SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sinnl Giulia) "

Sökning: WFRF:(Sinnl Giulia)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Rasmussen, Sune Olander, et al. (författare)
  • Ice-core data used for the construction of the Greenland Ice-Core Chronology 2005 and 2021 (GICC05 and GICC21)
  • 2023
  • Ingår i: Earth System Science Data. - 1866-3508 .- 1866-3516. ; 15:8, s. 3351-3364
  • Tidskriftsartikel (refereegranskat)abstract
    • We here describe, document, and make available a wide range of data sets used for annual-layer identification in ice cores from DYE-3, GRIP, NGRIP, NEEM, and EGRIP. The data stem from detailed measurements performed both on the main deep cores and shallow cores over more than 40 years using many different setups developed by research groups in several countries and comprise both discrete measurements from cut ice samples and continuous-flow analysis data.The data series were used for counting annual layers 60 000 years back in time during the construction of the Greenland Ice-Core Chronology 2005 (GICC05) and/or the revised GICC21, which currently only reaches 3800 years back. Now that the underlying data are made available (listed in Table 1) we also release the individual annual-layer positions of the GICC05 timescale which are based on these data sets.We hope that the release of the data sets will stimulate further studies of the past climate taking advantage of these highly resolved data series covering a large part of the interior of the Greenland ice sheet.
  •  
2.
  • Sinnl, Giulia, et al. (författare)
  • A multi-ice-core, annual-layer-counted Greenland ice-core chronology for the last 3800 years : GICC21
  • 2022
  • Ingår i: Climate of the Past. - : Copernicus GmbH. - 1814-9324 .- 1814-9332. ; 18:5, s. 1125-1150
  • Tidskriftsartikel (refereegranskat)abstract
    • Ice-core timescales are vital for the understanding of past climate; hence they should be updated whenever significant amounts of new data become available. Here, the Greenland ice-core chronology GICC05 was revised for the last 3835 years by synchronizing six deep ice cores and three shallow ice cores from the central Greenland ice sheet. A new method was applied by combining automated counting of annual layers on multiple parallel proxies and manual fine-tuning. A layer counting bias was found in all ice cores because of site-specific signal disturbances; therefore the manual comparison of all ice cores was deemed necessary to increase timescale accuracy. After examining sources of error and their correlation lengths, the uncertainty rate was quantified to be 1 year per century. The new timescale is younger than GICC05 by about 13 years at 3835 years ago. The most recent 800 years are largely unaffected by the revision. Between 800 and 2000 years ago, the offset between timescales increases steadily, with the steepest offset occurring between 800 and 1100 years ago. Moreover, offset oscillations of about 5 years around the average are observed between 2500 and 3800 years ago. The non-linear offset behavior is attributed to previous mismatches of volcanic eruptions, to the much more extensive dataset available to this study, and to the finer resolution of the new ice-core ammonium matching. By analysis of the common variations in cosmogenic radionuclides, the new ice-core timescale is found to be in alignment with the IntCal20 curve (Reimer et al., 2020).
  •  
3.
  • Sinnl, Giulia, et al. (författare)
  • Synchronizing ice-core and U/Th timescales in the Last Glacial Maximum using Hulu Cave 14C and new 10Be measurements from Greenland and Antarctica
  • 2023
  • Ingår i: Climate of the Past. - 1814-9324. ; 19:6, s. 1153-1175
  • Tidskriftsartikel (refereegranskat)abstract
    • Between 15 and 27kyrb2k (thousands of years before 2000CE) during the last glacial, Greenland experienced a prolonged cold stadial phase, interrupted by two short-lived warm interstadials. Greenland ice-core calcium data show two periods, preceding the interstadials, of anomalously high atmospheric dust loading, the origin of which is not well understood. At approximately the same time as the Greenland dust peaks, the Chinese Hulu Cave speleothems exhibit a climatic signal suggested to be a response to Heinrich Event 2, a period of enhanced ice-rafted debris deposition in the North Atlantic. In the climatic signal of Antarctic ice cores, moreover, a relative warming occurs between 23 and 24.5kyrb2k that is generally interpreted as a counterpart to a cool climate phase in the Northern Hemisphere. Proposed centennial-scale offsets between the polar ice-core timescales and the speleothem timescale hamper the precise reconstruction of the global sequence of these climatic events. Here, we examine two new 10Be datasets from Greenland and Antarctic ice cores to test the agreement between different timescales, by taking advantage of the globally synchronous cosmogenic radionuclide production rates. Evidence of an event similar to the Maunder Solar Minimum is found in the new 10Be datasets, supported by lower-resolution radionuclide data from Greenland and 14C in the Hulu Cave speleothem, representing a good synchronization candidate at around 22kyrb2k. By matching the respective 10Be data, we determine the offset between the Greenland ice-core chronology, GICC05, and the Antarctic chronology for the West Antarctic Ice Sheet Divide ice core (WDC), WD2014, to be 125±40 years. Furthermore, via radionuclide wiggle-matching, we determine the offset between the Hulu speleothem and ice-core timescales to be 375 years for GICC05 (75-625 years at 68% confidence) and 225 years for WD2014 (-25-425 years at 68% confidence). The rather wide uncertainties are intrinsic to the wiggle-matching algorithm and the limitations set by data resolution. The undercounting of annual layers in GICC05 inferred from the offset is hypothesized to have been caused by a combination of underdetected annual layers, especially during periods with low winter precipitation, and misinterpreted unusual patterns in the annual signal during the extremely cold period often referred to as Heinrich Stadial 1.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy