SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Shoaie Saeed 1985) "

Sökning: WFRF:(Shoaie Saeed 1985)

  • Resultat 1-20 av 20
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Babaei, Parizad, 1990, et al. (författare)
  • Challenges in modeling the human gut microbiome
  • 2018
  • Ingår i: Nature Biotechnology. - : Springer Science and Business Media LLC. - 1087-0156 .- 1546-1696. ; 36:8, s. 682-686
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)
  •  
3.
  • Caspeta-Guadarrama, Luis, 1974, et al. (författare)
  • Genome-scale metabolic reconstructions of Pichia stipitis and Pichia pastoris and in-silico evaluation of their potentials
  • 2012
  • Ingår i: BMC Systems Biology. - : Springer Science and Business Media LLC. - 1752-0509. ; 6:24
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundPichia stipitis and Pichia pastoris have long been investigated due to their native abilities to metabolize every sugar from lignocellulose and to modulate methanol consumption, respectively. The latter has been driving the production of several recombinant proteins. As a result, significant advances in their biochemical knowledge, as well as in genetic engineering and fermentation methods have been generated. The release of their genome sequences has allowed systems level research. ResultsIn this work, genome-scale metabolic models (GEMs) of P. stipitis (iSS884) and P. pastoris (iLC915) were reconstructed. iSS884 includes 1332 reactions, 922 metabolites, and 4 compartments. iLC915 contains 1423 reactions, 899 metabolites, and 7 compartments. Compared with the previous GEMs of P. pastoris, PpaMBEL1254 and iPP668, iLC915 contains more genes and metabolic functions, as well as improved predictive capabilities. Simulations of physiological responses for the growth of both yeasts on selected carbon sources using iSS884 and iLC915 closely reproduced the experimental data. Additionally, the iSS884 model was used to predict ethanol production from xylose at different oxygen uptake rates. Simulations with iLC915 closely reproduced the effect of oxygen uptake rate on physiological states of P. pastoris expressing a recombinant protein. The potential of P. stipitis for the conversion of xylose and glucose into ethanol using reactors in series, and of P. pastoris to produce recombinant proteins using mixtures of methanol and glycerol or sorbitol are also discussed. ConclusionsIn conclusion the first GEM of P. stipitis (iSS884) was reconstructed and validated. The expanded version of the P. pastoris GEM, iLC915, is more complete and has improved capabilities over the existing models. Both GEMs are useful frameworks to explore the versatility of these yeasts and to capitalize on their biotechnological potentials.
  •  
4.
  • El-Semman, Ibrahim, 1977, et al. (författare)
  • Genome-scale metabolic reconstructions of Bifidobacterium adolescentis L2-32 and Faecalibacterium prausnitzii A2-165 and their interaction
  • 2014
  • Ingår i: BMC Systems Biology. - : Springer Science and Business Media LLC. - 1752-0509. ; 8:41
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The gut microbiota plays an important role in human health and disease by acting as a metabolic organ. Metagenomic sequencing has shown how dysbiosis in the gut microbiota is associated with human metabolic diseases such as obesity and diabetes. Modeling may assist to gain insight into the metabolic implication of an altered microbiota. Fast and accurate reconstruction of metabolic models for members of the gut microbiota, as well as methods to simulate a community of microorganisms, are therefore needed. The Integrated Microbial Genomes (IMG) database contains functional annotation for nearly 4,650 bacterial genomes. This tremendous new genomic information adds new opportunities for systems biology to reconstruct accurate genome scale metabolic models (GEMs). Results: Here we assembled a reaction data set containing 2,340 reactions obtained from existing genome-scale metabolic models, where each reaction is assigned with KEGG Orthology. The reaction data set was then used to reconstruct two genome scale metabolic models for gut microorganisms available in the IMG database Bifidobacterium adolescentis L2-32, which produces acetate during fermentation, and Faecalibacterium prausnitzii A2-165, which consumes acetate and produces butyrate. F. prausnitzii is less abundant in patients with Crohn's disease and has been suggested to play an anti-inflammatory role in the gut ecosystem. The B. adolescentis model, iBif452, comprises 699 reactions and 611 unique metabolites. The F. prausnitzii model, iFap484, comprises 713 reactions and 621 unique metabolites. Each model was validated with in vivo data. We used OptCom and Flux Balance Analysis to simulate how both organisms interact. Conclusions: The consortium of iBif452 and iFap484 was applied to predict F. prausnitzii's demand for acetate and production of butyrate which plays an essential role in colonic homeostasis and cancer prevention. The assembled reaction set is a useful tool to generate bacterial draft models from KEGG Orthology.
  •  
5.
  • El-Semman, Ibrahim, 1977, et al. (författare)
  • Systems biology analysis of hepatitis C virus infection reveals the role of copy number increases in regions of chromosome 1q in hepatocellular carcinoma metabolism
  • 2016
  • Ingår i: Molecular Biosystems. - : Royal Society of Chemistry. - 1742-206X .- 1742-2051. ; 12:5, s. 1496-1506
  • Tidskriftsartikel (refereegranskat)abstract
    • Hepatitis C virus (HCV) infection is a worldwide healthcare problem; however, traditional treatment methods have failed to cure all patients, and HCV has developed resistance to new drugs. Systems biology-based analyses could play an important role in the holistic analysis of the impact of HCV on hepatocellular metabolism. Here, we integrated HCV assembly reactions with a genome-scale hepatocyte metabolic model to identify metabolic targets for HCV assembly and metabolic alterations that occur between different HCV progression states (cirrhosis, dysplastic nodule, and early and advanced hepatocellular carcinoma (HCC)) and healthy liver tissue. We found that diacylglycerolipids were essential for HCV assembly. In addition, the metabolism of keratan sulfate and chondroitin sulfate was significantly changed in the cirrhosis stage, whereas the metabolism of acyl-carnitine was significantly changed in the dysplastic nodule and early HCC stages. Our results explained the role of the upregulated expression of BCAT1, PLOD3 and six other methyltransferase genes involved in carnitine biosynthesis and S-adenosylmethionine metabolism in the early and advanced HCC stages. Moreover, GNPAT and BCAP31 expression was upregulated in the early and advanced HCC stages and could lead to increased acyl-CoA consumption. By integrating our results with copy number variation analyses, we observed that GNPAT, PPOX and five of the methyltransferase genes (ASH1L, METTL13, SMYD2, TARBP1 and SMYD3), which are all located on chromosome 1q, had increased copy numbers in the cancer samples relative to the normal samples. Finally, we confirmed our predictions with the results of metabolomics studies and proposed that inhibiting the identified targets has the potential to provide an effective treatment strategy for HCV-associated liver disorders.
  •  
6.
  • Ghaffari Nouran, Pouyan, 1980, et al. (författare)
  • Identifying anti-growth factors for human cancer cell lines through genome-scale metabolic modeling
  • 2015
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 5, s. 8183-
  • Tidskriftsartikel (refereegranskat)abstract
    • Human cancer cell lines are used as important model systems to study molecular mechanisms associated with tumor growth, hereunder how genomic and biological heterogeneity found in primary tumors affect cellular phenotypes. We reconstructed Genome scale metabolic models (GEMs) for eleven cell lines based on RNA-Seq data and validated the functionality of these models with data from metabolite profiling. We used cell line-specific GEMs to analyze the differences in the metabolism of cancer cell lines, and to explore the heterogeneous expression of the metabolic subsystems. Furthermore, we predicted 85 antimetabolites that can inhibit growth of, or even kill, any of the cell lines, while at the same time not being toxic for 83 different healthy human cell types. 60 of these antimetabolites were found to inhibit growth in all cell lines. Finally, we experimentally validated one of the predicted antimetabolites using two cell lines with different phenotypic origins, and found that it is effective in inhibiting the growth of these cell lines. Using immunohistochemistry, we also showed high or moderate expression levels of proteins targeted by the validated antimetabolite. Identified anti-growth factors for inhibition of cell growth may provide leads for the development of efficient cancer treatment strategies.
  •  
7.
  • Hong, Kuk-ki, 1976, et al. (författare)
  • Dynamic (13) C-labelling experiments prove important differences in protein turnover rate between two Saccharomyces cerevisiae strains
  • 2012
  • Ingår i: FEMS Yeast Research. - : Oxford University Press (OUP). - 1567-1356 .- 1567-1364. ; 12:7, s. 741-747
  • Tidskriftsartikel (refereegranskat)abstract
    • We developed a method for quantification of protein turnover using (13) C-labelled substrates combined with analysis of the labeling pattern of proteinogenic amino acids. Using this method the specific amino acid turnover rates between proteins and the pool of free amino acids were determined for eight different amino acids (alanine, valine, proline, aspartic acid, glycine, leucine, isoleucine and threonine) in two Saccharomyces cerevisiae strains (CEN.PK 113-7D and YSBN2). Furthermore, proteasome activities were compared for both strains. Both results confirmed the hypothesis of a higher protein turnover rates in CEN.PK 113-7D, which was generated in a previous comparative systems biology study of these two yeast strains. The ATP costs associated with the observed differences in protein turnover were quantified and could explain accurately the differences in biomass yield between both strains that are observed in chemostat cultures. The percent of maintenance ATP associated to protein polymerization (polymerization for growth and re-polymerization due to turnover) and degradation was estimated to be 72% for YSBN2 and 79% for CEN.PK 113-7D, which makes these processes the dominant non-biosynthetic drain of ATP in living cells, and hence it represents an energetic parameter of great relevance.
  •  
8.
  • Kovatcheva-Datchary, Petia, et al. (författare)
  • Simplified Intestinal Microbiota to Study Microbe-Diet-Host Interactions in a Mouse Model
  • 2019
  • Ingår i: Cell Reports. - : Elsevier BV. - 2211-1247. ; 26:13
  • Tidskriftsartikel (refereegranskat)abstract
    • The gut microbiota can modulate human metabolism through interactions with macronutrients. However, microbiota-diet-host interactions are difficult to study because bacteria interact in complex food webs in concert with the host, and many of the bacteria are not yet characterized. To reduce the complexity, we colonize mice with a simplified intestinal microbiota (SIM) composed of ten sequenced strains isolated from the human gut with complementing pathways to metabolize dietary fibers. We feed the SIM mice one of three diets (chow [fiber rich], high-fat/high-sucrose, or zero-fat/high-sucrose diets [both low in fiber]) and investigate (1) how dietary fiber, saturated fat, and sucrose affect the abundance and transcriptome of the SIM community, (2) the effect of microbe-diet interactions on circulating metabolites, and (3) how microbiota-diet interactions affect host metabolism. Our SIM model can be used in future studies to help clarify how microbiota-diet interactions contribute to metabolic diseases.
  •  
9.
  • Lam, S., et al. (författare)
  • A systems biology approach for studying neurodegenerative diseases
  • 2020
  • Ingår i: Drug Discovery Today. - : Elsevier BV. - 1359-6446 .- 1878-5832. ; 25:7, s. 1146-1159
  • Tidskriftsartikel (refereegranskat)abstract
    • Neurodegenerative diseases (NDDs), such as Alzheimer's (AD) and Parkinson's (PD), are among the leading causes of lost years of healthy life and exert a great strain on public healthcare systems. Despite being first described more than a century ago, no effective cure exists for AD or PD. Although extensively characterised at the molecular level, traditional neurodegeneration research remains marred by narrow-sense approaches surrounding amyloid beta (A beta), tau, and alpha-synuclein (alpha-syn). A systems biology approach enables the integration of multi-omics data and informs discovery of biomarkers, drug targets, and treatment strategies. Here, we present a comprehensive timeline of high-throughput data collection, and associated biotechnological advancements and computational analysis related to AD and PD. We hereby propose that a philosophical change in the definitions of AD and PD is now needed.
  •  
10.
  • Mardinoglu, Adil, 1982, et al. (författare)
  • The gut microbiota modulates host amino acid and glutathione metabolism in mice
  • 2015
  • Ingår i: Molecular Systems Biology. - : EMBO. - 1744-4292. ; 11:10
  • Tidskriftsartikel (refereegranskat)abstract
    • The gut microbiota has been proposed as an environmental factor that promotes the progression of metabolic diseases. Here, we investigated how the gut microbiota modulates the global metabolic differences in duodenum, jejunum, ileum, colon, liver, and two white adipose tissue depots obtained from conventionally raised (CONV-R) and germ-free (GF) mice using gene expression data and tissue-specific genome-scale metabolic models (GEMs). We created a generic mouse metabolic reaction (MMR) GEM, reconstructed 28 tissue-specific GEMs based on proteomics data, and manually curated GEMs for small intestine, colon, liver, and adipose tissues. We used these functional models to determine the global metabolic differences between CONV-R and GF mice. Based on gene expression data, we found that the gut microbiota affects the host amino acid (AA) metabolism, which leads to modifications in glutathione metabolism. To validate our predictions, we measured the level of AAs and N-acetylated AAs in the hepatic portal vein of CONV-R and GF mice. Finally, we simulated the metabolic differences between the small intestine of the CONV-R and GF mice accounting for the content of the diet and relative gene expression differences. Our analyses revealed that the gut microbiota influences host amino acid and glutathione metabolism in mice.
  •  
11.
  • Rosario, Dorines, et al. (författare)
  • Understanding the representative gut microbiota dysbiosis in metformin-treated Type 2 diabetes patients using genome-scale metabolic modeling
  • 2018
  • Ingår i: Frontiers in Physiology. - : Frontiers Media SA. - 1664-042X. ; 9:JUN
  • Tidskriftsartikel (refereegranskat)abstract
    • Dysbiosis in the gut microbiome composition may be promoted by therapeutic drugs such as metformin, the world's most prescribed antidiabetic drug. Under metformin treatment, disturbances of the intestinal microbes lead to increased abundance of Escherichia spp., Akkermansia muciniphila, Subdoligranulum variabile and decreased abundance of Intestinibacter bartlettii. This alteration may potentially lead to adverse effects on the host metabolism, with the depletion of butyrate producer genus. However, an increased production of butyrate and propionate was verified in metformin-treated Type 2 diabetes (T2D) patients. The mechanisms underlying these nutritional alterations and their relation with gut microbiota dysbiosis remain unclear. Here, we used Genome-scale Metabolic Models of the representative gut bacteria Escherichia spp., I. bartlettii, A. muciniphila, and S. variabile to elucidate their bacterial metabolism and its effect on intestinal nutrient pool, including macronutrients (e.g., amino acids and short chain fatty acids), minerals and chemical elements (e.g., iron and oxygen). We applied flux balance analysis (FBA) coupled with synthetic lethality analysis interactions to identify combinations of reactions and extracellular nutrients whose absence prevents growth. Our analyses suggest that Escherichia sp. is the bacteria least vulnerable to nutrient availability. We have also examined bacterial contribution to extracellular nutrients including short chain fatty acids, amino acids, and gasses. For instance, Escherichia sp. and S. variabile may contribute to the production of important short chain fatty acids (e.g., acetate and butyrate, respectively) involved in the host physiology under aerobic and anaerobic conditions. We have also identified pathway susceptibility to nutrient availability and reaction changes among the four bacteria using both FBA and flux variability analysis. For instance, lipopolysaccharide synthesis, nucleotide sugar metabolism, and amino acid metabolism are pathways susceptible to changes in Escherichia sp. and A. muciniphila. Our observations highlight important commensal and competing behavior, and their association with cellular metabolism for prevalent gut microbes. The results of our analysis have potential important implications for development of new therapeutic approaches in T2D patients through the development of prebiotics, probiotics, or postbiotics.
  •  
12.
  • Shoaie, Saeed, 1985, et al. (författare)
  • Elucidating the interactions between the human gut microbiota and its host through metabolic modeling
  • 2014
  • Ingår i: Frontiers in Genetics. - : Frontiers Media SA. - 1664-8021. ; 5:APR
  • Tidskriftsartikel (refereegranskat)abstract
    • Increased understanding of the interactions between the gut microbiota, diet and environmental effects may allow us to design efficient treatment strategies for addressing global health problems. Existence of symbiotic microorganisms in the human gut provides different functions for the host such as conversion of nutrients, training of the immune system, and resistance to pathogens. The gut microbiome also plays an influential role in maintaining human health, and it is a potential target for prevention and treatment of common disorders including obesity, type 2 diabetes, and atherosclerosis. Due to the extreme complexity of such disorders, it is necessary to develop mathematical models for deciphering the role of its individual elements as well as the entire system and such models may assist in better understanding of the interactions between the bacteria in the human gut and the host by use of genome-scale metabolic models (GEMs). Recently, GEMs have been employed to explore the interactions between predominant bacteria in the gut ecosystems. Additionally, these models enabled analysis of the contribution of each species to the overall metabolism of the microbiota through the integration of omics data. The outcome of these studies can be used for proposing optimal conditions for desired microbiome phenotypes. Here, we review the recent progress and challenges for elucidating the interactions between the human gut microbiota and host through metabolic modeling. We discuss how these models may provide scaffolds for analyzing high-throughput data, developing probiotics and prebiotics, evaluating the effects of probiotics and prebiotics and eventually designing clinical interventions. © 2014 Shoaie and Nielsen.
  •  
13.
  • Shoaie, Saeed, 1985 (författare)
  • Metabolic Modeling of the Gut Microbiome-Host Interactions and Meta’omics Integration
  • 2015
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • A large number of microbes with different strain types occupy the human gut. These gut inhabitant microbes have key roles in decomposition of indigestible dietary macronutrients before they are metabolised by the host. The gut microbiome has a clear effect on human health and perturbations in its diversity may lead to the development of disorders through changes in metabolic functions. To date, different studies have shown the association of the gut microbiome with metabolic disorders such as obesity, type2 diabetes and certain cancers. It has also been shown that there is a complex interaction between microbe-microbe, host-microbe and microbe-diet, and elucidation of the mechanisms behind these interactions and associations remains a challenge. Due to the extreme complexity of cellular metabolism, mathematical models may be employed for deciphering the role of its individual elements and may thereby assist in providing an increased understanding of these interactions. The emerging research field of systems biology can integrate different highthroughput data, in this case metagenomics and metatranscriptomics, through the use of mathematical models and thus provide a holistic interpretation for this complex system. In this context, genome-scale metabolic modeling has been applied to gain increased knowledge in important biotechnology applications.This thesis presents approaches to facilitate understanding of the causalities and go beyond theassociation analysis by considering the interactions between microbiome, host and diet. Usinggenome-scale metabolic models (GEMs), we investigated the contribution of key species in theoverall metabolism of the gut microbiome. We developed methods and generated stand-alonesoftware to apply for different case studies on modeling of gut microbiome and finally addressed relevant biological questions. First, GEMs for three bacteria being representatives of dominant phyla in the human gut microbiome were reconstructed. This modeling approach allowed us to establish effective resources for understanding the microbe interactions in the gut. Increasing the number of relevant GEMs representing all key microbes in the human gut resulted in more complexity and therefore we developed the CASINO toolbox, a comprehensive software platform for the analysis of microbial communities. CASINO was validated based on in-vitro studies and thereafter applied to human studies that showed its capability to predict the phenotype of individuals based on their dietary pattern and gut microbes’ abundances. Finally, the application of CASINO was extended and used for modeling of the interactions between gut microbiota and hostmetabolism. The overall metabolic differences between germ-free and conventionally raised micewere revealed through the use of CASINO. In conclusion, this thesis provides a new approach tohuman gut analysis by using valuable resources (GEMs) and novel methods (CASINO). As suchit contributes to advancing the role of metabolic modeling in human health and designing newclinical interventions.
  •  
14.
  • Shoaie, Saeed, 1985, et al. (författare)
  • Quantifying Diet-Induced Metabolic Changes of the Human Gut Microbiome
  • 2015
  • Ingår i: Cell Metabolism. - : Elsevier BV. - 1550-4131 .- 1932-7420. ; 22:2, s. 320-331
  • Tidskriftsartikel (refereegranskat)abstract
    • The human gut microbiome is known to be associated with various human disorders, but a major challenge is to go beyond association studies and elucidate causalities. Mathematical modeling of the human gut microbiome at a genome scale is a useful tool to decipher microbe-microbe, diet-microbe and microbe-host interactions. Here, we describe the CASINO (Community And Systems-level INteractive Optimization) toolbox, a comprehensive computational platform for analysis of microbial communities through metabolic modeling. We first validated the toolbox by simulating and testing the performance of single bacteria and whole communities in vitro. Focusing on metabolic interactions between the diet, gut microbiota, and host metabolism, we demonstrated the predictive power of the toolbox in a diet-intervention study of 45 obese and overweight individuals and validated our predictions by fecal and blood metabolomics data. Thus, modeling could quantitatively describe altered fecal and serum amino acid levels in response to diet intervention.
  •  
15.
  • Shoaie, Saeed, 1985, et al. (författare)
  • Understanding the interactions between bacteria in the human gut through metabolic modeling
  • 2013
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322 .- 2045-2322. ; 3
  • Tidskriftsartikel (refereegranskat)abstract
    • The human gut microbiome plays an influential role in maintaining human health, and it is a potential target for prevention and treatment of disease. Genome-scale metabolic models (GEMs) can provide an increased understanding of the mechanisms behind the effects of diet, the genotype-phenotype relationship and microbial robustness. Here we reconstructed GEMs for three key species, (Bacteroides thetaiotamicron, Eubacterium rectale and Methanobrevibacter smithii) as relevant representatives of three main phyla in the human gut (Bacteroidetes, Firmicutes and Euryarchaeota). We simulated the interactions between these three bacteria in different combinations of gut ecosystems and compared the predictions with the experimental results obtained from colonization of germ free mice. Furthermore, we used our GEMs for analyzing the contribution of each species to the overall metabolism of the gut microbiota based on transcriptome data and demonstrated that these models can be used as a scaffold for understanding bacterial interactions in the gut.
  •  
16.
  • Yang, Yudie, et al. (författare)
  • Advances in the Relationships Between Cow’s Milk Protein Allergy and Gut Microbiota in Infants
  • 2021
  • Ingår i: Frontiers in Microbiology. - : Frontiers Media SA. - 1664-302X. ; 12
  • Forskningsöversikt (refereegranskat)abstract
    • Cow’s milk protein allergy (CMPA) is an immune response to cow’s milk proteins, which is one of the most common food allergies in infants and young children. It is estimated that 2–3% of infants and young children have CMPA. The diet, gut microbiota, and their interactions are believed to be involved in the alterations of mucosal immune tolerance, which might lead to the development of CMPA and other food allergies. In this review, the potential molecular mechanisms of CMPA, including omics technologies used for analyzing microbiota, impacts of early microbial exposures on CMPA development, and microbiota–host interactions, are summarized. The probiotics, prebiotics, synbiotics, fecal microbiota transplantation, and other modulation strategies for gut microbiota and the potential application of microbiota-based design of diets for the CMPA treatment are also discussed. This review not only summarizes the current studies about the interactions of CMPA with gut microbiota but also gives insights into the possible CMPA treatment strategies by modulating gut microbiota, which might help in improving the life quality of CMPA patients in the future.
  •  
17.
  • Yuan, Meng, et al. (författare)
  • A Gene Co-Expression Network-Based Drug Repositioning Approach Identifies Candidates for Treatment of Hepatocellular Carcinoma
  • 2022
  • Ingår i: Cancers. - : MDPI AG. - 2072-6694. ; 14:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Hepatocellular carcinoma (HCC) is a malignant liver cancer that continues to increase deaths worldwide owing to limited therapies and treatments. Computational drug repurposing is a promising strategy to discover potential indications of existing drugs. In this study, we present a systematic drug repositioning method based on comprehensive integration of molecular signatures in liver cancer tissue and cell lines. First, we identify robust prognostic genes and two gene co-expression modules enriched in unfavorable prognostic genes based on two independent HCC cohorts, which showed great consistency in functional and network topology. Then, we screen 10 genes as potential target genes for HCC on the bias of network topology analysis in these two modules. Further, we perform a drug repositioning method by integrating the shRNA and drug perturbation of liver cancer cell lines and identifying potential drugs for every target gene. Finally, we evaluate the effects of the candidate drugs through an in vitro model and observe that two identified drugs inhibited the protein levels of their corresponding target genes and cell migration, also showing great binding affinity in protein docking analysis. Our study demonstrates the usefulness and efficiency of network-based drug repositioning approach to discover potential drugs for cancer treatment and precision medicine approach.
  •  
18.
  • Yulug, B., et al. (författare)
  • Combined metabolic activators improve cognitive functions in Alzheimer's disease patients: a randomised, double-blinded, placebo-controlled phase-II trial
  • 2023
  • Ingår i: Translational Neurodegeneration. - : Springer Science and Business Media LLC. - 2047-9158. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Alzheimer's disease (AD) is associated with metabolic abnormalities linked to critical elements of neurodegeneration. We recently administered combined metabolic activators (CMA) to the AD rat model and observed that CMA improves the AD-associated histological parameters in the animals. CMA promotes mitochondrial fatty acid uptake from the cytosol, facilitates fatty acid oxidation in the mitochondria, and alleviates oxidative stress.Methods Here, we designed a randomised, double-blinded, placebo-controlled phase-II clinical trial and studied the effect of CMA administration on the global metabolism of AD patients. One-dose CMA included 12.35 g L-serine (61.75%), 1 g nicotinamide riboside (5%), 2.55 g N-acetyl-L-cysteine (12.75%), and 3.73 g L-carnitine tartrate (18.65%). AD patients received one dose of CMA or placebo daily during the first 28 days and twice daily between day 28 and day 84. The primary endpoint was the difference in the cognitive function and daily living activity scores between the placebo and the treatment arms. The secondary aim of this study was to evaluate the safety and tolerability of CMA. A comprehensive plasma metabolome and proteome analysis was also performed to evaluate the efficacy of the CMA in AD patients.Results We showed a significant decrease of AD Assessment Scale-cognitive subscale (ADAS-Cog) score on day 84 vs day 0 (P = 0.00001, 29% improvement) in the CMA group. Moreover, there was a significant decline (P = 0.0073) in ADAS-Cog scores (improvement of cognitive functions) in the CMA compared to the placebo group in patients with higher ADAS-Cog scores. Improved cognitive functions in AD patients were supported by the relevant alterations in the hippocampal volumes and cortical thickness based on imaging analysis. Moreover, the plasma levels of proteins and metabolites associated with NAD + and glutathione metabolism were significantly improved after CMA treatment.Conclusion Our results indicate that treatment of AD patients with CMA can lead to enhanced cognitive functions and improved clinical parameters associated with phenomics, metabolomics, proteomics and imaging analysis.
  •  
19.
  • Zeybel, M., et al. (författare)
  • Combined metabolic activators therapy ameliorates liver fat in nonalcoholic fatty liver disease patients
  • 2021
  • Ingår i: Molecular Systems Biology. - : EMBO. - 1744-4292. ; 17:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Nonalcoholic fatty liver disease (NAFLD) refers to excess fat accumulation in the liver. In animal experiments and human kinetic study, we found that administration of combined metabolic activators (CMAs) promotes the oxidation of fat, attenuates the resulting oxidative stress, activates mitochondria, and eventually removes excess fat from the liver. Here, we tested the safety and efficacy of CMA in NAFLD patients in a placebo-controlled 10-week study. We found that CMA significantly decreased hepatic steatosis and levels of aspartate aminotransferase, alanine aminotransferase, uric acid, and creatinine, whereas found no differences on these variables in the placebo group after adjustment for weight loss. By integrating clinical data with plasma metabolomics and inflammatory proteomics as well as oral and gut metagenomic data, we revealed the underlying molecular mechanisms associated with the reduced hepatic fat and inflammation in NAFLD patients and identified the key players involved in the host-microbiome interactions. In conclusion, we showed that CMA can be used to develop a pharmacological treatment strategy in NAFLD patients.
  •  
20.
  • Ågren, Rasmus, 1982, et al. (författare)
  • The RAVEN Toolbox and Its Use for Generating a Genome-scale Metabolic Model for Penicillium chrysogenum
  • 2013
  • Ingår i: PLoS Computational Biology. - : Public Library of Science (PLoS). - 1553-734X .- 1553-7358. ; 9:3, s. e1002980-
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the RAVEN (Reconstruction, Analysis and Visualization of Metabolic Networks) Toolbox: a software suite that allows for semi-automated reconstruction of genome-scale models. It makes use of published models and/or the KEGG database, coupled with extensive gap-filling and quality control features. The software suite also contains methods for visualizing simulation results and omics data, as well as a range of methods for performing simulations and analyzing the results. The software is a useful tool for system-wide data analysis in a metabolic context and for streamlined reconstruction of metabolic networks based on protein homology. The RAVEN Toolbox workflow was applied in order to reconstruct a genome-scale metabolic model for the important microbial cell factory Penicillium chrysogenum Wisconsin54-1255. The model was validated in a bibliomic study of in total 440 references, and it comprises 1471 unique biochemical reactions and 1006 ORFs. It was then used to study the roles of ATP and NADPH in the biosynthesis of penicillin, and to identify potential metabolic engineering targets for maximization of penicillin production.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-20 av 20

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy