SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sheu W.) "

Sökning: WFRF:(Sheu W.)

  • Resultat 1-25 av 26
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ramdas, S., et al. (författare)
  • A multi-layer functional genomic analysis to understand noncoding genetic variation in lipids
  • 2022
  • Ingår i: American Journal of Human Genetics. - : Elsevier BV. - 0002-9297 .- 1537-6605. ; 109:8, s. 1366-1387
  • Tidskriftsartikel (refereegranskat)abstract
    • A major challenge of genome-wide association studies (GWASs) is to translate phenotypic associations into biological insights. Here, we integrate a large GWAS on blood lipids involving 1.6 million individuals from five ancestries with a wide array of functional genomic datasets to discover regulatory mechanisms underlying lipid associations. We first prioritize lipid-associated genes with expression quantitative trait locus (eQTL) colocalizations and then add chromatin interaction data to narrow the search for functional genes. Polygenic enrichment analysis across 697 annotations from a host of tissues and cell types confirms the central role of the liver in lipid levels and highlights the selective enrichment of adipose-specific chromatin marks in high-density lipoprotein cholesterol and triglycerides. Overlapping transcription factor (TF) binding sites with lipid-associated loci identifies TFs relevant in lipid biology. In addition, we present an integrative framework to prioritize causal variants at GWAS loci, producing a comprehensive list of candidate causal genes and variants with multiple layers of functional evidence. We highlight two of the prioritized genes, CREBRF and RRBP1, which show convergent evidence across functional datasets supporting their roles in lipid biology.
  •  
2.
  •  
3.
  • 2021
  • swepub:Mat__t
  •  
4.
  • 2021
  • swepub:Mat__t
  •  
5.
  • Glasbey, JC, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
6.
  • Pulit, S. L., et al. (författare)
  • Atrial fibrillation genetic risk differentiates cardioembolic stroke from other stroke subtypes
  • 2018
  • Ingår i: Neurology-Genetics. - : Ovid Technologies (Wolters Kluwer Health). - 2376-7839. ; 4:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective We sought to assess whether genetic risk factors for atrial fibrillation (AF) can explain cardioembolic stroke risk. We evaluated genetic correlations between a previous genetic study of AF and AF in the presence of cardioembolic stroke using genome-wide genotypes from the Stroke Genetics Network (N = 3,190 AF cases, 3,000 cardioembolic stroke cases, and 28,026 referents). We tested whether a previously validated AF polygenic risk score (PRS) associated with cardioembolic and other stroke subtypes after accounting for AF clinical risk factors. We observed a strong correlation between previously reported genetic risk for AF, AF in the presence of stroke, and cardioembolic stroke (Pearson r = 0.77 and 0.76, respectively, across SNPs with p < 4.4 x 10(-4) in the previous AF meta-analysis). An AF PRS, adjusted for clinical AF risk factors, was associated with cardioembolic stroke (odds ratio [OR] per SD = 1.40, p = 1.45 x 10(-48)), explaining similar to 20% of the heritable component of cardioembolic stroke risk. The AF PRS was also associated with stroke of undetermined cause (OR per SD = 1.07,p = 0.004), but no other primary stroke subtypes (all p > 0.1). Genetic risk of AF is associated with cardioembolic stroke, independent of clinical risk factors. Studies are warranted to determine whether AF genetic risk can serve as a biomarker for strokes caused by AF.
  •  
7.
  • Turcot, Valerie, et al. (författare)
  • Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity
  • 2018
  • Ingår i: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 50:1, s. 26-41
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies (GWAS) have identified >250 loci for body mass index (BMI), implicating pathways related to neuronal biology. Most GWAS loci represent clusters of common, noncoding variants from which pinpointing causal genes remains challenging. Here we combined data from 718,734 individuals to discover rare and low-frequency (minor allele frequency (MAF) < 5%) coding variants associated with BMI. We identified 14 coding variants in 13 genes, of which 8 variants were in genes (ZBTB7B, ACHE, RAPGEF3, RAB21, ZFHX3, ENTPD6, ZFR2 and ZNF169) newly implicated in human obesity, 2 variants were in genes (MC4R and KSR2) previously observed to be mutated in extreme obesity and 2 variants were in GIPR. The effect sizes of rare variants are similar to 10 times larger than those of common variants, with the largest effect observed in carriers of an MC4R mutation introducing a stop codon (p.Tyr35Ter, MAF = 0.01%), who weighed similar to 7 kg more than non-carriers. Pathway analyses based on the variants associated with BMI confirm enrichment of neuronal genes and provide new evidence for adipocyte and energy expenditure biology, widening the potential of genetically supported therapeutic targets in obesity.
  •  
8.
  • Clark, DW, et al. (författare)
  • Associations of autozygosity with a broad range of human phenotypes
  • 2019
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 10:1, s. 4957-
  • Tidskriftsartikel (refereegranskat)abstract
    • In many species, the offspring of related parents suffer reduced reproductive success, a phenomenon known as inbreeding depression. In humans, the importance of this effect has remained unclear, partly because reproduction between close relatives is both rare and frequently associated with confounding social factors. Here, using genomic inbreeding coefficients (FROH) for >1.4 million individuals, we show that FROH is significantly associated (p < 0.0005) with apparently deleterious changes in 32 out of 100 traits analysed. These changes are associated with runs of homozygosity (ROH), but not with common variant homozygosity, suggesting that genetic variants associated with inbreeding depression are predominantly rare. The effect on fertility is striking: FROH equivalent to the offspring of first cousins is associated with a 55% decrease [95% CI 44–66%] in the odds of having children. Finally, the effects of FROH are confirmed within full-sibling pairs, where the variation in FROH is independent of all environmental confounding.
  •  
9.
  • Tobias, Deirdre K, et al. (författare)
  • Second international consensus report on gaps and opportunities for the clinical translation of precision diabetes medicine
  • 2023
  • Ingår i: Nature Medicine. - 1546-170X. ; 29:10, s. 2438-2457
  • Forskningsöversikt (refereegranskat)abstract
    • Precision medicine is part of the logical evolution of contemporary evidence-based medicine that seeks to reduce errors and optimize outcomes when making medical decisions and health recommendations. Diabetes affects hundreds of millions of people worldwide, many of whom will develop life-threatening complications and die prematurely. Precision medicine can potentially address this enormous problem by accounting for heterogeneity in the etiology, clinical presentation and pathogenesis of common forms of diabetes and risks of complications. This second international consensus report on precision diabetes medicine summarizes the findings from a systematic evidence review across the key pillars of precision medicine (prevention, diagnosis, treatment, prognosis) in four recognized forms of diabetes (monogenic, gestational, type 1, type 2). These reviews address key questions about the translation of precision medicine research into practice. Although not complete, owing to the vast literature on this topic, they revealed opportunities for the immediate or near-term clinical implementation of precision diabetes medicine; furthermore, we expose important gaps in knowledge, focusing on the need to obtain new clinically relevant evidence. Gaps include the need for common standards for clinical readiness, including consideration of cost-effectiveness, health equity, predictive accuracy, liability and accessibility. Key milestones are outlined for the broad clinical implementation of precision diabetes medicine.
  •  
10.
  •  
11.
  • Marini, S., et al. (författare)
  • Association of Apolipoprotein E With Intracerebral Hemorrhage Risk by Race/Ethnicity A Meta-analysis
  • 2019
  • Ingår i: Jama Neurology. - : American Medical Association (AMA). - 2168-6149 .- 2168-6157. ; 76:4, s. 480-491
  • Tidskriftsartikel (refereegranskat)abstract
    • IMPORTANCE Genetic studies of intracerebral hemorrhage (ICH) have focused mainly on white participants, but genetic risk may vary or could be concealed by differing nongenetic coexposures in nonwhite populations. Transethnic analysis of risk may clarify the role of genetics in ICH risk across populations. OBJECTIVE To evaluate associations between established differences in ICH risk by race/ethnicity and the variability in the risks of apolipoprotein E (APOE) epsilon 4 alleles, the most potent genetic risk factor for ICH. DESIGN, SETTING, AND PARTICIPANTS This case-control study of primary ICH meta-analyzed the association of APOE allele status on ICH risk, applying a 2-stage clustering approach based on race/ethnicity and stratified by a contributing study. A propensity score analysis was used to model the association of APOE with the burden of hypertension across race/ethnic groups. Primary ICH cases and controls were collected from 3 hospital- and population-based studies in the United States and 8 in European sites in the International Stroke Genetic Consortium. Participants were enrolled from January 1, 1999, to December 31, 2017. Participants with secondary causes of ICH were excluded from enrollment. Controls were regionally matched within each participating study. MAIN OUTCOMES AND MEASURES Clinical variables were systematically obtained from structured interviews within each site. APOE genotype was centrally determined for all studies. RESULTS In total, 13 124 participants (7153 [54.5%] male with a median [interquartile range] age of 66 [56-76] years) were included. In white participants, APOE epsilon 2 (odds ratio [OR], 1.49; 95% CI, 1.24-1.80; P < .001) and APOE epsilon 4 (OR, 1.51; 95% CI, 1.23-1.85; P < .001) were associated with lobar ICH risk; however, within self-identified Hispanic and black participants, no associations were found. After propensity score matching for hypertension burden, APOE epsilon 4 was associated with lobar ICH risk among Hispanic (OR, 1.14; 95% CI, 1.03-1.28; P = .01) but not in black (OR, 1.02; 95% CI, 0.98-1.07; P = .25) participants. APOE epsilon 2 and epsilon 4 did not show an association with nonlobar ICH risk in any race/ethnicity. CONCLUSIONS AND RELEVANCE APOE epsilon 4 and epsilon 2 alleles appear to affect lobar ICH risk variably by race/ethnicity, associations that are confirmed in white individuals but can be shown in Hispanic individuals only when the excess burden of hypertension is propensity score-matched; further studies are needed to explore the interactions between APOE alleles and environmental exposures that vary by race/ethnicity in representative populations at risk for ICH.
  •  
12.
  •  
13.
  • Sung, Yun Ju, et al. (författare)
  • A multi-ancestry genome-wide study incorporating gene-smoking interactions identifies multiple new loci for pulse pressure and mean arterial pressure
  • 2019
  • Ingår i: Human Molecular Genetics. - : Oxford University Press. - 0964-6906 .- 1460-2083. ; 28:15, s. 2615-2633
  • Tidskriftsartikel (refereegranskat)abstract
    • Elevated blood pressure (BP), a leading cause of global morbidity and mortality, is influenced by both genetic and lifestyle factors. Cigarette smoking is one such lifestyle factor. Across five ancestries, we performed a genome-wide gene–smoking interaction study of mean arterial pressure (MAP) and pulse pressure (PP) in 129 913 individuals in stage 1 and follow-up analysis in 480 178 additional individuals in stage 2. We report here 136 loci significantly associated with MAP and/or PP. Of these, 61 were previously published through main-effect analysis of BP traits, 37 were recently reported by us for systolic BP and/or diastolic BP through gene–smoking interaction analysis and 38 were newly identified (P < 5 × 10−8, false discovery rate < 0.05). We also identified nine new signals near known loci. Of the 136 loci, 8 showed significant interaction with smoking status. They include CSMD1 previously reported for insulin resistance and BP in the spontaneously hypertensive rats. Many of the 38 new loci show biologic plausibility for a role in BP regulation. SLC26A7 encodes a chloride/bicarbonate exchanger expressed in the renal outer medullary collecting duct. AVPR1A is widely expressed, including in vascular smooth muscle cells, kidney, myocardium and brain. FHAD1 is a long non-coding RNA overexpressed in heart failure. TMEM51 was associated with contractile function in cardiomyocytes. CASP9 plays a central role in cardiomyocyte apoptosis. Identified only in African ancestry were 30 novel loci. Our findings highlight the value of multi-ancestry investigations, particularly in studies of interaction with lifestyle factors, where genomic and lifestyle differences may contribute to novel findings.
  •  
14.
  • Surendran, Praveen, et al. (författare)
  • Discovery of rare variants associated with blood pressure regulation through meta-analysis of 1.3 million individuals
  • 2020
  • Ingår i: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 52:12, s. 1314-1332
  • Tidskriftsartikel (refereegranskat)abstract
    • Genetic studies of blood pressure (BP) to date have mainly analyzed common variants (minor allele frequency > 0.05). In a meta-analysis of up to similar to 1.3 million participants, we discovered 106 new BP-associated genomic regions and 87 rare (minor allele frequency <= 0.01) variant BP associations (P < 5 x 10(-8)), of which 32 were in new BP-associated loci and 55 were independent BP-associated single-nucleotide variants within known BP-associated regions. Average effects of rare variants (44% coding) were similar to 8 times larger than common variant effects and indicate potential candidate causal genes at new and known loci (for example, GATA5 and PLCB3). BP-associated variants (including rare and common) were enriched in regions of active chromatin in fetal tissues, potentially linking fetal development with BP regulation in later life. Multivariable Mendelian randomization suggested possible inverse effects of elevated systolic and diastolic BP on large artery stroke. Our study demonstrates the utility of rare-variant analyses for identifying candidate genes and the results highlight potential therapeutic targets.
  •  
15.
  • Wessel, Jennifer, et al. (författare)
  • Low-frequency and rare exome chip variants associate with fasting glucose and type 2 diabetes susceptibility
  • 2015
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Fasting glucose and insulin are intermediate traits for type 2 diabetes. Here we explore the role of coding variation on these traits by analysis of variants on the HumanExome BeadChip in 60,564 non-diabetic individuals and in 16,491 T2D cases and 81,877 controls. We identify a novel association of a low-frequency nonsynonymous SNV in GLP1R (A316T; rs10305492; MAF = 1.4%) with lower FG (beta = -0.09 +/- 0.01 mmol l(-1), P = 3.4 x 10(-12)), T2D risk (OR[95% CI] = 0.86[0.76-0.96], P = 0.010), early insulin secretion (beta = -0.07 +/- 0.035 pmol(insulin) mmol(glucose)(-1), P = 0.048), but higher 2-h glucose (beta = 0.16 +/- 0.05 mmol l(-1), P = 4.3 x 10(-4)). We identify a gene-based association with FG at G6PC2 (p(SKAT) = 6.8 x 10(-6)) driven by four rare protein-coding SNVs (H177Y, Y207S, R283X and S324P). We identify rs651007 (MAF = 20%) in the first intron of ABO at the putative promoter of an antisense lncRNA, associating with higher FG (beta = 0.02 +/- 0.004 mmol l(-1), P = 1.3 x 10(-8)). Our approach identifies novel coding variant associations and extends the allelic spectrum of variation underlying diabetes-related quantitative traits and T2D susceptibility.
  •  
16.
  •  
17.
  • Mahajan, Anubha, et al. (författare)
  • Multi-ancestry genetic study of type 2 diabetes highlights the power of diverse populations for discovery and translation
  • 2022
  • Ingår i: Nature Genetics. - : Springer Nature. - 1061-4036 .- 1546-1718. ; 54:5, s. 560-572
  • Tidskriftsartikel (refereegranskat)abstract
    • We assembled an ancestrally diverse collection of genome-wide association studies (GWAS) of type 2 diabetes (T2D) in 180,834 affected individuals and 1,159,055 controls (48.9% non-European descent) through the Diabetes Meta-Analysis of Trans-Ethnic association studies (DIAMANTE) Consortium. Multi-ancestry GWAS meta-analysis identified 237 loci attaining stringent genome-wide significance (P < 5 x 10(-9)), which were delineated to 338 distinct association signals. Fine-mapping of these signals was enhanced by the increased sample size and expanded population diversity of the multi-ancestry meta-analysis, which localized 54.4% of T2D associations to a single variant with >50% posterior probability. This improved fine-mapping enabled systematic assessment of candidate causal genes and molecular mechanisms through which T2D associations are mediated, laying the foundations for functional investigations. Multi-ancestry genetic risk scores enhanced transferability of T2D prediction across diverse populations. Our study provides a step toward more effective clinical translation of T2D GWAS to improve global health for all, irrespective of genetic background. Genome-wide association and fine-mapping analyses in ancestrally diverse populations implicate candidate causal genes and mechanisms underlying type 2 diabetes. Trans-ancestry genetic risk scores enhance transferability across populations.
  •  
18.
  • Pierel, J. D. R., et al. (författare)
  • LensWatch. I. Resolved HST Observations and Constraints on the Strongly Lensed Type Ia Supernova 2022qmx (SN Zwicky)
  • 2023
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 948:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Supernovae (SNe) that have been multiply imaged by gravitational lensing are rare and powerful probes for cosmology. Each detection is an opportunity to develop the critical tools and methodologies needed as the sample of lensed SNe increases by orders of magnitude with the upcoming Vera C. Rubin Observatory and Nancy Grace Roman Space Telescope. The latest such discovery is of the quadruply imaged Type Ia SN 2022qmx (aka, SN Zwicky) at z = 0.3544. SN Zwicky was discovered by the Zwicky Transient Facility in spatially unresolved data. Here we present follow-up Hubble Space Telescope observations of SN Zwicky, the first from the multicycle LensWatch (www.lenswatch.org) program. We measure photometry for each of the four images of SN Zwicky, which are resolved in three WFC3/UVIS filters (F475W, F625W, and F814W) but unresolved with WFC3/IR F160W, and present an analysis of the lensing system using a variety of independent lens modeling methods. We find consistency between lens-model-predicted time delays (less than or similar to 1 day), and delays estimated with the single epoch of Hubble Space Telescope colors (less than or similar to 3.5 days), including the uncertainty from chromatic microlensing (similar to 1-1.5 days). Our lens models converge to an Einstein radius of theta(E) = 0.168 (+0.009)(-0.005) the smallest yet seen in a lensed SN system. The standard candle nature of SN Zwicky provides magnification estimates independent of the lens modeling that are brighter than predicted by similar to 1.7 (-0.6) (+0.8) mag and similar to 0.9 (-0.6) (+0.8) mag for two of the four images, suggesting significant microlensing and/or additional substructure beyond the flexibility of our image-position mass models.
  •  
19.
  •  
20.
  •  
21.
  •  
22.
  •  
23.
  • Krause, Kerstin, et al. (författare)
  • Dissecting molecular events in thyroid neoplasia provides evidence for distinct evolution of follicular thyroid adenoma and carcinoma.
  • 2011
  • Ingår i: American Journal of Pathology. - : Elsevier BV. - 0002-9440 .- 1525-2191. ; 179:6, s. 3066-74
  • Tidskriftsartikel (refereegranskat)abstract
    • Benign hypofunctional cold thyroid nodules (CTNs) are a frequent scintiscan finding and need to be distinguished from thyroid carcinomas. The origin of CTNs with follicular morphologic features is unresolved. The DNA damage response might act as a physiologic barrier, inhibiting the progression of preneoplastic lesions to neoplasia. We investigated the following in hypofunctional follicular adenoma (FA) and follicular thyroid cancer (FTC): i) the mutation rate of frequently activated oncogenes, ii) the activation of DNA damage response checkpoints, and iii) the differential proteomic pattern between FA and FTC. Both FTC and FA, which did not harbor RAS, phosphoinositide-3-kinase, or PAX/peroxisome proliferator activated receptor-γ mutations, express various proteins in common and others that are more distinctly expressed in FTC rather than in FA or normal thyroid tissue. This finding is in line with the finding of constitutive DNA damage checkpoint activation (p-Chk2, γ-H2AX) and evidence for replicative stress causing genomic instability (increased cyclin E, retinoblastoma, or E2F1 mRNA expression) in FTC but not FA. We discuss the findings of the increased expression of translationally controlled tumor protein, phosphatase 2A inhibitor, and DJ-1 in FTC compared with FA identified by proteomics and their potential implication in follicular thyroid carcinogenesis. Our present findings argue for the definition of FA as a truly benign entity and against progressive development of FA to FTC.
  •  
24.
  • Mahajan, Anubha, et al. (författare)
  • Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes
  • 2018
  • Ingår i: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 50:4, s. 559-571
  • Tidskriftsartikel (refereegranskat)abstract
    • We aggregated coding variant data for 81,412 type 2 diabetes cases and 370,832 controls of diverse ancestry, identifying 40 coding variant association signals (P < 2.2 × 10−7); of these, 16 map outside known risk-associated loci. We make two important observations. First, only five of these signals are driven by low-frequency variants: even for these, effect sizes are modest (odds ratio ≤1.29). Second, when we used large-scale genome-wide association data to fine-map the associated variants in their regional context, accounting for the global enrichment of complex trait associations in coding sequence, compelling evidence for coding variant causality was obtained for only 16 signals. At 13 others, the associated coding variants clearly represent ‘false leads’ with potential to generate erroneous mechanistic inference. Coding variant associations offer a direct route to biological insight for complex diseases and identification of validated therapeutic targets; however, appropriate mechanistic inference requires careful specification of their causal contribution to disease predisposition.
  •  
25.
  • Song, S., et al. (författare)
  • Top-down constraints on atmospheric mercury emissions and implications for global biogeochemical cycling
  • 2015
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 15:12, s. 7103-7125
  • Tidskriftsartikel (refereegranskat)abstract
    • We perform global-scale inverse modeling to constrain present-day atmospheric mercury emissions and relevant physiochemical parameters in the GEOS-Chem chemical transport model. We use Bayesian inversion methods combining simulations with GEOS-Chem and ground-based Hg-0 observations from regional monitoring networks and individual sites in recent years. Using optimized emissions/parameters, GEOS-Chem better reproduces these ground-based observations and also matches regional over-water Hg-0 and wet deposition measurements. The optimized global mercury emission to the atmosphere is 5.8 Gg yr(-1). The ocean accounts for 3.2 Gg yr(-1) (55 % of the total), and the terrestrial ecosystem is neither a net source nor a net sink of Hg-0. The optimized Asian anthropogenic emission of Hg-0 (gas elemental mercury) is 650-1770 Mg yr(-1), higher than its bottom-up estimates (550-800 Mg yr(-1)). The ocean parameter inversions suggest that dark oxidation of aqueous elemental mercury is faster, and less mercury is removed from the mixed layer through particle sinking, when compared with current simulations. Parameter changes affect the simulated global ocean mercury budget, particularly mass exchange between the mixed layer and subsurface waters. Based on our inversion results, we re-evaluate the long-term global biogeochemical cycle of mercury, and show that legacy mercury becomes more likely to reside in the terrestrial ecosystem than in the ocean. We estimate that primary anthropogenic mercury contributes up to 23 % of present-day atmospheric deposition.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 26

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy