SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Shulyak D.) "

Sökning: WFRF:(Shulyak D.)

  • Resultat 1-25 av 43
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Creevey, O. L., et al. (författare)
  • Gaia Data Release 3 : Astrophysical parameters inference system (Apsis). I. Methods and content overview
  • 2023
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 674
  • Tidskriftsartikel (refereegranskat)abstract
    • Gaia Data Release 3 contains a wealth of new data products for the community. Astrophysical parameters are a major component of this release, and were produced by the Astrophysical parameters inference system (Apsis) within the Gaia Data Processing and Analysis Consortium (DPAC). The aim of this paper is to describe the overall content of the astrophysical parameters in Gaia DR3 and how they were produced. In Apsis, we use the mean BP /RP and mean RVS spectra along with astrometry and photometry, and we derive the following parameters: source classification and probabilities for 1.6 billion objects; interstellar medium characterisation and distances for up to 470 million sources, including a 2D total Galactic extinction map; 6 million redshifts of quasar candidates; 1.4 million redshifts of galaxy candidates; and an analysis of 50 million outlier sources through an unsupervised classification. The astrophysical parameters also include many stellar spectroscopic and evolutionary parameters for up to 470 million sources. These comprise T-eff, log g, and [M /H] (470 million using BP /RP, 6 million using RVS), radius (470 million), mass (140 million), age (120 million), chemical abundances (up to 5 million), diffuse interstellar band analysis (0.5 million), activity indices (2 million), H ff equivalent widths (200 million), and further classification of spectral types (220 million) and emission-line stars (50 000). This paper is the first in a series of three papers, and focusses on describing the global content of the parameters in Gaia DR3. The accompanying Papers II and III focus on the validation and use of the stellar and non-stellar products, respectively. This catalogue is the most extensive homogeneous database of astrophysical parameters to date, and is based uniquely on Gaia data. It will only be superseded by Gaia Data Release 4, and will therefore remain a key reference over the next four years, providing astrophysical parameters independent of other ground- and space-based data.
  •  
2.
  • Boyarchuk, A. A., et al. (författare)
  • Scientific problems addressed by the Spektr-UV space project (world space Observatory-Ultraviolet)
  • 2016
  • Ingår i: Astronomy reports (Print). - 1063-7729 .- 1562-6881. ; 60:1, s. 1-42
  • Tidskriftsartikel (refereegranskat)abstract
    • The article presents a review of scientific problems and methods of ultraviolet astronomy, focusing on perspective scientific problems (directions) whose solution requires UV space observatories. These include reionization and the history of star formation in the Universe, searches for dark baryonic matter, physical and chemical processes in the interstellar medium and protoplanetary disks, the physics of accretion and outflows in astrophysical objects, from Active Galactic Nuclei to close binary stars, stellar activity (for both low-mass and high-mass stars), and processes occurring in the atmospheres of both planets in the solar system and exoplanets. Technological progress in UV astronomy achieved in recent years is also considered. The well advanced, international, Russian-led Spektr-UV (World Space Observatory-Ultraviolet) project is described in more detail. This project is directed at creating a major space observatory operational in the ultraviolet (115-310 nm). This observatory will provide an effective, and possibly the only, powerful means of observing in this spectral range over the next ten years, and will be an powerful tool for resolving many topical scientific problems.
  •  
3.
  • Lesjak, F., et al. (författare)
  • Retrieval of the dayside atmosphere of WASP-43b with CRIRES
  • 2023
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 678
  • Tidskriftsartikel (refereegranskat)abstract
    • Accurately estimating the C/O ratio of hot Jupiter atmospheres is a promising pathway towards understanding planet formation and migration, as well as the formation of clouds and the overall atmospheric composition. The atmosphere of the hot Jupiter WASP-43b has been extensively analysed using low-resolution observations with HST and Spitzer, but these previous observations did not cover the K band, which hosts prominent spectral features of major carbon-bearing species such as CO and CH4. As a result, the ability to establish precise constraints on the C/O ratio was limited. Moreover, the planet has not been studied at high spectral resolution, which can provide insights into the atmospheric dynamics. In this study, we present the first high-resolution dayside spectra of WASP-43b with the new CRIRES+ spectrograph. By observing the planet in the K band, we successfully detected the presence of CO and provide evidence for the existence of H2O using the cross-correlation method. This discovery represents the first direct detection of CO in the atmosphere of WASP-43b. Furthermore, we retrieved the temperature-pressure profile, abundances of CO and H2O, and a super-solar C/O ratio of 0.78 by applying a Bayesian retrieval framework to the data. Our findings also shed light on the atmospheric characteristics of WASP-43b. We found no evidence for a cloud deck on the dayside, and recovered a line broadening indicative of an equatorial super-rotation corresponding to a jet with a wind speed of similar to 5kms(-1), matching the results of previous forward models and low-resolution atmospheric retrievals for this planet.
  •  
4.
  • Benedict, G. Fritz, et al. (författare)
  • Distance scale zero points from galactic RR Lyrae star parallaxes
  • 2011
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 0004-6256 .- 1538-3881. ; 142:6, s. 187-
  • Tidskriftsartikel (refereegranskat)abstract
    • We present new absolute trigonometric parallaxes and proper motions for seven Population II variable stars-five RR Lyr variables: RZ Cep, XZ Cyg, SU Dra, RR Lyr, and UV Oct; and two type 2 Cepheids: VY Pyx and kappa Pav. We obtained these results with astrometric data from Fine Guidance Sensors, white-light interferometers on Hubble Space Telescope. We find absolute parallaxes in milliseconds of arc: RZ Cep, 2.12 +/- 0.16 mas; XZ Cyg, 1.67 +/- 0.17 mas; SU Dra, 1.42 +/- 0.16 mas; RR Lyr, 3.77 +/- 0.13 mas; UV Oct, 1.71 +/- 0.10 mas; VY Pyx, 6.44 +/- 0.23 mas; and. Pav, 5.57 +/- 0.28 mas; an average sigma(pi)/pi = 5.4%. With these parallaxes, we compute absolute magnitudes in V and K bandpasses corrected for interstellar extinction and Lutz-Kelker-Hanson bias. Using these RR Lyrae variable star absolute magnitudes, we then derive zero points for M(V)-[Fe/H] and M(K)-[Fe/H]-log P relations. The technique of reduced parallaxes corroborates these results. We employ our new results to determine distances and ages of several Galactic globular clusters and the distance of the Large Magellanic Cloud. The latter is close to that previously derived from Classical Cepheids uncorrected for any metallicity effect, indicating that any such effect is small. We also discuss the somewhat puzzling results obtained for our two type 2 Cepheids.
  •  
5.
  • Fossati, L., et al. (författare)
  • A detailed spectropolarimetric analysis of the planet-hosting star WASP-12
  • 2010
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 720:1, s. 872-886
  • Tidskriftsartikel (refereegranskat)abstract
    • The knowledge of accurate stellar parameters is paramount in several fields of stellar astrophysics, particularly in the study of extrasolar planets, where often the star is the only visible component and therefore used to infer the planet's fundamental parameters. Another important aspect of the analysis of planetary systems is the stellar activity and the possible star planet interaction. Here, we present a self-consistent abundance analysis of the planet-hosting star WASP-12 and a high-precision search for a structured stellar magnetic field on the basis of spectropolarimetric observations obtained with the ESPaDOnS spectropolarimeter. Our results show that the star does not have a structured magnetic field, and that the obtained fundamental parameters are in good agreement with what was previously published. In addition, we derive improved constraints on the stellar age (1.0-2.65 Gyr), mass (1.23-1.49 M/M-circle dot), and distance (295-465 pc). WASP-12 is an ideal object in which to look for pollution signatures in the stellar atmosphere. We analyze the WASP-12 abundances as a function of the condensation temperature and compare them with those published by several other authors on planet-hosting and non-planet-hosting stars. We find hints of atmospheric pollution in WASP-12's photosphere but are unable to reach firm conclusions with our present data. We conclude that a differential analysis based on WASP-12 twins will probably clarify whether an atmospheric pollution is present as well as the nature of this pollution and its implications in planet formation and evolution. We also attempt the direct detection of the circumstellar disk through infrared excess, but without success.
  •  
6.
  • Kochukhov, Oleg, et al. (författare)
  • Surface magnetism of cool stars
  • 2017
  • Ingår i: Astronomical Notes - Astronomische Nachrichten. - : WILEY-V C H VERLAG GMBH. - 0004-6337 .- 1521-3994. ; 338:4, s. 428-441
  • Tidskriftsartikel (refereegranskat)abstract
    • Magnetic fields are essential ingredients of many physical processes in the interiors and envelopes of cool stars. Yet their direct detection and characterization is notoriously difficult, requiring high-quality observations and advanced analysis techniques. Significant progress has been recently achieved by several types of direct magnetic field studies on the surfaces of cool, active stars. In particular, complementary techniques of field topology mapping with polarization data and total magnetic flux measurements from intensity spectra have been systematically applied to different classes of active stars, leading to interesting and occasionally controversial results. In this paper, we summarize the current status of direct magnetic field studies of cool stars and investigations of surface inhomogeneities caused by the field, based on the material presented at the Cool Stars 19 splinter session.
  •  
7.
  • Shulyak, D., et al. (författare)
  • The Lorentz force in atmospheres of CP stars : theta Aurigae
  • 2007
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 464:3, s. 1089-1099
  • Tidskriftsartikel (refereegranskat)abstract
    • Several dynamical processes may induce considerable electric currents in the atmospheres of magnetic chemically peculiar (CP) stars. The Lorentz force, which results from the interaction between the magnetic field and the induced currents, modifies the atmospheric structure and induces characteristic rotational variability of the hydrogen Balmer lines. To study this phenomena we have initiated a systematic spectroscopic survey of the Balmer lines variation in magnetic CP stars. In this paper we continue presentation of results of the program focusing on the high-resolution spectral observations of A0p star \aur (HD 40312). We have detected a significant variability of the H$\alpha$, H$\beta$, and H$\gamma$ spectral lines during full rotation cycle of the star. This variability is interpreted in the framework of the model atmosphere analysis, which accounts for the Lorentz force effects. Both the inward and outward directed Lorentz forces are considered under the assumption of the axisymmetric dipole or dipole+quadrupole magnetic field configurations. We demonstrate that only the model with the outward directed Lorentz force in the dipole+quadrupole configuration is able to reproduce the observed hydrogen line variation. These results present new strong evidences for the presence of non-zero global electric currents in the atmosphere of an early-type magnetic star.
  •  
8.
  •  
9.
  • Yan, F., et al. (författare)
  • CRIRES+ detection of CO emissions lines and temperature inversions on the dayside of WASP-18b and WASP-76b
  • 2023
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 672
  • Tidskriftsartikel (refereegranskat)abstract
    • The dayside atmospheres of ultra-hot Jupiters (UHJs) are predicted to possess temperature inversion layers with extremely high temperatures at high altitudes. We observed the dayside thermal emission spectra of WASP-18b and WASP-76b with the new CRIRES+ high-resolution spectrograph at near-infrared wavelengths. Using the cross-correlation technique, we detected strong CO emission lines in both planets, which confirms the existence of temperature inversions on their dayside hemispheres. The two planets are the first UHJs orbiting F-type stars with CO emission lines detected; previous detections were mostly for UHJs orbiting A-type stars. Evidence of weak H2O emission signals is also found for both planets. We further applied forward-model retrievals on the detected CO lines and retrieved the temperature-pressure profiles along with the CO volume mixing ratios. The retrieved logarithmic CO mixing ratio of WASP-18b (-2.2(-1.5)(+1.4)) is slightly higher than the value predicted by the self-consistent model assuming solar abundance. For WASP-76b, the retrieved CO mixing ratio (-3.6(-1.6)(+1.8)) is broadly consistent with the value of solar abundance. In addition, we included the equatorial rotation velocity (upsilon(eq)) in the retrieval when analyzing the line profile broadening. The obtained upsilon(eq) is 7.0 +/- 2.9 km s(-1) for WASP-18b and 5.2(-3.0)(+2.5) km s(-1) for WASP-76b, which are consistent with the tidally locked rotational velocities.
  •  
10.
  • Folsom, C. P., et al. (författare)
  • Orbital parameters, chemical composition and magnetic field of the Ap binary HD 98088
  • 2013
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 431:2, s. 1513-1527
  • Tidskriftsartikel (refereegranskat)abstract
    • HD 98088 is a synchronized, double-lined spectroscopic binary system with a magnetic Ap primary component and an Am secondary component. We study this rare system using high-resolution Multi-Site Continuous Spectroscopy spectropolarimetric data, to gain insight into the effect of binarity on the origin of stellar magnetism and the formation of chemical peculiarities in A-type stars. Using a new collection of 29 high-resolution Stokes VQU spectra we re-derive the orbital and stellar physical parameters and conduct the first disentangling of spectroscopic observations of the system to conduct spectral analysis of the individual stellar components. From this analysis we determine the projected rotational velocities of the stars and conduct a detailed chemical abundance analysis of each component using both the SYNTH3 and ZEEMAN spectrum synthesis codes. The surface abundances of the primary component are typical of a cool Ap star, while those of the secondary component are typical of an Am star. We present the first magnetic analysis of both components using modern data. Using least-squares deconvolution, we extract the longitudinal magnetic field strength of the primary component, which is observed to vary between +1170 and -920 G with a period consistent with the orbital period. There is no field detected in the secondary component. The magnetic field in the primary is predominantly dipolar, with the positive pole oriented approximately towards the secondary.
  •  
11.
  • Fossati, L., et al. (författare)
  • An in-depth spectroscopic analysis of RR Lyr Variations over the pulsation cycle
  • 2014
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 445:4, s. 4094-4104
  • Tidskriftsartikel (refereegranskat)abstract
    • The stellar parameters of RR Lyrae stars vary considerably over a pulsation cycle, and their determination is crucial for stellar modelling. We present a detailed spectroscopic analysis of the pulsating star RR Lyr, the prototype of its class, over a complete pulsation cycle, based on high-resolution spectra collected at the 2.7-m telescope of McDonald Observatory. We used simultaneous photometry to determine the accurate pulsation phase of each spectrum and determined the effective temperature, the shape of the depth-dependent microturbulent velocity, and the abundance of several elements, for each phase. The surface gravity was fixed to 2.4. Element abundances resulting from our analysis are stable over the pulsation cycle. However, a variation in ionization equilibrium is observed around minimum radius. We attribute this mostly to a dynamical acceleration contributing to the surface gravity. Variable turbulent convection on time-scales longer than the pulsation cycle has been proposed as a cause for the Blazhko effect. We test this hypothesis to some extent by using the derived variable depth-dependent microturbulent velocity profiles to estimate their effect on the stellar magnitude. These effects turn out to be wavelength dependent and much smaller than the observed light variations over the Blazhko cycle: if variations in the turbulent motions are entirely responsible for the Blazhko effect, they must surpass the scales covered by the microturbulent velocity. This work demonstrates the possibility of a self-consistent spectroscopic analysis over an entire pulsation cycle using static atmosphere models, provided one takes into account certain features of a rapidly pulsating atmosphere.
  •  
12.
  • Hahlin, Axel, et al. (författare)
  • Determination of small-scale magnetic fields on Sun-like stars in the near-infrared using CRIRES
  • 2023
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 675
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims: We aim to characterise the small-scale magnetic fields of a sample of 16 Sun-like stars and investigate the capabilities of the newly upgraded near-infrared (NIR) instrument CRIRES+ at the Very Large Telescope in the context of small-scale magnetic field studies. Our targets also had their magnetic fields studied with optical spectra, which allowed us to compare magnetic field properties at different spatial scales on the stellar surface and to contrast small-scale magnetic field measurements at different wavelengths.Methods: We analysed the Zeeman broadening signature for six magnetically sensitive and insensitive Fe I lines in the H-band to measure small-scale magnetic fields on the stellar surfaces of our sample. We used polarised radiative transfer modelling and non-local thermodynamic equilibrium departure coefficients in combination with Markov chain Monte Carlo sampling to determine magnetic field characteristics and non-magnetic stellar parameters. We used two different approaches to describe the small-scale magnetic fields. The first is a two-component model with a single magnetic region and a free magnetic field strength. The second model contains multiple magnetic components with fixed magnetic field strengths.Results: We found average magnetic field strengths ranging from & SIM;0.4 kG down to < 0.1 kG. The results align closely with other results from high-resolution NIR spectrographs, such as SPIRou. It appears that the typical magnetic field strength in the magnetic region is slightly stronger than 1.3 kG, and for most stars in our sample, this strength is between 1 and 2 kG. We also found that the small-scale fields correlate with the large-scale fields and that the small-scale fields are at least ten times stronger than the large-scale fields inferred with Zeeman Doppler imaging. The two- and multi-component models produce systematically different results, as the strong fields from the multi-component model increase the obtained mean magnetic field strength. When comparing our results with the optical measurements of small-scale fields, we found a systematic offset two to three times stronger than fields in the optical results. This discrepancy cannot be explained by uncertainties in stellar parameters. Care should therefore be taken when comparing results obtained at different wavelengths until a clear cause can be established.
  •  
13.
  •  
14.
  • Kochukhov, O, et al. (författare)
  • A self-consistent empirical model atmosphere, abundance and stratification analysis of the benchmark roAp star alpha Circini
  • 2009
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 499:3, s. 851-863
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Chemically peculiar (CP) stars are unique natural laboratories for the investigation of the microscopic diffusion processes of chemical elements. The element segregation under the influence of gravity and radiation pressure leads to the appearance of strong abundance gradients in the atmospheres of CP stars. Consequently, the atmospheric temperature-pressure structure of these objects could deviate significantly from the atmospheres of normal stars with homogeneous abundances. Aims. In this study we performed a self-consistent, empirical model atmosphere study of the brightest rapidly oscillating Ap star alpha Cir. We account for chemical stratification in the model atmosphere calculations and assess the importance of non-uniform vertical element distribution on the model structure, energy distribution and hydrogen line profiles. Methods. For the chemical stratification analysis we use the DDAFIT minimization tool in combination with a magnetic spectrum synthesis code. The model atmospheres with inhomogeneous vertical distributions of elements are calculated with the LLMODELS stellar model atmosphere code. Results. Based on an iterative procedure of the chemical abundance analysis of 52 ions of 35 elements, stratification modeling of 4 elements (Si, Ca, Cr and Fe) and subsequent re-calculations of the atmospheric structure, we derived a new model atmosphere of alpha Cir which is consistent with the inferred atmospheric chemistry of the star. We find T-eff = 7500 K, log g = 4.1, and demonstrate that chemical stratification has a noticeable impact on the model structure and modifies the formation of the hydrogen Balmer lines. At the same time, the energy distribution appears to be less sensitive to the presence of large abundance gradients. Conclusions. Our spectroscopically determined T-eff of alpha Cir agrees with the fundamental effective temperature of this star. This shows that temperatures inferred in detailed spectroscopic analyses of cool magnetic CP stars are not affected by a large systematic bias.
  •  
15.
  • Kochukhov, Oleg, et al. (författare)
  • Magnetic Doppler imaging considering atmospheric structure modifications due to local abundances : a luxury or a necessity?
  • 2012
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 421:4, s. 3004-3018
  • Tidskriftsartikel (refereegranskat)abstract
    • Magnetic Doppler imaging is currently the most powerful method of interpreting high-resolution spectropolarimetric observations of stars. This technique has provided the very first maps of stellar magnetic field topologies reconstructed from time series of full Stokes vector spectra, revealing the presence of small-scale magnetic fields on the surfaces of Ap stars. These studies were recently criticised by Stift et al., who claimed that magnetic inversions are not robust and are seriously undermined by neglecting a feedback on the Stokes line profiles from the local atmospheric structure in the regions of enhanced metal abundance. We show that Stift et al. misinterpreted published magnetic Doppler imaging results and consistently neglected some of the most fundamental principles behind magnetic mapping. Using state-of-the-art opacity sampling model atmosphere and polarized radiative transfer codes, we demonstrate that the variation of atmospheric structure across the surface of a star with chemical spots affects the local continuum intensity but is negligible for the normalized local Stokes profiles except for the rare situation of a very strong line in an extremely Fe-rich atmosphere. For the disc-integrated spectra of an Ap star with extreme abundance variations, we find that the assumption of a mean model atmosphere leads to moderate errors in Stokes I but is negligible for the circular and linear polarization spectra. Employing a new magnetic inversion code, which incorporates the horizontal variation of atmospheric structure induced by chemical spots, we reconstructed new maps of magnetic field and Fe abundance for the bright Ap star a2 CVn. The resulting distribution of chemical spots changes insignificantly compared to the previous modelling based on a single model atmosphere, while the magnetic field geometry does not change at all. This shows that the assertions by Stift et al. are exaggerated as a consequence of unreasonable assumptions and extrapolations, as well as methodological flaws and inconsistencies of their analysis. Our discussion proves that published magnetic inversions based on a mean stellar atmosphere are highly robust and reliable, and that the presence of small-scale magnetic field structures on the surfaces of Ap stars is indeed real. Incorporating horizontal variations of atmospheric structure in Doppler imaging can marginally improve reconstruction of abundance distributions for stars showing very large iron overabundances. But this costly technique is unnecessary for magnetic mapping with high-resolution polarization spectra.
  •  
16.
  • Kochukhov, Oleg, et al. (författare)
  • New generation model atmospheres for chemically peculiar stars
  • 2008
  • Ingår i: Contributions of the Astronomical Observatory Skalnate Pleso. - 1335-1842. ; 38:2, s. 419-420
  • Tidskriftsartikel (refereegranskat)abstract
    • The atmospheric structure of chemically peculiar stars deviates from that of normal stars with similar fundamental parameters due to unusual chemistry, abundance inhomogeneities and the presence of strong magnetic field. These effects are not considered in the standard model atmospheres, possibly leading to large errors in stellar parameter determination and abundance analysis. To resolve this problem we used the state-of-the-art opacity sampling model atmosphere code LLmodels to calculate a comprehensive grid of new generation model atmospheres for magnetic CP stars. This grid covers the whole parameter space occupied by SrCrEu and Si-peculiar stars, taking into account the characteristic temperature dependence of the chemical abundances. Here we present the first results of our model atmosphere calculations.
  •  
17.
  •  
18.
  • Kolenberg, K., et al. (författare)
  • An in-depth spectroscopic analysis of the Blazhko star RR Lyrae : I. Characterisation of the star: abundance analysis and fundamental parameters
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 519, s. A64-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The knowledge of accurate stellar parameters is a keystone in several fields of stellar astrophysics, such as asteroseismology and stellar evolution. Although the fundamental parameters can be derived from both spectroscopy and multicolour photometry, the results obtained are sometimes affected by systematic uncertainties. Stellar pulsation reaches high amplitudes in RR Lyrae stars, and as a consequence the stellar parameters vary significantly over the pulsation cycle. The abundances of the star, however, are not expected to change. Aims. We present a self-consistent spectral analysis of the pulsating star RR Lyr, which is the primary target of our study of the Blazhko effect. Methods. We used high-resolution and high signal-to-noise ratio spectra to carry out a consistent parameter determination and abundance analysis for RR Lyr. The LLmodels code was employed for model atmosphere calculations, while the SYNTH3 and WIDTH9 codes were used for line profile calculations and LTE abundance analysis. We describe in detail the methodology adopted to derive the fundamental parameters and the abundances. From a set of available high-resolution spectra of RR Lyr, we selected the phase of maximum radius at which the spectra are least disturbed by the pulsation. Using the abundances determined at this phase as a starting point, we expect to be able to determine the fundamental parameters determined at other phases more accurately. Results. The set of fundamental parameters obtained in this work fits the observed spectrum accurately. From the abundance analysis, we find clear indications of a depth-dependent microturbulent velocity, that we quantify. Conclusions. We confirm the importance of a consistent analysis of relevant spectroscopic features, the application of advanced model atmospheres, and the use of up-to-date atomic line data for determining stellar parameters. These results are crucial for further studies, e. g., detailed theoretical modelling of the observed pulsations.
  •  
19.
  • Lueftinger, T., et al. (författare)
  • Surface structure of the CoRoT CP2 target star HD50773
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 509:1, s. A43-
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. We compare surface maps of the chemically peculiar star HD50773 produced with a Bayesian technique and based on high quality CoRoT photometry with those derived from rotation phase resolved spectropolarimetry. The goal is to investigate the correlation of surface brightness with surface chemical abundance distribution and the stellar magnetic surface field. Methods. The rotational period of the star was determined from a nearly 60 days long continuous light curve obtained during the initial run of CoRoT. Using a Bayesian approach to star-spot modelling, which in this work is applied for the first time for the photometric mapping of a CP star, we derived longitudes, latitudes and radii of four different spot areas. Additional parameters like stellar inclination and the spot's intensities were also determined. The CoRoT observations triggered an extensive ground-based spectroscopic and spectropolarimetric observing campaign and enabled us to obtain 19 different high resolution spectra in Stokes parameters I and V with NARVAL, ESPaDOnS, and SemelPol spectropolarimeters. Doppler and Magnetic Doppler imaging techniques allowed us to derive the magnetic field geometry of the star and the surface abundance distributions of Mg, Si, Ca, Ti, Cr, Fe, Ni, Y, and Cu. Results. We find a dominant dipolar structure of the surface magnetic field. The CoRoT light curve variations and abundances of most elements mapped are correlated with the aforementioned geometry: Cr, Fe, and Si are enhanced around the magnetic poles and coincide with the bright regions on the surface of HD50773 as predicted by our light curve synthesis and confirmed by photometric imaging.
  •  
20.
  • Morin, J., et al. (författare)
  • Multiple views of magnetism in cool stars
  • 2013
  • Ingår i: Astronomical Notes - Astronomische Nachrichten. - : Wiley. - 0004-6337 .- 1521-3994. ; 334:1-2, s. 48-52
  • Tidskriftsartikel (refereegranskat)abstract
    • Magnetic fields are regarded as a crucial element for our understanding of stellar physics. They can be studied with a variety of methods which provide complementary - and sometimes contradictory - information about the structure, strength and dynamics of the magnetic field and its role in the evolution of stars. Stellar magnetic fields can be investigated either with direct methods based on the Zeeman effect or through the observation of activity phenomena resulting from the interaction of the field with the stellar atmosphere. In this Cool Stars 17 Splinter Session we discussed the results obtained by the many ongoing studies of stellar activity and direct studies of surface magnetic fields, as well as the state-of-the-art techniques on which they are based. We show the strengths and limitations of the various approaches currently used and point out their evolution as well as the interest of coupling various magnetism and activity proxies. (C) 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  •  
21.
  • Nesvacil, N., et al. (författare)
  • A self-consistent chemically stratified atmosphere model for the roAp star 10 Aquilae
  • 2013
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 552, s. A28-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Chemically peculiar A-type (Ap) stars are a subgroup of the CP2 stars that exhibit anomalous overabundances of numerous elements, e.g. Fe, Cr, Sr, and rare earth elements. The pulsating subgroup of Ap stars, the roAp stars, present ideal laboratories to observe and model pulsational signatures, as well as the interplay of the pulsations with strong magnetic fields and vertical abundance gradients. Aims. Based on high-resolution spectroscopic observations and observed stellar energy distributions, we construct a self-consistent model atmosphere for the roAp star 10 Aquilae (HD 176232). It accounts for modulations of the temperature-pressure structure caused by vertical abundance gradients. We demonstrate that such an analysis can be used to determine precisely the fundamental atmospheric parameters required for pulsation modelling. Methods. Average abundances were derived for 56 species. For Mg, Si, Ca, Cr, Fe, Co, Sr, Pr, and Nd, vertical stratification profiles were empirically derived using the DDAFIT minimisation routine together with the magnetic spectrum synthesis code SYNTHMAG. Model atmospheres were computed with the LLMODELS code, which accounts for the individual abundances and stratification of chemical elements. Results. For the final model atmosphere, T-eff = 7550 K and log (g) = 3.8 were adopted. While Mg, Si, Co, and Cr exhibit steep abundance gradients, Ca, Fe, and Sr showed much wider abundance gradients between log tau(5000) = -1.5 and 0.5. Elements Mg and Co were found to be the least stratified, while Ca and Sr showed strong depth variations in abundance of up to approximate to 6 dex.
  •  
22.
  • Nesvacil, N., et al. (författare)
  • Multi-element Doppler imaging of the CP2 star HD 3980
  • 2012
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 537
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. In atmospheres of magnetic main-sequence stars, the diffusion of chemical elements leads to a number of observed anomalies, such as abundance spots across the stellar surface. Aims. The aim of this study was to derive a detailed picture of the surface abundance distribution of the magnetic chemically peculiar star HD 3980. Methods. Based on high-resolution, phase-resolved spectroscopic observations of the magnetic A-type star HD 3980, the inhomogeneous surface distribution of 13 chemical elements (Li, O, Si, Ca, Cr, Mn, Fe, La, Ce, Pr, Nd, Eu, and Gd) has been reconstructed. The INVERS12 code was used to invert the rotational variability in line profiles to elemental surface distributions. Results. Assuming a centered, dominantly dipolar magnetic field configuration, we find that Li, O, Mg, Pr, and Nd are mainly concentrated in the area of the magnetic poles and depleted in the regions around the magnetic equator. The high abundance spots of Si, La, Ce, Eu, and Gd are located between the magnetic poles and the magnetic equator. Except for La, which is clearly depleted in the area of the magnetic poles, no obvious correlation with the magnetic field has been found for these elements otherwise. Ca, Cr, and Fe appear enhanced along the rotational equator and the area around the magnetic poles. The intersection between the magnetic and the rotational equator constitutes an exception, especially for Ca and Cr, which are depleted in that region. Conclusions. No obvious correlation between the theoretically predicted abundance patterns and those determined in this study could be found. This can be attributed to a lack of up-to-date theoretical models, especially for rare earth elements.
  •  
23.
  • Reiners, A., et al. (författare)
  • Radial velocity signatures of Zeeman broadening
  • 2013
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 552, s. A103-
  • Tidskriftsartikel (refereegranskat)abstract
    • Stellar activity signatures such as spots and plages can significantly limit the search for extrasolar planets. Current models of activity-induced radial velocity (RV) signals focus on the impact of temperature contrast in spots according to which they predict the signal to diminish toward longer wavelengths. The Zeeman effect on RV measurements counteracts this: the relative importance of the Zeeman effect on RV measurements should grow with wavelength because the Zeeman displacement itself grows with lambda, and because a magnetic and cool spot contributes more to the total flux at longer wavelengths. In this paper, we model the impact of active regions on stellar RV measurements including both temperature contrast in spots and line broadening by the Zeeman effect. We calculate stellar line profiles using polarized radiative transfer models including atomic and molecular Zeeman splitting over large wavelength regions from 0.5 to 2.3 mu m. Our results show that the amplitude of the RV signal caused by the Zeeman effect alone can be comparable to that caused by temperature contrast; a spot magnetic field of similar to 1000 G can produce a similar RV amplitude as a spot temperature contrast of similar to 1000 K. Furthermore, the RV signal caused by cool and magnetic spots increases with wavelength, in contrast to the expectation from temperature contrast alone. We also calculate the RV signal caused by variations in average magnetic field strength from one observation to the next, for example due to a magnetic cycle, but find it unlikely that this can significantly influence the search for extrasolar planets. As an example, we derive the RV amplitude of the active M dwarf AD Leo as a function of wavelength using data from the HARPS spectrograph. Across this limited wavelength range, the RV signal does not diminish at longer wavelengths but shows evidence for the opposite behavior, consistent with a strong influence of the Zeeman effect. We conclude that the RV signal of active stars does not vanish at longer wavelength but sensitively depends on the combination of spot temperature and magnetic field; in active low-mass stars, it is even likely to grow with wavelength.
  •  
24.
  • Ryabchikova, T., et al. (författare)
  • On the Accuracy of Atmospheric Parameter Determination in BAFGK Stars
  • 2015
  • Ingår i: PHYSICS AND EVOLUTION OF MAGNETIC AND RELATED STARS. - 9781583818732 ; , s. 308-319
  • Konferensbidrag (refereegranskat)abstract
    • During the past few years, many papers determining the atmospheric parameters in FGK stars appeared in the literature where the accuracy of effective temperatures is given as 20-40 K. For main sequence stars within the 5 000-13 000 K temperature range, we have performed a comparative analysis of the parameters derived from the spectra by using the SME (Spectroscopy Made Easy) package and those found in the literature. Our sample includes standard stars Sirius, Procyon, delta Eri, and the Sun. Combining different spectral regions in the fitting procedure, we investigated an effect different atomic species have on the derived atmospheric parameters. The temperature difference may exceed 100 K depending on the spectral regions used in the SME procedure. It is shown that the atmospheric parameters derived with the SME procedure which includes wings of hydrogen lines in fitting agrees better with the results derived by the other methods and tools across a large part of the main sequence. For three stars-pi Cet, 21 Peg, and Procyon-the atmospheric parameters were also derived by fitting a calculated energy distribution to the observed one. We found a substantial difference in the parameters inferred from different sets and combinations of spectrophotometric observations. An intercomparison of our results and literature data shows that the average accuracy of effective temperature determination for cool stars and for the early B-stars is 70-85 K and 170-200 K, respectively.
  •  
25.
  • Sachkov, M., et al. (författare)
  • Pulsations in the atmosphere of the rapidly oscillating star 33 Lib
  • 2011
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 416:4, s. 2669-2677
  • Tidskriftsartikel (refereegranskat)abstract
    • In 2009, the rapidly oscillating peculiar A-type (roAp) star 33 Lib was the target of an intense observing campaign, combining ground-based spectroscopy with space photometry obtained with the Microvariability and Oscillation of STars (MOST) satellite. We collected 780 spectra using the Echelle Spectro Polarimetric Device for the Observation of Stars (ESPaDOnS) spectrograph attached at the 3.6-m Canada-France-Hawaii Telescope and 374 spectra with the Fibre-fed Echelle Spectrograph attached at the 2.56-m Nordic Optical Telescope to perform time-resolved spectroscopy of 33 Lib. In addition, we used 111 Ultraviolet and Visual Echelle Spectrograph (UVES) spectra (2004) from the European Southern Observatory archive to check mode stability. Frequency analysis of the new radial velocity (RV) measurements confirms the previously reported frequency pattern (two frequencies and the first harmonic of the main one) and reveals an additional frequency at 1.991 mHz. The new frequency solution perfectly reproduces the RV variations from the 2004 and 2009 observational sets, providing strong support for p mode stability in this roAp star over at least 5 years.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 43

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy