SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Singh Priyanka) "

Sökning: WFRF:(Singh Priyanka)

  • Resultat 1-25 av 31
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Beal, Jacob, et al. (författare)
  • Robust estimation of bacterial cell count from optical density
  • 2020
  • Ingår i: Communications Biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 3:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data.
  •  
2.
  • 2019
  • Tidskriftsartikel (refereegranskat)
  •  
3.
  • Kushwaha, Anand Kumar, et al. (författare)
  • Development and evaluation of solid lipid nanoparticles of raloxifene hydrochloride for enhanced bioavailability
  • 2013
  • Ingår i: BioMed Research International. - : Hindawi Limited. - 2314-6133 .- 2314-6141. ; 2013
  • Tidskriftsartikel (refereegranskat)abstract
    • Raloxifene hydrochloride (RL-HCL) is an orally selective estrogen receptor modulator (SERM) with poor bioavailability of nearly 2% due to its poor aqueous solubility and extensive first pass metabolism. In order to improve the oral bioavailability of raloxifene, raloxifene loaded solid lipid nanoparticles (SLN) have been developed using Compritol 888 ATO as lipid carrier and Pluronic F68 as surfactant. Raloxifene loaded SLN were prepared by solvent emulsification/evaporation method, and different concentrations of surfactant, and homogenization speed were taken as process variables for optimization. SLN were characterized for particle size, zeta potential, entrapment efficiency, surface morphology, and crystallinity of lipid and drug.In vitrodrug release studies were performed in phosphate buffer of pH 6.8 using dialysis bag diffusion technique. Particle sizes of all the formulations were in the range of 250 to 1406 nm, and the entrapment efficiency ranges from 55 to 66%. FTIR and DSC studies indicated no interaction between drug and lipid, and the XRD spectrum showed that RL-HCL is in amorphous form in the formulation.In vitrorelease profiles were biphasic in nature and followed Higuchi model of release kinetics. Pharmacokinetics of raloxifene loaded solid lipid nanoparticles after oral administration to Wistar rats was studied. Bioavailability of RL-HCL loaded SLN was nearly five times than that of pure RL-HCL.
  •  
4.
  • Mahapatra, Sayanta, et al. (författare)
  • Substoichiometric Hsp104 regulates the genesis and persistence of self-replicable amyloid seeds of Sup35 prion domain
  • 2022
  • Ingår i: Journal of Biological Chemistry. - : Elsevier. - 0021-9258 .- 1083-351X. ; 298:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Prion-like self-perpetuating conformational conversion of proteins is involved in both transmissible neurodegenerative diseases in mammals and non-Mendelian inheritance in yeast. The transmissibility of amyloid-like aggregates is dependent on the stoichiometry of chaperones such as heat shock proteins (Hsps), including disaggregases. To provide the mechanistic underpinnings of the formation and persistence of prefibrillar amyloid seeds, we investigated the role of substoichiometric Hsp104 on the in vitro amyloid aggregation of the prion domain (NM-domain) of Saccharomyces cerevisiae Sup35. At low substoichiometric concentrations, we show Hsp104 exhibits a dual role: it considerably accelerates the formation of prefibrillar species by shortening the lag phase but also prolongs their persistence by introducing unusual kinetic halts and delaying their conversion into mature amyloid fibers. Additionally, Hsp104-modulated amyloid species displayed a better seeding capability compared to NM-only amyloids. Using biochemical and biophysical tools coupled with site-specific dynamic readouts, we characterized the distinct structural and dynamical signatures of these amyloids. We reveal that Hsp104-remodeled amyloidogenic species are compositionally diverse in prefibrillar aggregates and are packed in a more ordered fashion compared to NM-only amyloids. Finally, we show these Hsp104-remodeled, conformationally distinct NM aggregates display an enhanced autocatalytic self-templating ability that might be crucial for phenotypic outcomes. Taken together, our results demonstrate that substoichiometric Hsp104 promotes compositional diversity and conformational modulations during amyloid formation, yielding effective prefibrillar seeds that are capable of driving prion-like Sup35 propagation. Our findings underscore the key functional and pathological roles of substoichiometric chaperones in prion-like propagation.
  •  
5.
  • Balusamy, Sri Renukadevi, et al. (författare)
  • Advancing sustainable agriculture: a critical review of smart and eco-friendly nanomaterial applications
  • 2023
  • Ingår i: Journal of Nanobiotechnology. - 1477-3155. ; 21:1
  • Forskningsöversikt (refereegranskat)abstract
    • Undoubtedly, nanoparticles are one of the ideal choices for achieving challenges related to bio sensing, drug delivery, and biotechnological tools. After gaining success in biomedical research, scientists are exploring various types of nanoparticles for achieving sustainable agriculture. The active nanoparticles can be used as a direct source of micronutrients or as a delivery platform for delivering the bioactive agrochemicals to improve crop growth, crop yield, and crop quality. Till date, several reports have been published showing applications of nanotechnology in agriculture. For instance, several methods have been employed for application of nanoparticles; especially metal nanoparticles to improve agriculture. The physicochemical properties of nanoparticles such as core metal used to synthesize the nanoparticles, their size, shape, surface chemistry, and surface coatings affect crops, soil health, and crop-associated ecosystem. Therefore, selecting nanoparticles with appropriate physicochemical properties and applying them to agriculture via suitable method stands as smart option to achieve sustainable agriculture and improved plant performance. In presented review, we have compared various methods of nanoparticle application in plants and critically interpreted the significant differences to find out relatively safe and specific method for sustainable agricultural practice. Further, we have critically analyzed and discussed the different physicochemical properties of nanoparticles that have direct influence on plants in terms of nano safety and nanotoxicity. From literature review, we would like to point out that the implementation of smaller sized metal nanoparticles in low concentration via seed priming and foliar spray methods could be safer method for minimizing nanotoxicity, and for exhibiting better plant performance during stress and non-stressed conditions. Moreover, using nanomaterials for delivery of bioactive agrochemicals could pose as a smart alternative for conventional chemical fertilizers for achieving the safer and cleaner technology in sustainable agriculture. While reviewing all the available literature, we came across some serious drawbacks such as the lack of proper regulatory bodies to control the usage of nanomaterials and poor knowledge of the long-term impact on the ecosystem which need to be addressed in near future for comprehensive knowledge of applicability of green nanotechnology in agriculture.
  •  
6.
  • Clark, DW, et al. (författare)
  • Associations of autozygosity with a broad range of human phenotypes
  • 2019
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 10:1, s. 4957-
  • Tidskriftsartikel (refereegranskat)abstract
    • In many species, the offspring of related parents suffer reduced reproductive success, a phenomenon known as inbreeding depression. In humans, the importance of this effect has remained unclear, partly because reproduction between close relatives is both rare and frequently associated with confounding social factors. Here, using genomic inbreeding coefficients (FROH) for >1.4 million individuals, we show that FROH is significantly associated (p < 0.0005) with apparently deleterious changes in 32 out of 100 traits analysed. These changes are associated with runs of homozygosity (ROH), but not with common variant homozygosity, suggesting that genetic variants associated with inbreeding depression are predominantly rare. The effect on fertility is striking: FROH equivalent to the offspring of first cousins is associated with a 55% decrease [95% CI 44–66%] in the odds of having children. Finally, the effects of FROH are confirmed within full-sibling pairs, where the variation in FROH is independent of all environmental confounding.
  •  
7.
  • Huis in 't Veld, Pim J, et al. (författare)
  • Molecular basis of outer kinetochore assembly on CENP-T
  • 2016
  • Ingår i: eLIFE. - : eLife Sciences Publications, Ltd. - 2050-084X. ; 5
  • Tidskriftsartikel (refereegranskat)abstract
    • Stable kinetochore-microtubule attachment is essential for cell division. It requires recruitment of outer kinetochore microtubule binders by centromere proteins C and T (CENP-C and CENP-T). To study the molecular requirements of kinetochore formation, we reconstituted the binding of the MIS12 and NDC80 outer kinetochore subcomplexes to CENP-C and CENP-T. Whereas CENP-C recruits a single MIS12:NDC80 complex, we show here that CENP-T binds one MIS12:NDC80 and two NDC80 complexes upon phosphorylation by the mitotic CDK1:Cyclin B complex at three distinct CENP-T sites. Visualization of reconstituted complexes by electron microscopy supports this model. Binding of CENP-C and CENP-T to MIS12 is competitive, and therefore CENP-C and CENP-T act in parallel to recruit two MIS12 and up to four NDC80 complexes. Our observations provide a molecular explanation for the stoichiometry of kinetochore components and its cell cycle regulation, and highlight how outer kinetochore modules bridge distances of well over 100 nm.
  •  
8.
  • Jones, Benedict C, et al. (författare)
  • To which world regions does the valence-dominance model of social perception apply?
  • 2021
  • Ingår i: Nature Human Behaviour. - : Springer Science and Business Media LLC. - 2397-3374. ; 5:1, s. 159-169
  • Tidskriftsartikel (refereegranskat)abstract
    • Over the past 10 years, Oosterhof and Todorov's valence-dominance model has emerged as the most prominent account of how people evaluate faces on social dimensions. In this model, two dimensions (valence and dominance) underpin social judgements of faces. Because this model has primarily been developed and tested in Western regions, it is unclear whether these findings apply to other regions. We addressed this question by replicating Oosterhof and Todorov's methodology across 11 world regions, 41 countries and 11,570 participants. When we used Oosterhof and Todorov's original analysis strategy, the valence-dominance model generalized across regions. When we used an alternative methodology to allow for correlated dimensions, we observed much less generalization. Collectively, these results suggest that, while the valence-dominance model generalizes very well across regions when dimensions are forced to be orthogonal, regional differences are revealed when we use different extraction methods and correlate and rotate the dimension reduction solution. PROTOCOL REGISTRATION: The stage 1 protocol for this Registered Report was accepted in principle on 5 November 2018. The protocol, as accepted by the journal, can be found at https://doi.org/10.6084/m9.figshare.7611443.v1 .
  •  
9.
  • Joshi, Abhayraj S., et al. (författare)
  • Interactions of gold and silver nanoparticles with bacterial biofilms: Molecular interactions behind inhibition and resistance
  • 2020
  • Ingår i: International Journal of Molecular Sciences. - : MDPI AG. - 1661-6596 .- 1422-0067. ; 21:20, s. 1-24
  • Tidskriftsartikel (refereegranskat)abstract
    • Many bacteria have the capability to form a three-dimensional, strongly adherent network called ‘biofilm’. Biofilms provide adherence, resourcing nutrients and offer protection to bacterial cells. They are involved in pathogenesis, disease progression and resistance to almost all classical antibiotics. The need for new antimicrobial therapies has led to exploring applications of gold and silver nanoparticles against bacterial biofilms. These nanoparticles and their respective ions exert antimicrobial action by damaging the biofilm structure, biofilm components and hampering bacterial metabolism via various mechanisms. While exerting the antimicrobial activity, these nanoparticles approach the biofilm, penetrate it, migrate internally and interact with key components of biofilm such as polysaccharides, proteins, nucleic acids and lipids via electrostatic, hydrophobic, hydrogen-bonding, Van der Waals and ionic interactions. Few bacterial biofilms also show resistance to these nanoparticles through similar interactions. The nature of these interactions and overall antimicrobial effect depend on the physicochemical properties of biofilm and nanoparticles. Hence, study of these interactions and participating molecular players is of prime importance, with which one can modulate properties of nanoparticles to get maximal antibacterial effects against a wide spectrum of bacterial pathogens. This article provides a comprehensive review of research specifically directed to understand the molecular interactions of gold and silver nanoparticles with various bacterial biofilms.
  •  
10.
  • Joshi, Abhayraj S., et al. (författare)
  • Viridibacillus culture derived silver nanoparticles exert potent anticancer action in 2D and 3D models of lung cancer via mitochondrial depolarization-mediated apoptosis
  • 2024
  • Ingår i: Materials Today Bio. - 2590-0064. ; 25
  • Tidskriftsartikel (refereegranskat)abstract
    • Lung cancer is one of the most commonly occurring cancer types that accounts for almost 2 million cases per year. Its resistance to anticancer drugs, failure of new molecules in clinical trials, severe side-effects of current treatments, and its recurrence limit the success of anticancer therapies. Nanotherapeutic agents offer several advantages over conventional anticancer therapies, including improved retention in tumors, specificity, and anticancer effects at lower concentrations, hence reducing the side-effects. Here, we have explored the anticancer activity of silver nanoparticles synthesized in Viridibacillus sp. enriched culture medium for the first time. Such green nanoparticles, synthesized by biological systems, are superior to chemically synthesized ones in terms of their environmental footprint and production cost, and have one crucial advantage of excellent stability owing to their biological corona. To assess anticancer activity of these nanoparticles, we used conventional 2D cultured A549 cells as well as 3D spheroids of A549 cells. In both models of lung cancer, our silver nanoparticles diminished cell proliferation, arrested DNA synthesis, and showed a dose dependent cytotoxic effect. The nanoparticles damaged the DNA and mitochondrial structures in both A549 cells and A549 spheroids, leading to mitochondrial depolarization and increased cell permeability. Low lethal median doses (LD50) for 2D cultured A549 cells (1 μg/ml) and for A549 spheroids (13 μg/ml) suggest that our nanoparticles are potent anticancer agents. We also developed in vitro tumor progression model and in vitro tumor size model using 3D spheroids to test anticancer potential of our nanoparticles which otherwise would require longer experimental duration along with large number of animals and trained personnel. In these models, our nanoparticles showed strong dose dependent anticancer activity. In case of in vitro tumor progression model, the A549 cells failed to form tight spheroidal mass and showed increased dead cell fraction since day 1 as compared to control. On the other hand, in case of in vitro tumor size model, the 4 and 8 μg/ml nanoparticle treatment led to reduction in spheroid size from 615 ± 53 μm to 440 ± 45 μm and 612 ± 44 μm to 368 ± 62 μm respectively, within the time span of 3 days post treatment. We believe that use of such novel experimental models offers excellent and fast alternative to in vivo studies, and to the best of our knowledge, this is the first report that gives proof-of-concept for use of such novel in vitro cancer models to test anticancer agents such as Viridibacilli culture derived silver nanoparticles. Based on our results, we propose that these nanoparticles offer an interesting alternative for anticancer therapies, especially if they can be combined with classical anticancer drugs.
  •  
11.
  • Khan, Fazlurrahman, et al. (författare)
  • Multiple potential strategies for the application of nisin and derivatives
  • 2023
  • Ingår i: Critical Reviews in Microbiology. - 1040-841X .- 1549-7828. ; 49:5, s. 628-657
  • Forskningsöversikt (refereegranskat)abstract
    • Nisin is a naturally occurring bioactive small peptide produced by Lactococcus lactis subsp. lactis and belongs to the Type A (I) lantibiotics. Due to its potent antimicrobial activity, it has been broadly employed to preserve various food materials as well as to combat a variety of microbial pathogens. The present review discusses the antimicrobial properties of nisin and different types of their derivatives employed to treat microbial pathogens with a detailed underlying mechanism of action. Several alternative strategies such as combination, conjugation, and nanoformulations have been discussed in order to address several issues such as rapid degradation, instability, and reduced activity due to the various environmental factors that arise in the applications of nisin. Furthermore, the evolutionary relationship of many nisin genes from different nisin-producing bacterial species has been investigated. A detailed description of the natural and bioengineered nisin variants, as well as the underlying action mechanisms, has also been provided. The chemistry used to apply nisin in conjugation with natural or synthetic compounds as a synergetic mode of antimicrobial action has also been thoroughly discussed. The current review will be useful in learning about recent and past research that has been performed on nisin and its derivatives as antimicrobial agents.
  •  
12.
  • Khan, Fazlurrahman, et al. (författare)
  • Retrospective analysis of the key molecules involved in the green synthesis of nanoparticles
  • 2022
  • Ingår i: Nanoscale. - : Royal Society of Chemistry (RSC). - 2040-3372 .- 2040-3364. ; 14, s. 14824-14857
  • Forskningsöversikt (refereegranskat)abstract
    • Emerging nanotechnology leads to success in synthesizing and applying nanoparticles (NPs) using the green-chemistry approach. NPs synthesized using naturally derived materials are a potential alternative to chemical and physical methods because they are simple, cost-effective, eco-friendly, and lower the possibility of hazardous residues being released into the environment. Furthermore, NPs synthesized using the green synthesis approach are stable and biocompatible. However, because natural extracts contain a diverse spectrum of bioactive components, it is difficult to pinpoint the specific component involved in NP formation. Furthermore, the bioactive component contained in the extract changes based on a number of environmental factors; therefore, several studies began with the synthesis of NPs using a pure compound isolated from diverse natural sources. Hence, the present review paper makes an effort to retrospectively analyze the key compounds of the extracts which are responsible for the synthesis of the NPs. The analysis was carried out based on the physicochemical characteristics and biological activities of NPs synthesized from either the extract or the pure compounds. These pure-compound-based NPs were studied for their antimicrobial, antibiofilm, anti-inflammatory, anticancer, and antioxidant properties. In addition, the present review also describes progress in the study of pure compound-based numerous biological activities and the underlying mechanisms of action.
  •  
13.
  • Moshontz, Hannah, et al. (författare)
  • The Psychological Science Accelerator: Advancing Psychology Through a Distributed Collaborative Network
  • 2018
  • Ingår i: Advances in Methods and Practices in Psychological Science. - : SAGE Publications. - 2515-2459 .- 2515-2467. ; 1:4, s. 501-515
  • Tidskriftsartikel (refereegranskat)abstract
    • Concerns about the veracity of psychological research have been growing. Many findings in psychological science are based on studies with insufficient statistical power and nonrepresentative samples, or may otherwise be limited to specific, ungeneralizable settings or populations. Crowdsourced research, a type of large-scale collaboration in which one or more research projects are conducted across multiple lab sites, offers a pragmatic solution to these and other current methodological challenges. The Psychological Science Accelerator (PSA) is a distributed network of laboratories designed to enable and support crowdsourced research projects. These projects can focus on novel research questions or replicate prior research in large, diverse samples. The PSA’s mission is to accelerate the accumulation of reliable and generalizable evidence in psychological science. Here, we describe the background, structure, principles, procedures, benefits, and challenges of the PSA. In contrast to other crowdsourced research networks, the PSA is ongoing (as opposed to time limited), efficient (in that structures and principles are reused for different projects), decentralized, diverse (in both subjects and researchers), and inclusive (of proposals, contributions, and other relevant input from anyone inside or outside the network). The PSA and other approaches to crowdsourced psychological science will advance understanding of mental processes and behaviors by enabling rigorous research and systematic examination of its generalizability.
  •  
14.
  • Panchal, Vaidik, et al. (författare)
  • FPGA implementation of proposed number plate localization algorithm based on YOLOv2 (You Only Look Once)
  • 2023
  • Ingår i: Microsystem Technologies. - : Springer Nature. - 0946-7076 .- 1432-1858. ; 29:10, s. 1501-1513
  • Tidskriftsartikel (refereegranskat)abstract
    • Many algorithms used in machine learning and artificial intelligence rely on exact object identification and recognition as their foundation for efficiency and accuracy. Hardware implementation of such methods, when implemented, serves to boost the reliability and productivity of object detection in a wide range of contexts. Hardware implementation of such an algorithm takes a lot of resources and a huge amount of calculation time. The object detection and recognition process require a collection of complex algorithms and a series of filtering approaches to work beyond the boundary conditions. The YOLOv2 network is superior to filters and complicated algorithms for this problem. The authors of this study propose an enhanced YOLOv2 Network for object recognition and a novel approach for optimising the existing YOLOv2 Network for localization to pinpoint the ROI that can be used to scale down and contain the object's original area. The network is proposed by configuring the existing YOLOv2 with additional convolution layers and dropout layers. The dropout layers are added to reduce the dependency on a single neuron and is an effective way of preventing overfitting of the network. Also, instead of ReLU as the activation function, we are using the Swish activation function which tends to provide better results. By isolating and producing the region of interest (ROI) from the original image, the algorithm was able to significantly cut down on both the number of resources needed and the time needed to complete the task. The proposed work is implemented on an FPGA board (Xilinx Zynq-Z7010 FPGA board), and the dataset is collected and prepared by the authors. Data augmentation is done to enhance the training data to enhance the training data, which results in better trained network. MATLAB is used to demonstrate the feasibility of the work and provide a thorough evaluation of its merits. The results show that the accuracy of the conventional algorithm approach drops to 20–30% once you move outside the boundaries, whereas the accuracy of the proposed work increases to 60–70% and a 15–20% increase in efficiency with proposed network based on YOLOv2. The proposed algorithm is three times as fast as the standard method while using only 35 percent as much technology.
  •  
15.
  • Rai, Nilesh, et al. (författare)
  • Fungal Endophytes : an Accessible Source of Bioactive Compounds with Potential Anticancer Activity
  • 2022
  • Ingår i: Applied Biochemistry and Biotechnology. - : Springer. - 0273-2289 .- 1559-0291. ; 194, s. 3296-3319
  • Forskningsöversikt (refereegranskat)abstract
    • Endophytes either be bacteria, fungi, or actinomycetes colonize inside the tissue of host plants without showing any immediate negative effects on them. Among numerous natural alternative sources, fungal endophytes produce a wide range of structurally diverse bioactive metabolites including anticancer compounds. Considering the production of bioactive compounds in low quantity, genetic and physicochemical modification of the fungal endophytes is performed for the enhanced production of bioactive compounds. Presently, for the treatment of cancer, chemotherapy is majorly used, but the side effects of chemotherapy are of prime concern in clinical practices. Also, the drug-resistant properties of carcinoma cells, lack of cancer cells-specific medicine, and the side effects of drugs are the biggest obstacles in cancer treatment. The interminable requirement of potential drugs has encouraged researchers to seek alternatives to find novel bioactive compounds, and fungal endophytes seem to be a probable target for the discovery of anticancer drugs. The present review focuses a comprehensive literature on the major fungal endophyte-derived bioactive compounds which are presently been used for the management of cancer, biotic factors influencing the production of bioactive compounds and about the challenges in the field of fungal endophyte research.
  •  
16.
  • Saini, Prashant, et al. (författare)
  • A review of the techno-economic potential and environmental impact analysis through life cycle assessment of parabolic trough collector towards the contribution of sustainable energy.
  • 2023
  • Ingår i: Heliyon. - 2405-8440. ; 9:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Parabolic trough collectors (P.T.Cs) are efficient solar energy harvesting devices utilized in various industries, for instance, space heating, solar cooling, solar drying, pasteurization, sterilization, electricity generation, process heat, solar cooking, and many other applications. However, their usage is limited as the high capital and operating costs; according to the International Renewable Energy Agency's 2020 report, the global weighted average levelized cost of electricity (L.C.O.E) for P.T.Cs was 0.185 $/kWh in 2018. This work analyses the economic, technical, and environmental potential of sustainable energy to increase the use of P.T.Cs in different sectors. To study how self-weight, heat loss, and wind velocity affect P.T.C performance, prototype testing, and wind flow analysis were used. Although P.T.Cs outperform in capacity factor, gross-to-net conversion, and annual energy production, improving their overall efficiency is crucial in reducing total energy production costs. Wire coils, discs, and twisted tape-type inserts can enhance their performance by increasing turbulence and heat transfer area. Improving the system's overall efficiency by enhancing the functioning and operation of individual components will also help decrease total energy production costs. The aim is to minimize the L.C.O.E associated with a P.T.C in order to enhance its economic viability for an extended period. When the nanofluid-oriented P.T.C was included in the conventional P.T.C workings, there was a decrease in the L.C.O.E by 1%. Of all the technologies available, ocean, geothermal, and C.S.P parabolic trough plants generate lower amounts of waste and harmful gases, with average emissions of 2.39%, 2.23%, and 2.16%, respectively, throughout their lifespan. For solar-only and non-hybrid thermal energy storage plants, the range of greenhouse gas emissions is between 20 and 34 kgCO2 equivalents per megawatt-hour. Coal, natural gas steam turbines, nuclear power plants, bioenergy, solar PV, geothermal, concentrated solar power, hydropower reservoir, hydropower river, ocean, and wind power plants all release greenhouse gases at rates of 1022, 587.5, 110.5, 633, 111, 48, 41, 82.5, 7.5, 12.5, and 41.5 gCO2-e/kWh, respectively. This information is useful to compare the environmental effect of various energy sources and help us to choose cleaner, more sustainable options for the production of electricity. The ongoing advancements and future scope of P.T.Cs could potentially make them more economically viable for domestic, commercial, and industrial applications.
  •  
17.
  • Selvavinayagam, Sivaprakasam T., et al. (författare)
  • Clinical characteristics and novel mutations of omicron subvariant XBB in Tamil Nadu, India - a cohort study
  • 2023
  • Ingår i: The Lancet Regional Health - Southeast Asia. - : ELSEVIER. - 2772-3682. ; 19
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Despite the continued vaccination efforts, there had been a surge in breakthrough infections, and the emergence of the B.1.1.529 omicron variant of SARS-CoV-2 in India. There is a paucity of information globally on the role of newer XBB variants in community transmission. Here, we investigated the mutational patterns among hospitalised patients infected with the XBB omicron sub-variant, and checked if there was any association between the rise in the number of COVID-19 cases and the observed novel mutations in Tamil Nadu, India. Methods Nasopharyngeal and oropharyngeal swabs, collected from symptomatic and asymptomatic COVID-19 patients were subjected to real-time PCR followed by Next Generation Sequencing (NGS) to rule out the ambiguity of mutations in viruses isolated from the patients (n = 98). Using the phylogenetic association, the mutational patterns were used to corroborate clinico-demographic characteristics and disease severity among the patients. Findings Overall, we identified 43 mutations in the S gene across 98 sequences, of which two were novel mutations (A27S and T747I) that have not been reported previously with XBB sub-variants in the available literature. Additionally, the XBB sequences from our cohort had more mutations than omicron B.1.1.529. The phylogenetic analysis comprising six major branches clearly showed convergent evolution of XBB. Our data suggests that age, and underlying conditions (e.g., diabetes, hypertension, and cardiovascular disease) or secondary complications confers increased susceptibility to infection rather than vaccination status or prior exposure. Many vaccinated individuals showed evidence of a breakthrough infection, with XBB.3 being the predominant variant identified in the study population. Interpretation Our study indicates that the XBB variant is highly evasive from available vaccines and may be more transmissible, and potentially could emerge as the 'next' predominant variant, which likely could overwhelm the existing variants of SARS-CoV-2 omicron variants.Funding National Health Mission (India), SIDA SARC, VINNMER (Sweden), ORIP/NIH (USA).Copyright (c) 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
  •  
18.
  • Sharma, Priyanka, et al. (författare)
  • MPEG/H256 video encoder with 6T/8T hybrid memory architecture for high quality output at lower supply
  • 2023
  • Ingår i: Memories - Materials, Devices, Circuits and Systems. - : Elsevier. - 2773-0646. ; 4
  • Tidskriftsartikel (refereegranskat)abstract
    • The use of Multimedia video content is increased rapidly in the past decade, and most multimedia video content is used by mobile phone users. Multimedia video processing consumes significant power during video compression, and thus low power multimedia video compression is essential for battery operated devices. Moving Picture Experts Group (MPEG) Video encoding is giving a higher compression rate and low bandwidth requirement. Conventional MPEG Video encoding architecture uses the conventional 6T memory cells to store video frames for further compression processing. The failure probability of 6T cells is significantly large (0.0988 at 600 mV supply voltage), leading to a decrease in the output quality of the encoded video. From the hybrid memory matrix formulation, it is calculated that storing higher-order MSB bits in highly stable memory cells will provide high-quality video encoding processing as compared to the conventional technique because the human eye is more susceptible to higher-order luminance bits. Hence, in this research work instant of using conventional 6T memory cells during video encoding processing, a unique Hybrid 6T/8T memory architecture is proposed, where the 8-bit Luminance pixels are stored favourably in consonance with their effect on the output quality. The higher order luminance bits (MSB’s) require high stability and thus these bits are stored in the 8T bit cells and the remaining bits (LSB’s) are stored in the conventional 6T bit cells for high-quality video encoding processing. This research article also proposes a separate memory peripheral circuitry for hybrid memory architecture for video encoding techniques. In addition, this article proposes a unique architecture for parallel video processing with the use of a hybrid pixel memory array. The failure probability of 6T and 8T at the worst failure corner (FS corner for read and SF corner for write) is simulated for 30000 Monte-Carlo simulations points at 45 nm CMOS technology node using CADENCE EDA tool. For the simulation work here, a standard Common Intermediate Format/Quarter Common Intermediate Format (CIF/QCIF) Coastguard video sample is used and for output quality here average PSNR method is used and simulation work is performed using the MATLAB tool.The worst PSNR for conventional 6T memory array and Hybrid memory array at 600 mV supply voltage shows improvement in worst minimum PSNR as 6.43 dB is calculated. 30% less power consumption to conventional memory architecture.
  •  
19.
  • Singh, Priyanka, et al. (författare)
  • A Sustainable Approach for the Green Synthesis of Silver Nanoparticles from Solibacillus isronensis sp. and Their Application in Biofilm Inhibition
  • 2020
  • Ingår i: Molecules. - : MDPI AG. - 1420-3049 .- 1420-3049. ; 25:12
  • Tidskriftsartikel (refereegranskat)abstract
    • The use of bacteria as nanofactories for the green synthesis of nanoparticles is considered a sustainable approach, owing to the stability, biocompatibility, high yields and facile synthesis of nanoparticles. The green synthesis provides the coating or capping of biomolecules on nanoparticles surface, which confer their biological activity. In this study, we report green synthesis of silver nanoparticles (AgNPs) by an environmental isolate; named as AgNPs1, which showed 100% 16S rRNA sequence similarity with Solibacillus isronensis. UV/visible analysis (UV/Vis), transmission electron microscopy (TEM), atomic force microscopy (AFM), dynamic light scattering (DLS), and Fourier-transform infrared spectroscopy (FTIR) were used to characterize the synthesized nanoparticles. The stable nature of nanoparticles was studied by thermogravimetric analysis (TGA) and inductively coupled plasma mass spectrometry (ICP-MS). Further, these nanoparticles were tested for biofilm inhibition against Escherichia coli and Pseudomonas aeruginosa. The AgNPs showed minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of 3.12 µg/mL and 6.25 µg/mL for E. coli, and 1.56 µg/mL and 3.12 µg/mL for P. aeruginosa, respectively.
  •  
20.
  •  
21.
  • Singh, Priyanka, et al. (författare)
  • Anti-biofilm effects of gold and silver nanoparticles synthesized by the Rhodiola rosea rhizome extracts
  • 2018
  • Ingår i: Artificial Cells, Nanomedicine and Biotechnology. - : Informa UK Limited. - 2169-1401 .- 2169-141X. ; 46:sup3, s. S886-S899
  • Tidskriftsartikel (refereegranskat)abstract
    • Bacterial biofilm represents a major problem in medicine. They colonize and damage medical devices and implants and, in many cases, foster development of multidrug-resistant microorganisms. Biofilm development starts by bacterial attachment to the surface and the production of extracellular polymeric substances (EPS). The EPS forms a structural scaffold for dividing bacterial cells. The EPS layers also play a protective role, preventing the access of antibiotics to biofilm-associated microorganisms. The aim of this work was to investigate the production nanoparticles that could be used to inhibit biofilm formation. The applied production procedure from rhizome extracts of Rhodiola rosea is simple and environmentally friendly, as it requires no additional reducing, stabilizing and capping agents. The produced nanoparticles were stable and crystalline in nature with an average diameter of 13–17 nm for gold nanoparticles (AuNPs) and 15–30 nm for silver nanoparticles (AgNPs). Inductively coupled plasma mass spectrometry analysis revealed the concentration of synthesized nanoparticles as 3.3 and 5.3 mg/ml for AuNPs and AgNPs, respectively. Fourier-transform infrared spectroscopy detected the presence of flavonoids, terpenes and phenols on the nanoparticle surface, which could be responsible for reducing the Au and Ag salts to nanoparticles and further stabilizing them. Furthermore, we explored the AgNPs for inhibition of Pseudomonas aeruginosa and Escherichia coli biofilms. AgNPs exhibited minimum inhibitory concentrations of 50 and 100 µg/ml, against P. aeruginosa and E. coli, respectively. The respective minimum bactericidal concentrations were 100 and 200 µg/ml. These results suggest that using the rhizome extracts of the medicinal plant R. rosea represents a viable route for green production of nanoparticles with anti-biofilm effects.
  •  
22.
  • Singh, Priyanka, et al. (författare)
  • Antibacterial Effect of Silver Nanoparticles Is Stronger If the Production Host and the Targeted Pathogen Are Closely Related
  • 2022
  • Ingår i: Biomedicines. - : MDPI AG. - 2227-9059. ; 10:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Microbial resistance to antibiotics is one of the key challenges that lead to the search for alternate antimicrobial treatment approaches. Silver nanoparticles (AgNPs) are well known for their antimicrobial effects against a wide variety of drug-resistant microorganisms. AgNPs can be synthesized using microbial hosts, using a green and economical synthesis route, which produces extremely stable and highly active nanoparticles. Such green AgNPs are coated with a biological coating often referred to as a corona, originating from the production microorganism. In this study, we asked whether the composition of the biological corona might influence the antimicrobial activity of green AgNPs. To investigate this, we produced AgNPs in Pseudomonas putida KT2440 and Escherichia coli K12 MG1655, and tested them against pathogen species from the corresponding genera. AgNPs exhibited a size range of 15–40 nm for P. putida and 30–70 nm for E. coli, and both types of nanoparticles were surrounded by a thick biological corona layer, providing extreme stability. The nanoparticles remained stable over long periods and exhibited negative zeta potential values. P-AgNPs (obtained from P. putida) were tested against pathogenic Pseudomonas aeruginosa PAO1, and E-AgNPs (obtained from E. coli) were tested against pathogenic Escherichia coli UTI 89. Antimicrobial studies were conducted by Minimum bactericidal concentration (MBC), live/dead staining and SEM analysis. MBC of P-AgNPs against P. aeruginosa was 1 µg/mL, and MBC of E-AgNPs against E. coli UTI 89 was 8 µg/mL. In both cases, the MBC values were superior to those of green AgNPs produced in organisms unrelated to the target pathogens, available in the literature. Our results suggest that NPs produced in microorganisms closely related to the target pathogen may be more effective, indicating that the composition of the biological corona may play a crucial role in the antimicrobial mechanism of AgNPs.
  •  
23.
  • Singh, Priyanka, et al. (författare)
  • Antimicrobial effects of biogenic nanoparticles
  • 2018
  • Ingår i: Nanomaterials. - : MDPI AG. - 2079-4991. ; 8:12
  • Forskningsöversikt (refereegranskat)abstract
    • Infectious diseases pose one of the greatest health challenges in the medical world. Though numerous antimicrobial drugs are commercially available, they often lack effectiveness against recently developed multidrug resistant (MDR) microorganisms. This results in high antibiotic dose administration and a need to develop new antibiotics, which in turn requires time, money, and labor investments. Recently, biogenic metallic nanoparticles have proven their effectiveness against MDR microorganisms, individually and in synergy with the current/conventional antibiotics. Importantly, biogenic nanoparticles are easy to produce, facile, biocompatible, and environmentally friendly in nature. In addition, biogenic nanoparticles are surrounded by capping layers, which provide them with biocompatibility and long-term stability. Moreover, these capping layers provide an active surface for interaction with biological components, facilitated by free active surface functional groups. These groups are available for modification, such as conjugation with antimicrobial drugs, genes, and peptides, in order to enhance their efficacy and delivery. This review summarizes the conventional antibiotic treatments and highlights the benefits of using nanoparticles in combating infectious diseases.
  •  
24.
  • Singh, Priyanka, et al. (författare)
  • Gold nanoparticles in diagnostics and therapeutics for human cancer
  • 2018
  • Ingår i: International Journal of Molecular Sciences. - : MDPI AG. - 1661-6596 .- 1422-0067. ; 19:7
  • Forskningsöversikt (refereegranskat)abstract
    • The application of nanotechnology for the treatment of cancer is mostly based on early tumor detection and diagnosis by nanodevices capable of selective targeting and delivery of chemotherapeutic drugs to the specific tumor site. Due to the remarkable properties of gold nanoparticles, they have long been considered as a potential tool for diagnosis of various cancers and for drug delivery applications. These properties include high surface area to volume ratio, surface plasmon resonance, surface chemistry and multi-functionalization, facile synthesis, and stable nature. Moreover, the non-toxic and non-immunogenic nature of gold nanoparticles and the high permeability and retention effect provide additional benefits by enabling easy penetration and accumulation of drugs at the tumor sites. Various innovative approaches with gold nanoparticles are under development. In this review, we provide an overview of recent progress made in the application of gold nanoparticles in the treatment of cancer by tumor detection, drug delivery, imaging, photothermal and photodynamic therapy and their current limitations in terms of bioavailability and the fate of the nanoparticles.
  •  
25.
  • Singh, Priyanka, et al. (författare)
  • Green synthesis and antibacterial applications of gold and silver nanoparticles from Ligustrum vulgare berries
  • 2022
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322 .- 2045-2322. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Increasing demand for green or biological nanoparticles has led to various green technologies and resources, which play a critical role in forming biocompatible or green nanoparticles. So far, numerous medicinal plants have been explored for this purpose, assuming that medicinal components from the plant's material will contribute to corona formation around nanoparticles and enhance their efficacy. Research is also extended to other green and waste resources to be utilized for this purpose. In the current study, we explored Ligustrum vulgare berries, also known as privet berries, to reduce gold and silver salts into nanoparticles. L. vulgare berries showed great potential to form these nanoparticles, as gold nanoparticles (LV-AuNPs) formed within 5 min at room temperature, and silver nanoparticles (LV-AgNPs) formed in 15 min at 90 °C. LV-AuNPs and LV-AgNPs were characterized by various analytical methods, including UV–Vis, SEM, EDX, TEM, DLS, sp-ICP-MS, TGA, FT-IR, and MALDI-TOF. The results demonstrate that the LV-AuNPs are polydisperse in appearance with a size range 50–200 nm. LV-AuNPs exhibit various shapes, including spherical, triangular, hexagonal, rod, cuboid, etc. In contrast, LV-AgNPs are quite monodisperse, 20–70 nm, and most of the population was spherical. The nanoparticles remain stable over long periods and exhibit high negative zeta potential values. The antimicrobial investigation of LV-AgNPs demonstrated that the nanoparticles exhibit antibacterial ability with an MBC value of 150 g/mL against P. aeruginosa and 100 g/mL against E. coli, as determined by plate assay, live and dead staining, and SEM cell morphology analysis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 31
Typ av publikation
tidskriftsartikel (25)
forskningsöversikt (6)
Typ av innehåll
refereegranskat (30)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Singh, Priyanka (21)
Mijakovic, Ivan, 197 ... (18)
Pandit, Santosh, 198 ... (7)
Joshi, Abhayraj S. (5)
Mokkapati, Venkata R ... (5)
Chouhan, Shailesh Si ... (2)
visa fler...
Aczel, Balazs (2)
Chartier, Christophe ... (2)
Levitan, Carmel A. (2)
Miller, Jeremy K. (2)
Schmidt, Kathleen (2)
Stieger, Stefan (2)
Vanpaemel, Wolf (2)
Vianello, Michelange ... (2)
Voracek, Martin (2)
Olsen, Jerome (2)
Schei, Vidar (2)
Byrareddy, Siddappa ... (2)
Jaeger, Bastian (2)
Sirota, Miroslav (2)
Antfolk, Jan (2)
Garg, Abhroop (2)
Batres, Carlota (2)
Sharma, Priyanka (2)
DeBruine, Lisa M. (2)
Tamnes, Christian K (2)
Saunders, Blair (2)
Storage, Daniel (2)
Lin, Hause (2)
Ropovik, Ivan (2)
Arnal, Jack D. (2)
Baskin, Ernest (2)
Chopik, William J. (2)
Mackevica, Aiga (2)
Kacmar, Pavol (2)
Protzko, John (2)
Pfuhl, Gerit (2)
Sultan, Abida (2)
Vadillo, Miguel A (2)
Hahn, Amanda C (2)
Kapucu, Aycan (2)
Musser, Erica D (2)
Chandel, Priyanka (2)
Kujur, Pratibha (2)
Parganiha, Arti (2)
Parveen, Noorshama (2)
Pradhan, Sraddha (2)
Pande, Babita (2)
Álvarez-Solas, Sara (2)
Kaminski, Gwenaël (2)
visa färre...
Lärosäte
Chalmers tekniska högskola (20)
Uppsala universitet (3)
Luleå tekniska universitet (3)
Stockholms universitet (3)
Lunds universitet (3)
Göteborgs universitet (2)
visa fler...
Karolinska Institutet (2)
Umeå universitet (1)
Högskolan i Halmstad (1)
Högskolan Väst (1)
Linköpings universitet (1)
Handelshögskolan i Stockholm (1)
Högskolan Dalarna (1)
visa färre...
Språk
Engelska (31)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (21)
Medicin och hälsovetenskap (12)
Teknik (4)
Samhällsvetenskap (3)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy