass of S190814bv to be M-ej < 0.04 M-circle dot at polar viewing angles, or M-ej < 0.03 M-circle dot if the opacity is kappa < 2 cm(2)g(-1). Assuming a tidal deformability for the NS at the high end of the range compatible with GW170817 results, our limits would constrain the BH spin component aligned with the orbital momentum to be chi < 0.7 for mass ratios Q < 6, with weaker constraints for more compact NSs.
  •  
3.
  • Coughlin, Michael W., et al. (författare)
  • GROWTH on S190425z : Searching Thousands of Square Degrees to Identify an Optical or Infrared Counterpart to a Binary Neutron Star Merger with the Zwicky Transient Facility and Palomar Gattini-IR
  • 2019
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8205 .- 2041-8213. ; 885:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The third observing run by LVC has brought the discovery of many compact binary coalescences. Following the detection of the first binary neutron star merger in this run (LIGO/Virgo S190425z), we performed a dedicated follow-up campaign with the Zwicky Transient Facility (ZTF) and Palomar Gattini-IR telescopes. The initial skymap of this single-detector gravitational wave (GW) trigger spanned most of the sky observable from Palomar Observatory. Covering 8000 deg(2) of the initial skymap over the next two nights, corresponding to 46% integrated probability, ZTF system achieved a depth of 21 m(AB) in g- and r-bands. Palomar Gattini-IR covered 2200 square degrees in J-band to a depth of 15.5 mag, including 32% integrated probability based on the initial skymap. The revised skymap issued the following day reduced these numbers to 21% for the ZTF and 19% for Palomar Gattini-IR. We narrowed 338,646 ZTF transient ?alerts? over the first two nights of observations to 15 candidate counterparts. Two candidates, ZTF19aarykkb and ZTF19aarzaod, were particularly compelling given that their location, distance, and age were consistent with the GW event, and their early optical light curves were photometrically consistent with that of kilonovae. These two candidates were spectroscopically classified as young core-collapse supernovae. The remaining candidates were ruled out as supernovae. Palomar Gattini-IR did not identify any viable candidates with multiple detections only after merger time. We demonstrate that even with single-detector GW events localized to thousands of square degrees, systematic kilonova discovery is feasible.
  •  
4.
  • Das, Kaustav K., et al. (författare)
  • Probing the Low-mass End of Core-collapse Supernovae Using a Sample of Strongly-stripped Calcium-rich Type IIb Supernovae from the Zwicky Transient Facility
  • 2023
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 959:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The fate of stars in the zero-age main-sequence (ZAMS) range ≈8–12 M⊙ is unclear. They could evolve to form white dwarfs or explode as electron-capture supernovae (SNe) or iron core-collapse SNe (CCSNe). Even though the initial mass function indicates that this mass range should account for over 40% of all CCSN progenitors, few have been observationally confirmed, likely due to the faintness and rapid evolution of some of these transients. In this paper, we present a sample of nine Ca-rich/O-poor Type IIb SNe detected by the Zwicky Transient Facility with progenitors likely in this mass range. These sources have a [Ca ii] λλ7291, 7324/[O i] λλ6300, 6364 flux ratio of ≳2 in their nebular spectra. Comparing the measured [O i] luminosity (≲1039 erg s−1) and derived oxygen mass (≈0.01 M⊙) with theoretical models, we infer that the progenitor ZAMS mass for these explosions is less than 12 M⊙. The ejecta properties (Mej ≲ 1 M⊙ and Ekin ∼ 1050 erg) are also consistent. The low ejecta mass of these sources indicates a class of strongly-stripped SNe that is a transition between the regular stripped-envelope SNe and ultra-stripped SNe. The progenitor could be stripped by a main-sequence companion and result in the formation of a neutron star−main sequence binary. Such binaries have been suggested to be progenitors of neutron star−white dwarf systems that could merge within a Hubble time and be detectable with LISA.
  •  
5.
  • De, Kishalay, et al. (författare)
  • The Zwicky Transient Facility Census of the Local Universe. I. Systematic Search for Calcium-rich Gap Transients Reveals Three Related Spectroscopic Subclasses
  • 2020
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 905:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Using the Zwicky Transient Facility alert stream, we are conducting a large spectroscopic campaign to construct a complete, volume-limited sample of transients brighter than 20 mag, and coincident within 100 '' of galaxies in the Census of the Local Universe catalog. We describe the experiment design and spectroscopic completeness from the first 16 months of operations, which have classified 754 supernovae. We present results from a systematic search for calcium-rich gap transients in the sample of 22 low-luminosity (peak absolute magnitude M > -17), hydrogen-poor events found in the experiment. We report the detection of eight new events, and constrain their volumetric rate to greater than or similar to 15% +/- 5% of the SN Ia rate. Combining this sample with 10 previously known events, we find a likely continuum of spectroscopic properties ranging from events with SN Ia-like features (Ca-Ia objects) to those with SN Ib/c-like features (Ca-Ib/c objects) at peak light. Within the Ca-Ib/c events, we find two populations distinguished by their red (g - r approximate to 1.5 mag) or green (g - r approximate to 0.5 mag) colors at the r-band peak, wherein redder events show strong line blanketing features and slower light curves (similar to Ca-Ia objects), weaker He lines, and lower [Ca II]/[O I] in the nebular phase. We find that all together the spectroscopic continuum, volumetric rates, and striking old environments are consistent with the explosive burning of He shells on low-mass white dwarfs. We suggest that Ca-Ia and red Ca-Ib/c objects arise from the double detonation of He shells, while green Ca-Ib/c objects are consistent with low-efficiency burning scenarios like detonations in low-density shells or deflagrations.
  •  
6.
  • Fremling, Christoffer, et al. (författare)
  • SNIascore : Deep-learning Classification of Low-resolution Supernova Spectra
  • 2021
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8205 .- 2041-8213. ; 917:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present SNIascore, a deep-learning-based method for spectroscopic classification of thermonuclear supernovae (SNe Ia) based on very low-resolution (R similar to 100) data. The goal of SNIascore is the fully automated classification of SNe Ia with a very low false-positive rate (FPR) so that human intervention can be greatly reduced in large-scale SN classification efforts, such as that undertaken by the public Zwicky Transient Facility (ZTF) Bright Transient Survey (BTS). We utilize a recurrent neural network architecture with a combination of bidirectional long short-term memory and gated recurrent unit layers. SNIascore achieves a SNIascore simultaneously performs binary classification and predicts the redshifts of secure SNe Ia via regression (with a typical uncertainty of z = 0.01 to z = 0.12). For the magnitude-limited ZTF BTS survey (approximate to 70% SNe Ia), deploying SNIascore reduces the amount of spectra in need of human classification or confirmation by approximate to 60%. Furthermore, SNIascore allows SN Ia classifications to be automatically announced in real time to the public immediately following a finished observation during the night.
  •  
7.
  • Goobar, Ariel, 1962-, et al. (författare)
  • Uncovering a population of gravitational lens galaxies with magnified standard candle SN Zwicky
  • 2023
  • Ingår i: Nature Astronomy. - 2397-3366. ; 7:9, s. 1098-1107
  • Tidskriftsartikel (refereegranskat)abstract
    • Detecting gravitationally lensed supernovae is among the biggest challenges in astronomy. It involves a combination of two very rare phenomena: catching the transient signal of a stellar explosion in a distant galaxy and observing it through a nearly perfectly aligned foreground galaxy that deflects light towards the observer. Here we describe how high-cadence optical observations with the Zwicky Transient Facility, with its unparalleled large field of view, led to the detection of a multiply imaged type Ia supernova, SN Zwicky, also known as SN 2022qmx. Magnified nearly 25-fold, the system was found thanks to the standard candle nature of type Ia supernovae. High-spatial-resolution imaging with the Keck telescope resolved four images of the supernova with very small angular separation, corresponding to an Einstein radius of only θE = 0.167″ and almost identical arrival times. The small θE and faintness of the lensing galaxy are very unusual, highlighting the importance of supernovae to fully characterize the properties of galaxy-scale gravitational lenses, including the impact of galaxy substructures.
  •  
8.
  • Hammerstein, Erica, et al. (författare)
  • The Final Season Reimagined : 30 Tidal Disruption Events from the ZTF-I Survey
  • 2023
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 942:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Tidal disruption events (TDEs) offer a unique way to study dormant black holes. While the number of observed TDEs has grown thanks to the emergence of wide-field surveys in the past few decades, questions regarding the nature of the observed optical, UV, and X-ray emission remain. We present a uniformly selected sample of 30 spectroscopically classified TDEs from the Zwicky Transient Facility Phase I survey operations with follow-up Swift UV and X-ray observations. Through our investigation into correlations between light-curve properties, we recover a shallow positive correlation between the peak bolometric luminosity and decay timescales. We introduce a new spectroscopic class of TDE, TDE-featureless, which are characterized by featureless optical spectra. The new TDE-featureless class shows larger peak bolometric luminosities, peak blackbody temperatures, and peak blackbody radii. We examine the differences between the X-ray bright and X-ray faint populations of TDEs in this sample, finding that X-ray bright TDEs show higher peak blackbody luminosities than the X-ray faint subsample. This sample of optically selected TDEs is the largest sample of TDEs from a single survey yet, and the systematic discovery, classification, and follow-up of this sample allows for robust characterization of TDE properties, an important stepping stone looking forward toward the Rubin era.
  •  
9.
  • Ho, Anna Y. Q., et al. (författare)
  • A Search for Extragalactic Fast Blue Optical Transients in ZTF and the Rate of AT2018cow-like Transients
  • 2023
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 949:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a search for extragalactic fast blue optical transients (FBOTs) during Phase I of the Zwicky Transient Facility (ZTF). We identify 38 candidates with durations above half-maximum light 1 day < t (1/2) < 12 days, of which 28 have blue (g - r less than or similar to -0.2 mag) colors at peak light. Of the 38 transients (28 FBOTs), 19 (13) can be spectroscopically classified as core-collapse supernovae (SNe): 11 (8) H- or He-rich (Type II/IIb/Ib) SNe, 6 (4) interacting (Type IIn/Ibn) SNe, and 2 (1) H&He-poor (Type Ic/Ic-BL) SNe. Two FBOTs (published previously) had predominantly featureless spectra and luminous radio emission: AT2018lug (The Koala) and AT2020xnd (The Camel). Seven (five) did not have a definitive classification: AT 2020bdh showed tentative broad H alpha in emission, and AT 2020bot showed unidentified broad features and was 10 kpc offset from the center of an early-type galaxy. Ten (eight) have no spectroscopic observations or redshift measurements. We present multiwavelength (radio, millimeter, and/or X-ray) observations for five FBOTs (three Type Ibn, one Type IIn/Ibn, one Type IIb). Additionally, we search radio-survey (VLA and ASKAP) data to set limits on the presence of radio emission for 24 of the transients. All X-ray and radio observations resulted in nondetections; we rule out AT2018cow-like X-ray and radio behavior for five FBOTs and more luminous emission (such as that seen in the Camel) for four additional FBOTs. We conclude that exotic transients similar to AT2018cow, the Koala, and the Camel represent a rare subset of FBOTs and use ZTF's SN classification experiments to measure the rate to be at most 0.1% of the local core-collapse SN rate.
  •  
10.
  • Ho, Anna Y. Q., et al. (författare)
  • The Broad-lined Ic Supernova ZTF18aaqjovh (SN 2018bvw) : An Optically Discovered Engine-driven Supernova Candidate with Luminous Radio Emission
  • 2020
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 893:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present ZTF18aaqjovh (SN 2018bvw), a high-velocity (broad-lined) stripped-envelope (Type Ic) supernova (Ic-BL SN) discovered in the Zwicky Transient Facility one-day cadence survey. ZTF18aaqjovh shares a number of features in common with engine-driven explosions: the photospheric velocity and the shape of the optical light curve are very similar to those of the Type.Ic-BL SN 1998bw, which was associated with a low-luminosity gamma-ray burst (LLGRB) and had relativistic ejecta. However, the radio luminosity of ZTF18aaqjovh is almost two orders of magnitude fainter than that of SN 1998bw at the same velocity phase, and the shock velocity is at most mildly relativistic (v.=.0.06-0.4c). A search of high-energy catalogs reveals no compelling gamma-ray burst (GRB) counterpart to ZTF18aaqjovh, and the limit on the prompt GRB luminosity of g >> ' L 1.6 10 erg s, iso 48 1 excludes a classical GRB but not an LLGRB. Altogether, ZTF18aaqjovh represents another transition event between engine-driven SNe associated with GRBs and ordinary Ic-BL SNe.
  •  
11.
  • Irani, Ido, et al. (författare)
  • SN 2022oqm-A Ca-rich Explosion of a Compact Progenitor Embedded in C/O Circumstellar Material
  • 2024
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 962:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the discovery and analysis of SN 2022oqm, a Type Ic supernova (SN) detected <1 day after the explosion. The SN rises to a blue and short-lived (2 days) initial peak. Early-time spectral observations of SN 2022oqm show a hot (40,000 K) continuum with high ionization C and O absorption features at velocities of 4000 km s−1, while its photospheric radius expands at 20,000 km s−1, indicating a pre-existing distribution of expanding C/O material. After ∼2.5 days, both the spectrum and light curves evolve into those of a typical SN Ic, with line velocities of ∼10,000 km s−1, in agreement with the evolution of the photospheric radius. The optical light curves reach a second peak at t ≈ 15 days. By t = 60 days, the spectrum of SN 2022oqm becomes nearly nebular, displaying strong Ca ii and [Ca ii] emission with no detectable [O i], marking this event as Ca-rich. The early behavior can be explained by 10−3M⊙ of optically thin circumstellar material (CSM) surrounding either (1) a massive compact progenitor such as a Wolf–Rayet star, (2) a massive stripped progenitor with an extended envelope, or (3) a binary system with a white dwarf. We propose that the early-time light curve is powered by both the interaction of the ejecta with the optically thin CSM and shock cooling (in the massive star scenario). The observations can be explained by CSM that is optically thick to X-ray photons, is optically thick in the lines as seen in the spectra, and is optically thin to visible-light continuum photons that come either from downscattered X-rays or from the shock-heated ejecta. Calculations show that this scenario is self-consistent.
  •  
12.
  • Karambelkar, Viraj R., et al. (författare)
  • Faintest of Them All : ZTF 21aaoryiz/SN 2021fcg-Discovery of an Extremely Low Luminosity Type Iax Supernova
  • 2021
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8205 .- 2041-8213. ; 921:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the discovery of ZTF 21aaoryiz/SN 2021fcg-an extremely low luminosity Type Tax supernova. SN 2021fcg was discovered by the Zwicky Transient Facility in the star-forming galaxy IC0512 at a distance of approximate to 27 Mpc. It reached a peak absolute magnitude of M-r = -12.66 +/- 0.20 mag, making it the least luminous thermonuclear supernova discovered to date. The E(B - V) contribution from the underlying host galaxy is unconstrained. However, even if it were as large as 0.5 mag, the peak absolute magnitude would be M-r = -13.78 +/- 0.20 mag-still consistent with being the lowest-luminosity SN. Optical spectra of SN 2021fcg taken at 37 and 65 days post-maximum show strong [Ca II], Ca II, and Na I D emission and several weak [Fe II] emission lines. The [Ca II] emission in the two spectra has extremely low velocities of approximate to 1300 and 1000 km s(-1), respectively. The spectra very closely resemble those of the very low luminosity Type Tax supernovae SN 2008 ha, SN 2010ae, and SN 2019gsc taken at similar phases. The peak bolometric luminosity of SN 2021fcg is approximate to 2.5(-0.3)(+1.5) x 10(40) erg s(-1), which is a factor of 3 lower than that for SN 2008 ha. The bolometric lightcurve of SN 2021fcg is consistent with a very low ejected nickel mass (M-Ni approximate to 0.8(-0.5)(+0.4) x 10(-3) M-circle dot). The low luminosity and nickel mass of SN 2021fcg pose a challenge to the picture that low-luminosity SNe Tax originate from deflagrations of near-M-ch hybrid carbon-oxygen-neon white dwarfs. Instead, the merger of a carbon-oxygen and oxygen-neon white dwarf is a promising model to explain SN 2021fcg.
  •  
13.
  • Karambelkar, Viraj R., et al. (författare)
  • Volumetric Rates of Luminous Red Novae and Intermediate-luminosity Red Transients with the Zwicky Transient Facility
  • 2023
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 948:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Luminous red novae (LRNe) are transients characterized by low luminosities and expansion velocities, and they are associated with mergers or common-envelope ejections in stellar binaries. Intermediate-luminosity red transients (ILRTs) are an observationally similar class with unknown origins, but they are generally believed to be either electron-capture supernovae in super-asymptotic giant branch stars or outbursts in dusty luminous blue variables (LBVs). In this paper, we present a systematic sample of eight LRNe and eight ILRTs detected as part of the Census of the Local Universe (CLU) experiment on the Zwicky Transient Facility (ZTF). The CLU experiment spectroscopically classifies ZTF transients associated with nearby (<150 Mpc) galaxies, achieving 80% completeness for m ( r ) < 20 mag. Using the ZTF-CLU sample, we derive the first systematic LRNe volumetric rate of 7.8-3.7+6.5x10-5 M ( r ) <= -11 mag. We find that, in this luminosity range, the LRN rate scales as dN/dL proportional to L-2.5 +/- 0.3 L (-1.4 +/- 0.3) for lower-luminosity LRNe (M ( V ) >= -10 mag). The steeper power law for LRNe at high luminosities is consistent with the massive merger rates predicted by binary population synthesis models. We find that the rates of the brightest LRNe (M ( r ) <= -13 mag) are consistent with a significant fraction of them being progenitors of double compact objects that merge within a Hubble time. For ILRTs, we derive a volumetric rate of 2.6-1.4+1.8x10-6 M ( r ) <= -13.5 mag, which scales as dN/dL proportional to L-2.5 +/- 0.5
  •  
14.
  • Kasliwal, Mansi M., et al. (författare)
  • Kilonova Luminosity Function Constraints Based on Zwicky Transient Facility Searches for 13 Neutron Star Merger Triggers during O3
  • 2020
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 905:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a systematic search for optical counterparts to 13 gravitational wave (GW) triggers involving at least one neutron star during LIGO/Virgo's third observing run (O3). We searched binary neutron star (BNS) and neutron star black hole (NSBH) merger localizations with the Zwicky Transient Facility (ZTF) and undertook follow-up with the Global Relay of Observatories Watching Transients Happen (GROWTH) collaboration. The GW triggers had a median localization area of 4480 deg(2), a median distance of 267 Mpc, and false-alarm rates ranging from 1.5 to 10(-25) yr(-1). The ZTF coverage in the g and r bands had a median enclosed probability of 39%, median depth of 20.8 mag, and median time lag between merger and the start of observations of 1.5 hr. The O3 follow-up by the GROWTH team comprised 340 UltraViolet/Optical/InfraRed (UVOIR) photometric points, 64 OIR spectra, and three radio images using 17 different telescopes. We find no promising kilonovae (radioactivity-powered counterparts), and we show how to convert the upper limits to constrain the underlying kilonova luminosity function. Initially, we assume that all GW triggers are bona fide astrophysical events regardless of false-alarm rate and that kilonovae accompanying BNS and NSBH mergers are drawn from a common population; later, we relax these assumptions. Assuming that all kilonovae are at least as luminous as the discovery magnitude of GW170817 (-16.1 mag), we calculate that our joint probability of detecting zero kilonovae is only 4.2%. If we assume that all kilonovae are brighter than -16.6 mag (the extrapolated peak magnitude of GW170817) and fade at a rate of 1 mag day(-1) (similar to GW170817), the joint probability of zero detections is 7%. If we separate the NSBH and BNS populations based on the online classifications, the joint probability of zero detections, assuming all kilonovae are brighter than -16.6 mag, is 9.7% for NSBH and 7.9% for BNS mergers. Moreover, no more than <57% (<89%) of putative kilonovae could be brighter than -16.6 mag assuming flat evolution (fading by 1 mag day(-1)) at the 90% confidence level. If we further take into account the online terrestrial probability for each GW trigger, we find that no more than <68% of putative kilonovae could be brighter than -16.6 mag. Comparing to model grids, we find that some kilonovae must have M-ej M, X-lan > 10(-4), or > 30 degrees to be consistent with our limits. We look forward to searches in the fourth GW observing run; even 17 neutron star mergers with only 50% coverage to a depth of -16 mag would constrain the maximum fraction of bright kilonovae to <25%.
  •  
15.
  • Kool, Erik C., et al. (författare)
  • A radio-detected type Ia supernova with helium-rich circumstellar material
  • 2023
  • Ingår i: Nature. - 0028-0836 .- 1476-4687. ; 617:7961, s. 477-482
  • Tidskriftsartikel (refereegranskat)abstract
    • Type Ia supernovae (SNe Ia) are thermonuclear explosions of degenerate white dwarf stars destabilized by mass accretion from a companion star1, but the nature of their progenitors remains poorly understood. A way to discriminate between progenitor systems is through radio observations; a non-degenerate companion star is expected to lose material through winds2 or binary interaction3 before explosion, and the supernova ejecta crashing into this nearby circumstellar material should result in radio synchrotron emission. However, despite extensive efforts, no type Ia supernova (SN Ia) has ever been detected at radio wavelengths, which suggests a clean environment and a companion star that is itself a degenerate white dwarf star4,5. Here we report on the study of SN 2020eyj, a SN Ia showing helium-rich circumstellar material, as demonstrated by its spectral features, infrared emission and, for the first time in a SN Ia to our knowledge, a radio counterpart. On the basis of our modelling, we conclude that the circumstellar material probably originates from a single-degenerate binary system in which a white dwarf accretes material from a helium donor star, an often proposed formation channel for SNe Ia (refs. 6,7). We describe how comprehensive radio follow-up of SN 2020eyj-like SNe Ia can improve the constraints on their progenitor systems.
  •  
16.
  • Liu, Chang, et al. (författare)
  • SN 2020jgb : A Peculiar Type Ia Supernova Triggered by a Helium-shell Detonation in a Star-forming Galaxy
  • 2023
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 946:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The detonation of a thin (less than or similar to 0.03 M (circle dot)) helium shell (He-shell) atop a similar to 1 M (circle dot) white dwarf (WD) is a promising mechanism to explain normal Type Ia supernovae (SNe Ia), while thicker He-shells and less massive WDs may explain some recently observed peculiar SNe Ia. We present observations of SN 2020jgb, a peculiar SN Ia discovered by the Zwicky Transient Facility (ZTF). Near maximum brightness, SN 2020jgb is slightly subluminous (ZTF g-band absolute magnitude -18.7 mag less than or similar to M ( g ) less than or similar to -18.2 mag depending on the amount of host-galaxy extinction) and shows an unusually red color (0.2 mag less than or similar to g (ZTF) - r (ZTF) less than or similar to 0.4 mag) due to strong line-blanketing blueward of similar to 5000 angstrom. These properties resemble those of SN 2018byg, a peculiar SN Ia consistent with an He-shell double detonation (DDet) SN. Using detailed radiative transfer models, we show that the optical spectroscopic and photometric evolution of SN 2020jgb is broadly consistent with a similar to 0.95-1.00 M (circle dot) (C/O core + He-shell) progenitor ignited by a greater than or similar to 0.1 M (circle dot) He-shell. However, one-dimensional radiative transfer models without non-local-thermodynamic-equilibrium treatment cannot accurately characterize the line-blanketing features, making the actual shell mass uncertain. We detect a prominent absorption feature at similar to 1 mu m in the near-infrared (NIR) spectrum of SN 2020jgb, which might originate from unburnt helium in the outermost ejecta. While the sample size is limited, we find similar 1 mu m features in all the peculiar He-shell DDet candidates with NIR spectra obtained to date. SN 2020jgb is also the first peculiar He-shell DDet SN discovered in a star-forming dwarf galaxy, indisputably showing that He-shell DDet SNe occur in both star-forming and passive galaxies, consistent with the normal SN Ia population.
  •  
17.
  • Maguire, Kate, et al. (författare)
  • SN 2020udy : an SN Iax with strict limits on interaction consistent with a helium-star companion
  • 2023
  • Ingår i: Monthly notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 525:1, s. 1210-1228
  • Tidskriftsartikel (refereegranskat)abstract
    • Early observations of transient explosions can provide vital clues to their progenitor origins. In this paper, we present the nearby Type Iax (02cx-like) supernova (SN), SN 2020udy, that was discovered within hours (∼7 h) of estimated first light. An extensive data set of ultra-violet, optical, and near-infrared observations was obtained, covering out to ∼150 d after explosion. SN 2020udy peaked at −17.86 ± 0.43 mag in the r band and evolved similarly to other ‘luminous’ SNe Iax, such as SNe 2005hk and 2012Z. Its well-sampled early light curve allows strict limits on companion interaction to be placed. Main-sequence companion stars with masses of 2 and 6 M⊙ are ruled out at all viewing angles, while a helium-star companion is allowed from a narrow range of angles (140–180° away from the companion). The spectra and light curves of SN 2020udy are in good agreement with those of the ‘N5def’ deflagration model of a near Chandrasekhar-mass carbon–oxygen white dwarf. However, as has been seen in previous studies of similar luminosity events, SN 2020udy evolves slower than the model. Broad-band linear polarization measurements taken at and after peak are consistent with no polarization, in agreement with the predictions of the companion-star configuration from the early light-curve measurements. The host galaxy environment is low metallicity and is consistent with a young stellar population. Overall, we find the most plausible explosion scenario to be the incomplete disruption of a CO white dwarf near the Chandrasekhar-mass limit, with a helium-star companion.
  •  
18.
  • Perley, Daniel A., et al. (författare)
  • Real-time discovery of AT2020xnd : a fast, luminous ultraviolet transient with minimal radioactive ejecta
  • 2021
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 508:4, s. 5138-5147
  • Tidskriftsartikel (refereegranskat)abstract
    • The many unusual properties of the enigmatic AT2018cow suggested that at least some subset of the empirical class of fast blue optical transients (FBOTs) represents a genuinely new astrophysical phenomenon. Unfortunately, the intrinsic rarity and fleeting nature of these events have made it difficult to identify additional examples early enough to acquire the observations necessary to constrain theoretical models. We present here the Zwicky Transient Facility discovery of AT2020xnd (ZTF20acigmel, the 'Camel') at z = 0.243, the first unambiguous AT2018cow analogue to be found and confirmed in real time. AT2018cow and AT2020xnd share all key observational properties: a fast optical rise, sustained high photospheric temperature, absence of a second peak attributable to ejection of a radioactively heated stellar envelope, extremely luminous radio, millimetre, and X-ray emission, and a dwarf-galaxy host. This supports the argument that AT2018cow-like events represent a distinct phenomenon from slower-evolving radio-quiet supernovae, likely requiring a different progenitor or a different central engine. The sample properties of the four known members of this class to date disfavour tidal disruption models but are consistent with the alternative model of an accretion powered jet following the direct collapse of a massive star to a black hole. Contextual filtering of alert streams combined with rapid photometric verification using multiband imaging provides an efficient way to identify future members of this class, even at high redshift.
  •  
19.
  • Perley, Daniel A., et al. (författare)
  • The Zwicky Transient Facility Bright Transient Survey. II. A Public Statistical Sample for Exploring Supernova Demographics
  • 2020
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 904:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a public catalog of transients from the Zwicky Transient Facility (ZTF) Bright Transient Survey, a magnitude-limited (m g or r filter) survey for extragalactic transients in the ZTF public stream. We introduce cuts on survey coverage, sky visibility around peak light, and other properties unconnected to the nature of the transient, and show that the resulting statistical sample is spectroscopically 97% complete at <18 mag, 93% complete at <18.5 mag, and 75% complete at <19 mag. We summarize the fundamental properties of this population, identifying distinct duration-luminosity correlations in a variety of supernova (SN) classes and associating the majority of fast optical transients with well-established spectroscopic SN types (primarily SN Ibn and II/IIb). We measure the Type Ia SN and core-collapse (CC) SN rates and luminosity functions, which show good consistency with recent work. About 7% of CC SNe explode in very low-luminosity galaxies (M-i > -16 mag), 10% in red-sequence galaxies, and 1% in massive ellipticals. We find no significant difference in the luminosity or color distributions between the host galaxies of SNe Type II and SNe Type Ib/c, suggesting that line-driven wind stripping does not play a major role in the loss of the hydrogen envelope from their progenitors. Future large-scale classification efforts with ZTF and other wide-area surveys will provide high-quality measurements of the rates, properties, and environments of all known types of optical transients and limits on the existence of theoretically predicted but as yet unobserved explosions.
  •  
20.
  • Sharma, Yashvi, et al. (författare)
  • A Systematic Study of Ia-CSM Supernovae from the ZTF Bright Transient Survey
  • 2023
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 948:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Among the supernovae (SNe) that show strong interaction with a circumstellar medium (CSM), there is a rare subclass of Type Ia supernovae, SNe Ia-CSM, which show strong narrow hydrogen emission lines much like SNe IIn but on top of a diluted Type Ia spectrum. The only previous systematic study of this class identified 16 SNe Ia-CSM, eight historic and eight from the Palomar Transient Factory (PTF). Now using the successor survey to PTF, the Zwicky Transient Facility (ZTF), we have classified 12 additional SNe Ia-CSM through the systematic Bright Transient Survey (BTS). Consistent with previous studies, we find these SNe to have slowly evolving optical light curves with peak absolute magnitudes between -19.1 and -21, spectra having weak H ss and large Balmer ldecrements of similar to 7. Out of the 10 SNe from our sample observed by NEOWISE, nine have 3 sigma detections, with some SNe showing a reduction in the red wing of Ha, indicative of newly formed dust. We do not find our SN Ia-CSM sample to have a significantly different distribution of equivalent widths of He I.5876 than SNe IIn as observed in Silverman et al. The hosts tend to be late-type galaxies with recent star formation. We derive a rate estimate of 29+(27)(21) Gpc(-3) yr(-1) for SNe Ia-CSM, which is similar to 0.02%-0.2% of the SN Ia rate. We also identify six ambiguous SNe IIn/Ia-CSM in the BTS sample and including them gives an upper limit rate of 0.07%-0.8%. This work nearly doubles the sample of well-studied Ia-CSM objects in Silverman et al., increasing the total number to 28.
  •  
21.
  • Sharma, Yashvi, et al. (författare)
  • Dramatic Rebrightening of the Type-changing Stripped-envelope Supernova SN 2023aew
  • 2024
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 966:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Multipeaked supernovae with precursors, dramatic light-curve rebrightenings, and spectral transformation are rare, but are being discovered in increasing numbers by modern night-sky transient surveys like the Zwicky Transient Facility. Here, we present the observations and analysis of SN 2023aew, which showed a dramatic increase in brightness following an initial luminous (−17.4 mag) and long (∼100 days) unusual first peak (possibly precursor). SN 2023aew was classified as a Type IIb supernova during the first peak but changed its type to resemble a stripped-envelope supernova (SESN) after the marked rebrightening. We present comparisons of SN 2023aew's spectral evolution with SESN subtypes and argue that it is similar to SNe Ibc during its main peak. P-Cygni Balmer lines are present during the first peak, but vanish during the second peak's photospheric phase, before Hα resurfaces again during the nebular phase. The nebular lines ([O i], [Ca ii], Mg i], Hα) exhibit a double-peaked structure that hints toward a clumpy or nonspherical ejecta. We analyze the second peak in the light curve of SN 2023aew and find it to be broader than that of normal SESNe as well as requiring a very high 56Ni mass to power the peak luminosity. We discuss the possible origins of SN 2023aew including an eruption scenario where a part of the envelope is ejected during the first peak and also powers the second peak of the light curve through interaction of the SN with the circumstellar medium.
  •  
22.
  • Sit, Tawny, et al. (författare)
  • Long-rising Type II Supernovae in the Zwicky Transient Facility Census of the Local Universe
  • 2023
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 959:2
  • Tidskriftsartikel (refereegranskat)abstract
    • SN 1987A was an unusual hydrogen-rich core-collapse supernova originating from a blue supergiant star. Similar blue supergiant explosions remain a small family of events, and are broadly characterized by their long rises to peak. The Zwicky Transient Facility Census of the Local Universe (CLU) experiment aims to construct a spectroscopically complete sample of transients occurring in galaxies from the CLU galaxy catalog. We identify 13 long-rising (>40 days) Type II supernovae from the volume-limited CLU experiment during a 3.5 yr period from 2018 June to 2021 December, approximately doubling the previously known number of these events. We present photometric and spectroscopic data of these 13 events, finding peak r-band absolute magnitudes ranging from −15.6 to −17.5 mag and the tentative detection of Ba ii lines in nine events. Using our CLU sample of events, we derive a long-rising Type II supernova rate of Mpc−3 yr−1, ≈1.4% of the total core-collapse supernova rate. This is the first volumetric rate of these events estimated from a large, systematic, volume-limited experiment.
  •  
23.
  • Stein, Robert, et al. (författare)
  • Neutrino follow-up with the Zwicky transient facility : results from the first 24 campaigns
  • 2023
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 521:4, s. 5046-5063
  • Tidskriftsartikel (refereegranskat)abstract
    • The Zwicky Transient Facility (ZTF) performs a systematic neutrino follow-up programme, searching for optical counterparts to high-energy neutrinos with dedicated Target-of-Opportunity (ToO) observations. Since first light in March 2018, ZTF has taken prompt observations for 24 high-quality neutrino alerts from the IceCube Neutrino Observatory, with a median latency of 12.2 h from initial neutrino detection. From two of these campaigns, we have already reported tidal disruption event (TDE) AT 2019dsg and likely TDE AT 2019fdr as probable counterparts, suggesting that TDEs contribute >7.8 per cent of the astrophysical neutrino flux. We here present the full results of our programme through to December 2021. No additional candidate neutrino sources were identified by our programme, allowing us to place the first constraints on the underlying optical luminosity function of astrophysical neutrino sources. Transients with optical absolutes magnitudes brighter that -21 can contribute no more than 87 per cent of the total, while transients brighter than -22 can contribute no more than 58 per cent of the total, neglecting the effect of extinction and assuming they follow the star formation rate. These are the first observational constraints on the neutrino emission of bright populations such as superluminous supernovae. None of the neutrinos were coincident with bright optical AGN flares comparable to that observed for TXS 0506+056/IC170922A, with such optical blazar flares producing no more than 26 per cent of the total neutrino flux. We highlight the outlook for electromagnetic neutrino follow-up programmes, including the expected potential for the Rubin Observatory.
  •  
24.
  • Strotjohann, Nora L., et al. (författare)
  • Bright, Months-long Stellar Outbursts Announce the Explosion of Interaction-powered Supernovae
  • 2021
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 907:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Interaction-powered supernovae (SNe) explode within an optically thick circumstellar medium (CSM) that could be ejected during eruptive events. To identify and characterize such pre-explosion outbursts, we produce forced-photometry light curves for 196 interacting SNe, mostly of Type IIn, detected by the Zwicky Transient Facility between early 2018 and 2020 June. Extensive tests demonstrate that we only expect a few false detections among the 70,000 analyzed pre-explosion images after applying quality cuts and bias corrections. We detect precursor eruptions prior to 18 Type IIn SNe and prior to the Type Ibn SN 2019uo. Precursors become brighter and more frequent in the last months before the SN and month-long outbursts brighter than magnitude -13 occur prior to 25% (5-69%, 95% confidence range) of all Type IIn SNe within the final three months before the explosion. With radiative energies of up to 10(49) erg, precursors could eject similar to 1 M of material. Nevertheless, SNe with detected precursors are not significantly more luminous than other SNe IIn, and the characteristic narrow hydrogen lines in their spectra typically originate from earlier, undetected mass-loss events. The long precursor durations require ongoing energy injection, and they could, for example, be powered by interaction or by a continuum-driven wind. Instabilities during the neon- and oxygen-burning phases are predicted to launch precursors in the final years to months before the explosion; however, the brightest precursor is 100 times more energetic than anticipated.
  •  
25.
  • van Velzen, Sjoert, et al. (författare)
  • Establishing accretion flares from supermassive black holes as a source of high-energy neutrinos
  • 2024
  • Ingår i: Monthly notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 529:3, s. 2559-2576
  • Tidskriftsartikel (refereegranskat)abstract
    • The origin of cosmic high-energy neutrinos remains largely unexplained. For high-energy neutrino alerts from IceCube, a coincidence with time-variable emission has been seen for three different types of accreting black holes: (1) a gamma-ray flare from a blazar (TXS 0506+056), (2) an optical transient following a stellar tidal disruption event (TDE; AT2019dsg), and (3) an optical outburst from an active galactic nucleus (AGN; AT2019fdr). For the latter two sources, infrared follow-up observations revealed a powerful reverberation signal due to dust heated by the flare. This discovery motivates a systematic study of neutrino emission from all supermassive black hole with similar dust echoes. Because dust reprocessing is agnostic to the origin of the outburst, our work unifies TDEs and high-amplitude flares from AGN into a population that we dub accretion flares. Besides the two known events, we uncover a third flare that is coincident with a PeV-scale neutrino (AT2019aalc). Based solely on the optical and infrared properties, we estimate a significance of 3.6σ for this association of high-energy neutrinos with three accretion flares. Our results imply that at least ∼10 per cent of the IceCube high-energy neutrino alerts could be due to accretion flares. This is surprising because the sum of the fluence of these flares is at least three orders of magnitude lower compared to the total fluence of normal AGN. It thus appears that the efficiency of high-energy neutrino production in accretion flares is increased compared to non-flaring AGN. We speculate that this can be explained by the high Eddington ratio of the flares.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 28

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy