SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Slomp Caroline P.) "

Sökning: WFRF:(Slomp Caroline P.)

  • Resultat 1-25 av 30
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Conley, Daniel, et al. (författare)
  • Hypoxia-Related Processes in the Baltic Sea
  • 2009
  • Ingår i: Environmental Science and Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 43:10, s. 3412-3420
  • Tidskriftsartikel (refereegranskat)abstract
    • Hypoxia, a growing worldwide problem, has been intermittently present in the modern Baltic Sea since its formation ca. 8000 cal. yr BP. However, both the spatial extent and intensity of hypoxia have increased with anthropogenic eutrophication due to nutrient inputs. Physical processes, which control stratification and the renewal of oxygen in bottom waters, are important constraints on the formation and maintenance of hypoxia. Climate controlled inflows of saline water from the North Sea through the Danish Straits is a critical controlling factor governing the spatial extent and duration of hypoxia. Hypoxia regulates the biogeochemical cycles of both phosphorus (P) and nitrogen (N) in the water column and sediments. Significant amounts of P are currently released from sediments, an order of magnitude larger than anthropogenic inputs. The Baltic Sea is unique for coastal marine ecosystems experiencing N losses in hypoxic waters below the halocline. Although benthic communities in the Baltic Sea are naturally constrained by salinity gradients, hypoxia has resulted in habitat loss over vast areas and the elimination of benthic fauna, and has severely disrupted benthic food webs. Nutrient load reductions are needed to reduce the extent, severity, and effects of hypoxia.
  •  
2.
  • Dijkstra, Nikki, et al. (författare)
  • Holocene Refreshening and Reoxygenation of a Bothnian Sea Estuary Led to Enhanced Phosphorus Burial
  • 2018
  • Ingår i: Estuaries and Coasts. - : Springer Science and Business Media LLC. - 1559-2723 .- 1559-2731. ; 41:1, s. 139-157
  • Tidskriftsartikel (refereegranskat)abstract
    • Salinity variations in restricted basins like the Baltic Sea can alter their vulnerability to hypoxia (i.e., bottom water oxygen concentrations <2 mg/l) and can affect the burial of phosphorus (P), a key nutrient for marine organisms. We combine porewater and solid-phase geochemistry, micro-analysis of sieved sediments (including XRD and synchrotron-based XAS), and foraminiferal δ18O and δ13C analyses to reconstruct the bottom water salinity, redox conditions, and P burial in the Ångermanälven estuary, Bothnian Sea. Our sediment records were retrieved during the Integrated Ocean Drilling Program (IODP) Baltic Sea Paleoenvironment Expedition 347 in 2013. We demonstrate that bottom waters in the Ångermanälven estuary became anoxic upon the intrusion of seawater in the early Holocene, like in the central Bothnian Sea. The subsequent refreshening and reoxygenation, which was caused by gradual isostatic uplift, promoted P burial in the sediment in the form of Mn-rich vivianite. Vivianite authigenesis in the surface sediments of the more isolated part of the estuary ultimately ceased, likely due to continued refreshening and an associated decline in productivity and P supply to the sediment. The observed shifts in environmental conditions also created conditions for post-depositional formation of authigenic vivianite, and possibly apatite formation, at ∼8 m composite depth. These salinity-related changes in redox conditions and P burial are highly relevant in light of current climate change. The results specifically highlight that increased freshwater input linked to global warming may enhance coastal P retention, thereby contributing to oligotrophication in both coastal and adjacent open waters.
  •  
3.
  • Ehrnsten, Eva, et al. (författare)
  • Understanding Environmental Changes in Temperate Coastal Seas : Linking Models of Benthic Fauna to Carbon and Nutrient Fluxes
  • 2020
  • Ingår i: Frontiers in Marine Science. - : Frontiers Media SA. - 2296-7745. ; 7
  • Forskningsöversikt (refereegranskat)abstract
    • Coastal seas are highly productive systems, providing an array of ecosystem services to humankind, such as processing of nutrient effluents from land and climate regulation. However, coastal ecosystems are threatened by human-induced pressures such as climate change and eutrophication. In the coastal zone, the fluxes and transformations of nutrients and carbon sustaining coastal ecosystem functions and services are strongly regulated by benthic biological and chemical processes. Thus, to understand and quantify how coastal ecosystems respond to environmental change, mechanistic modeling of benthic biogeochemical processes is required. Here, we discuss the present model capabilities to quantitatively describe how benthic fauna drives nutrient and carbon processing in the coastal zone. There are a multitude of modeling approaches of different complexity, but a thorough mechanistic description of benthic-pelagic processes is still hampered by a fundamental lack of scientific understanding of the diverse interactions between the physical, chemical and biological processes that drive biogeochemical fluxes in the coastal zone. Especially shallow systems with long water residence times are sensitive to the activities of benthic organisms. Hence, including and improving the description of benthic biomass and metabolism in sediment diagenetic as well as ecosystem models for such systems is essential to increase our understanding of their response to environmental changes and the role of coastal sediments in nutrient and carbon cycling. Major challenges and research priorities are (1) to couple the dynamics of zoobenthic biomass and metabolism to sediment reactive-transport in models, (2) to test and validate model formulations against real-world data to better incorporate the context-dependency of processes in heterogeneous coastal areas in models and (3) to capture the role of stochastic events.
  •  
4.
  • Mort, Haydon P., et al. (författare)
  • Phosphorus recycling and burial in Baltic Sea sediments with contrasting redox conditions
  • 2010
  • Ingår i: Geochimica et Cosmochimica Acta. - : Elsevier BV. - 0016-7037 .- 1872-9533. ; 74:4, s. 1350-1362
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, redox-dependent phosphorus (P) recycling and burial at 6 sites in the Baltic Sea is investigated using a combination of porewater and sediment analyses and sediment age dating (Pb-210 and Cs-117). We focus on sites in the Kattegat, Danish Straits and Baltic Proper where present-day bottom water redox conditions range from fully oxygenated and seasonally hypoxic to almost permanently anoxic and sulfidic. Strong surface enrichments of Fe-oxide bound P are observed at oxic and seasonally hypoxic sites but not in the anoxic basins. Reductive dissolution of Fe-oxides and release of the associated P supports higher sediment-water exchange of PO4 at hypoxic sites (up to similar to 800 mu mol P m(-2) d(-1)) than in the anoxic basins. This confirms that Fe-bound P in surface sediments in the Baltic acts as a major internal source of P during seasonal hypoxia, as suggested previously from water column studies. Most burial of P takes place as organic P. We find no evidence for significant authigenic Ca-P formation or biogenic Ca-P burial. The lack of major inorganic P burial sinks makes the Baltic Sea very sensitive to the feedback loop between increased hypoxia, enhanced regeneration of P and increased primary productivity. Historical records of bottom water oxygen at two sites (Bornholm, Northern Gotland) show a decline over the past century and are accompanied by a rise in values for typical sediment proxies for anoxia (total sulfur, molybdenum and organic C/P ratios). While sediment reactive P concentrations in anoxic basins are equal to or higher than at oxic sites, burial rates of P at hypoxic and anoxic sites are up to 20 times lower because of lower sedimentation rates. Nevertheless, burial of reactive P in both hypoxic and anoxic areas is significant because of their large surface area and should be accounted for in budgets and models for the Baltic Sea.
  •  
5.
  • Slomp, Caroline P., et al. (författare)
  • Coupled Dynamics of Iron and Phosphorus in Sediments of an Oligotrophic Coastal Basin and the Impact of Anaerobic Oxidation of Methane
  • 2013
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 8:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Studies of phosphorus (P) dynamics in surface sediments of lakes and coastal seas typically emphasize the role of coupled iron (Fe), sulfur (S) and P cycling for sediment P burial and release. Here, we show that anaerobic oxidation of methane (AOM) also may impact sediment P cycling in such systems. Using porewater and sediment profiles for sites in an oligotrophic coastal basin (Bothnian Sea), we provide evidence for the formation of Fe-bound P (possibly vivianite; Fe-3(PO4)(2)center dot 8H(2)O) below the zone of AOM with sulfate. Here, dissolved Fe2+ released from oxides is no longer scavenged by sulfide and high concentrations of both dissolved Fe2+ (>1 mM) and PO4 in the porewater allow supersaturation with respect to vivianite to be reached. Besides formation of Fe(II)-P, preservation of Fe-oxide bound P likely also contributes to permanent burial of P in Bothnian Sea sediments. Preliminary budget calculations suggest that the burial of Fe-bound P allows these sediments to act as a major sink for P from the adjacent eutrophic Baltic Proper.
  •  
6.
  • van Helmond, Niels A G M, et al. (författare)
  • Seasonal hypoxia was a natural feature of the coastal zone in the Little Belt, Denmark, during the past 8 ka
  • 2017
  • Ingår i: Marine Geology. - : Elsevier. - 0025-3227 .- 1872-6151. ; 387, s. 45-57
  • Tidskriftsartikel (refereegranskat)abstract
    • The extent of the hypoxic area in the Baltic Sea has rapidly expanded over the past century. Two previous phases of widespread hypoxia, coinciding with the Holocene Thermal Maximum (HTM; 8–4 ka before present; BP) and the Medieval Climate Anomaly (MCA; 2–0.8 ka BP), have been identified. Relatively little is known about bottom water redox conditions in the coastal zone of the Baltic Sea during the Holocene, however. Here we studied the geochemical composition of a sediment sequence from a currently seasonally hypoxic site in the Danish coastal zone, the Little Belt, retrieved during Integrated Ocean Drilling Program Expedition 347 (Site M0059). The base of the studied sediment sequence consists of clays low in organic carbon (Corg), molybdenum (Mo) and iron sulfides (Fe-sulfides), and rich in iron oxides (Fe-oxides), indicative of a well-oxygenated, oligotrophic (glacial) meltwater lake. An erosional unconformity separates the glacial lake sediments from sediments that are rich in Corg. The absence of Mo, in combination with high Corg/S values, indicates that these sediments were deposited in a highly productive, well-oxygenated freshwater lake. The transition to modern brackish/marine conditions was very rapid, and subsequent continuous sequestration of Mo in the sediment and high ratios of reactive iron (FeHR) over total Fe (FeTOT) suggest (seasonal) hypoxia occurred over the last ~ 8 ka. Maxima in sediment Corg, Mo and FeHR/FeTOT ratios during the HTM and MCA suggest that the hypoxia intensified. Our results demonstrate that the Little Belt is naturally susceptible to the development of seasonal hypoxia. While periods of climatic warming led to increased deoxygenation of bottom waters, high nutrient availability in combination with density stratification were likely the main drivers of hypoxia in this part of the coastal zone of the Baltic Sea during the Holocene.
  •  
7.
  • Asmala, Eero, et al. (författare)
  • A reply to the comment by Karlsson et al.
  • 2019
  • Ingår i: Limnology and Oceanography. - : Wiley. - 1939-5590 .- 0024-3590. ; 64:4, s. 1832-1833
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)
  •  
8.
  • Asmala, Eero, et al. (författare)
  • Efficiency of the coastal filter : Nitrogen and phosphorus removal in the Baltic Sea
  • 2017
  • Ingår i: Limnology and Oceanography. - : Wiley. - 1939-5590 .- 0024-3590. ; 62, s. 222-238
  • Tidskriftsartikel (refereegranskat)abstract
    • An important function of coastal ecosystems is the reduction of the nutrient flux from land to the open sea, the coastal filter. In this study, we focused on the two most important coastal biogeochemical processes that remove nitrogen and phosphorus permanently: denitrification and phosphorus burial. We compiled removal rates from coastal systems around the Baltic Sea and analyzed their spatial variation and regulating environmental factors. These analyses were used to scale up denitrification and phosphorus burial rates for the entire Baltic Sea coastal zone. Denitrification rates ranged from non-detectable to 12 mmol N m−2 d−1, and correlated positively with both bottom water nitrate concentration and sediment organic carbon content. The rates exhibited a strong decreasing gradient from land to the open coast, which was likely driven by the availability of nitrate and labile organic carbon, but a high proportion of non-cohesive sediments in the coastal zone decreased the denitrification efficiency relative to the open sea. Phosphorus burial rates varied from 0.21 g P m−2 yr−1 in open coastal systems to 2.28 g P m−2 yr−1 in estuaries. Our analysis suggests that archipelagos are important phosphorus traps and account for 45% of the coastal P removal, while covering only 17% of the coastal areas. High burial rates could partly be sustained by phosphorus import from the open Baltic Sea. We estimate that the coastal filter in the Baltic Sea removes 16% of nitrogen and 53% of phosphorus inputs from land.
  •  
9.
  • Carstensen, Jacob, et al. (författare)
  • Hypoxia in the Baltic Sea : Biogeochemical Cycles, Benthic Fauna, and Management
  • 2014
  • Ingår i: Ambio. - : Springer Science and Business Media LLC. - 0044-7447 .- 1654-7209. ; 43:1, s. 26-36
  • Tidskriftsartikel (refereegranskat)abstract
    • Hypoxia has occurred intermittently over the Holocene in the Baltic Sea, but the recent expansion from less than 10 000 km(2) before 1950 to > 60 000 km(2) since 2000 is mainly caused by enhanced nutrient inputs from land and atmosphere. With worsening hypoxia, the role of sediments changes from nitrogen removal to nitrogen release as ammonium. At present, denitrification in the water column and sediments is equally important. Phosphorus is currently buried in sediments mainly in organic form, with an additional contribution of reduced Fe-phosphate minerals in the deep anoxic basins. Upon the transition to oxic conditions, a significant proportion of the organic phosphorus will be remineralized, with the phosphorus then being bound to iron oxides. This iron-oxide bound phosphorus is readily released to the water column upon the onset of hypoxia again. Important ecosystems services carried out by the benthic fauna, including biogeochemical feedback-loops and biomass production, are also lost with hypoxia. The results provide quantitative knowledge of nutrient release and recycling processes under various environmental conditions in support of decision support tools underlying the Baltic Sea Action Plan.
  •  
10.
  •  
11.
  • Funkey, Carolina, et al. (författare)
  • Hypoxia Sustains Cyanobacteria Blooms in the Baltic Sea
  • 2014
  • Ingår i: Environmental Science and Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 48:5, s. 2598-2602
  • Tidskriftsartikel (refereegranskat)abstract
    • Nutrient over-enrichment is one of the classic triggering mechanisms for the occurrence of cyanobacteria blooms in aquatic ecosystems. In the Baltic Sea, cyanobacteria regularly occur in the late summer months and form nuisance accumulations in surface waters and their abundance has intensified significantly in the past 50 years attributed to human-induced eutrophication. However, the natural occurrence of cyanobacteria during the Holocene is debated. In this study, we present records of cyanobacteria pigments, water column redox proxies, and nitrogen isotopic signatures for the past ca. 8000 years from Baltic Sea sediment cores. Our results demonstrate that cyanobacteria abundance and nitrogen fixation are correlated with hypoxia occurring during three main intervals: (1) ca. 7000-4000 B.P. during the Littorina transgression, (2) ca. 1400-700 B.P. during the Medieval Climate Anomaly, and (3) from ca. 1950 A.D. to the present. Issues of preservation were investigated, and we show that organic matter and pigment profiles are not simply an artifact of preservation. These results suggest that cyanobacteria abundance is sustained during periods of hypoxia, most likely because of enhanced recycling of phosphorus in low oxygen conditions.
  •  
12.
  • Gustafsson, Erik, et al. (författare)
  • Sedimentary alkalinity generation and long-term alkalinity development in the Baltic Sea
  • 2019
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 16:2, s. 437-456
  • Tidskriftsartikel (refereegranskat)abstract
    • Enhanced release of alkalinity from the seafloor, principally driven by anaerobic degradation of organic matter under low-oxygen conditions and associated secondary redox reactions, can increase the carbon dioxide (CO2) buffering capacity of seawater and therefore oceanic CO2 uptake. The Baltic Sea has undergone severe changes in oxygenation state and total alkalinity (TA) over the past decades. The link between these concurrent changes has not yet been investigated in detail. A recent system-wide TA budget constructed for the past 50 years using BALTSEM, a coupled physical-biogeochemical model for the whole Baltic Sea area, revealed an unknown TA source. Here we use BALTSEM in combination with observational data and one-dimensional reactive transport modelling of sedimentary processes in the Fårö Deep, a deep Baltic Sea basin, to test whether sulfate reduction coupled to iron (Fe) sulfide burial can explain the missing TA source in the Baltic Proper. We calculated that this burial can account for 26% of the missing source in this basin, with the remaining TA possibly originating from unknown river inputs or submarine groundwater discharge. We also show that temporal variability in the input of Fe to the sediments since the 1970s drives changes in sulfur burial in the Fårö Deep, suggesting that Fe availability is the ultimate limiting factor for TA generation under anoxic conditions. The implementation of projected climate change and two nutrient load scenarios for the 21st century in BALTSEM shows that reducing nutrient loads will improve deep water oxygen conditions, but at the expense of lower surface water TA concentrations, CO2 buffering capacities and faster acidification. When these changes additionally lead to a decrease in Fe inputs to the sediment of the deep basins, anaerobic TA generation will be reduced even further, thus exacerbating acidification. This work highlights that Fe dynamics play a key role in the release of TA from sediments where Fe sulfide formation is limited by Fe availability, as exemplified for the Baltic Sea. Moreover, it demonstrates that burial of Fe sulfides should be included in TA budgets of low oxygen basins.
  •  
13.
  • Hermans, Martijn, et al. (författare)
  • Coupled dynamics of iron, manganese, and phosphorus in brackish coastal sediments populated by cable bacteria
  • 2021
  • Ingår i: Limnology and Oceanography. - : Wiley. - 1939-5590 .- 0024-3590. ; 66:7, s. 2611-2631
  • Tidskriftsartikel (refereegranskat)abstract
    • Coastal waters worldwide suffer from increased eutrophication and seasonal bottom water hypoxia. Here, we assess the dynamics of iron (Fe), manganese (Mn), and phosphorus (P) in sediments of the eutrophic, brackish Gulf of Finland populated by cable bacteria. At sites where bottom waters are oxic in spring, surface enrichments of Fe and Mn oxides and high abundances of cable bacteria were observed in sediments upon sampling in early summer. At one site, Fe and P were enriched in a thin layer (~ 3 mm) just below the sediment–water interface. X-ray absorption near edge structure and micro X-ray fluorescence analyses indicate that two-thirds of the P in this layer was associated with poorly crystalline Fe oxides, with an additional contribution of Mn(II) phosphates. The Fe enriched layer was directly overlain by a Mn oxide-rich surface layer (~ 2 mm). The Fe oxide layer was likely of diagenetic origin, formed through dissolution of Fe monosulfides and carbonates, potentially induced by cable bacteria in the preceding months when bottom waters were oxic. Most of the Mn oxides were likely deposited from the water column as part of a cycle of repeated deposition and remobilization. Further research is required to confirm whether cable bacteria activity in spring indeed promotes the formation of distinct layers enriched in Fe, Mn, and P minerals in Gulf of Finland sediments. The temporal variations in biogeochemical cycling in this seasonally hypoxic coastal system, potentially controlled by cable bacteria activity, have little impact on permanent sedimentary Fe, Mn, and P burial.
  •  
14.
  • Hermans, Martijn, et al. (författare)
  • Impact of natural re-oxygenation on the sediment dynamics of manganese, iron and phosphorus in a euxinic Baltic Sea basin
  • 2019
  • Ingår i: Geochimica et Cosmochimica Acta. - : Elsevier BV. - 0016-7037 .- 1872-9533. ; 246, s. 174-196
  • Tidskriftsartikel (refereegranskat)abstract
    • The Baltic Sea is characterized by the largest area of hypoxic (oxygen (O2) < 2 mg L−1) bottom waters in the world’s ocean induced by human activities. Natural ventilation of these O2-depleted waters largely depends on episodic Major Baltic Inflows from the adjacent North Sea. In 2014 and 2015, two such inflows led to a strong rise in O2 and decline in phosphate (HPO42−) in waters below 125 m depth in the Eastern Gotland Basin. This provided the opportunity to assess the impact of such re-oxygenation events on the cycles of manganese (Mn), iron (Fe) and phosphorus (P) in the sediment for the first time. We demonstrate that the re-oxygenation induced the activity of sulphur (S)-oxidising bacteria, known as Beggiatoaceae in the surface sediment where a thin oxic and suboxic layer developed. At the two deepest sites, strong enrichments of total Mn and to a lesser extent Fe oxides and P were observed in this surface layer. A combination of sequential sediment extractions and synchrotron-based X-ray spectroscopy revealed evidence for the abundant presence of P-bearing rhodochrosite and Mn(II) phosphates. In contrast to what is typically assumed, the formation of Fe oxides in the surface sediment was limited. We attribute this lack of Fe oxide formation to the high flux of reductants, such as sulphide, from deeper sediments which allows Fe(II) in the form of FeS to be preserved and restricts the penetration of O2 into the sediment. We estimate that enhanced P sequestration in surface sediments accounts for only ∼5% of water column HPO42− removal in the Eastern Gotland Basin linked to the recent inflows. The remaining HPO42− was transported to adjacent areas in the Baltic Sea. Our results highlight that the benthic O2 demand arising from the accumulation of organic-rich sediments over several decades, the legacy of hypoxia, has major implications for the biogeochemical response of euxinic basins to re-oxygenation. In particular, P sequestration in the sediment in association with Fe oxides is limited. This implies that artificial ventilation projects that aim at removing water column HPO42− and thereby improving water quality in the Baltic Sea will likely not have the desired effect.
  •  
15.
  • Jilbert, Tom, et al. (författare)
  • Glacio-isostatic control on hypoxia in a high-latitude shelf basin
  • 2015
  • Ingår i: Geology. - 0091-7613 .- 1943-2682. ; 43:5, s. 427-430
  • Tidskriftsartikel (refereegranskat)abstract
    • In high-latitude continental shelf environments, late Pleistocene glacial overdeepening and early Holocene eustatic sea-level rise combined to create restricted marine basins with a high vulnerability to oxygen depletion. Here we show that ongoing glacio-isostatic rebound during the Holocene may have played an important role in determining the distribution of past hypoxia in these environments by controlling the physical exchange of water masses and the distribution of large-scale phosphorus (P) sinks. We focus on the Baltic Sea, where sediment records from a large, presently oxic sub-basin show evidence for intense hypoxia and cyanobacteria blooms during the Holocene Thermal Maximum. Using paleobathymetric modeling, we show that this period was characterized by enhanced deep-water exchange, allowing widespread phosphorus regeneration. Intra-basin sills then shoaled over a period of several thousand years, enhancing P burial in one of the sub-basins. Together with climate forcing, this may have caused the termination of hypoxia throughout the Baltic Sea. Similar rearrangements of physical and chemical processes likely occurred in response to glacio-isostatic rebound in other high-latitude shelf basins during the Holocene.
  •  
16.
  • Jilbert, Tom, et al. (författare)
  • Iron-Phosphorus Feedbacks Drive Multidecadal Oscillations in Baltic Sea Hypoxia
  • 2021
  • Ingår i: Geophysical Research Letters. - : American Geophysical Union (AGU). - 0094-8276 .- 1944-8007. ; 48:24
  • Tidskriftsartikel (refereegranskat)abstract
    • Hypoxia has occurred intermittently in the Baltic Sea since the establishment of brackish-water conditions at ∼8,000 years B.P., principally as recurrent hypoxic events during the Holocene Thermal Maximum (HTM) and the Medieval Climate Anomaly (MCA). Sedimentary phosphorus release has been implicated as a key driver of these events, but previous paleoenvironmental reconstructions have lacked the sampling resolution to investigate feedbacks in past iron-phosphorus cycling on short timescales. Here we employ Laser Ablation (LA)-ICP-MS scanning of sediment cores to generate ultra-high resolution geochemical records of past hypoxic events. We show that in-phase multidecadal oscillations in hypoxia intensity and iron-phosphorus cycling occurred throughout these events. Using a box model, we demonstrate that such oscillations were likely driven by instabilities in the dynamics of iron-phosphorus cycling under preindustrial phosphorus loads, and modulated by external climate forcing. Oscillatory behavior could complicate the recovery from hypoxia during future trajectories of external loading reductions.
  •  
17.
  • Kubeneck, L. Joëlle, et al. (författare)
  • Phosphorus burial in vivianite-type minerals in methane-rich coastal sediments
  • 2021
  • Ingår i: Marine Chemistry. - : Elsevier BV. - 0304-4203. ; 231
  • Tidskriftsartikel (refereegranskat)abstract
    • Sediments are a key sink for phosphorus (P) in coastal systems. This allows coastal areas to act as a filter for P that is transported from land to sea. Recent work suggests that vivianite-type ferrous iron (Fe(II))-P minerals may be more important as a sink for P in coastal sediments than previously thought. Here, we investigate the occurrence of such vivianite-type minerals in sediments of three eutrophic coastal sites with contrasting dynamics with respect to iron (Fe) and sulfur (S), covering a salinity range of 0 to 7. We only find authigenic vivianite-type minerals at the low and intermediate salinity sites, where Fe is available in excess over sulfide production. Sequential extractions combined with SEM-EDS and μXRF analysis point towards substitution of Fe in vivianite-type minerals by other transition metal cations such as magnesium and manganese, suggesting potentially different formation pathways modulated by metal cation availability. Our results suggest that vivianite-type minerals may act as a key sink for P in sediments of many other brackish coastal systems. Climate change-driven modulations of coastal bottom water salinity, and hence, Fe versus S availability in the sediment, may alter the role of vivianite-type minerals as a P burial sink over the coming decades. Model projections for the Baltic Sea point towards increased river input and freshening of coastal waters, which could enhance P burial. In contrast, sea level rise in the Chesapeake Bay area is expected to lead to an increase in bottom water salinity and this could lower rates of P burial or even liberate currently buried P, thereby enhancing eutrophication.
  •  
18.
  • Kuliński, Karol, et al. (författare)
  • Biogeochemical functioning of the Baltic Sea
  • 2022
  • Ingår i: Earth System Dynamics. - : Copernicus GmbH. - 2190-4979 .- 2190-4987. ; 13, s. 633-685
  • Forskningsöversikt (refereegranskat)abstract
    • Location, specific topography, and hydrographic setting together with climate change and strong anthropogenic pressure are the main factors shaping the biogeochemical functioning and thus also the ecological status of the Baltic Sea. The recent decades have brought significant changes in the Baltic Sea. First, the rising nutrient loads from land in the second half of the 20th century led to eutrophication and spreading of hypoxic and anoxic areas, for which permanent stratification of the water column and limited ventilation of deep-water layers made favourable conditions. Since the 1980s the nutrient loads to the Baltic Sea have been continuously decreasing. This, however, has so far not resulted in significant improvements in oxygen availability in the deep regions, which has revealed a slow response time of the system to the reduction of the land-derived nutrient loads. Responsible for that is the low burial efficiency of phosphorus at anoxic conditions and its remobilization from sediments when conditions change from oxic to anoxic. This results in a stoichiometric excess of phosphorus available for organic-matter production, which promotes the growth of N2-fixing cyanobacteria and in turn supports eutrophication. This assessment reviews the available and published knowledge on the biogeochemical functioning of the Baltic Sea. In its content, the paper covers the aspects related to changes in carbon, nitrogen, and phosphorus (C, N, and P) external loads, their transformations in the coastal zone, changes in organic-matter production (eutrophication) and remineralization (oxygen availability), and the role of sediments in burial and turnover of C, N, and P. In addition to that, this paper focuses also on changes in the marine CO2 system, the structure and functioning of the microbial community, and the role of contaminants for biogeochemical processes. This comprehensive assessment allowed also for identifying knowledge gaps and future research needs in the field of marine biogeochemistry in the Baltic Sea. Copyright:
  •  
19.
  • Lenstra, Wytze K., et al. (författare)
  • Gene-based modeling of methane oxidation in coastal sediments : constraints on the efficiency of the microbial methane filter
  • 2023
  • Ingår i: Environmental Science and Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 57:34, s. 12722-12731
  • Tidskriftsartikel (refereegranskat)abstract
    • Methane is a powerful greenhouse gas that is produced in large quantities in marine sediments. Microbially mediated oxidation of methane in sediments, when in balance with methane production, prevents the release of methane to the overlying water. Here, we present a gene-based reactive transport model that includes both microbial and geochemical dynamics and use it to investigate whether the rate of growth of methane oxidizers in sediments impacts the efficiency of the microbial methane filter. We focus on iron- and methane-rich coastal sediments and, with the model, show that at our site, up to 10% of all methane removed is oxidized by iron and manganese oxides, with the remainder accounted for by oxygen and sulfate. We demonstrate that the slow growth rate of anaerobic methane-oxidizing microbes limits their ability to respond to transient perturbations, resulting in periodic benthic release of methane. Eutrophication and deoxygenation decrease the efficiency of the microbial methane filter further, thereby enhancing the role of coastal environments as a source of methane to the atmosphere.
  •  
20.
  • Lenstra, Wytze K., et al. (författare)
  • Large variations in iron input to an oligotrophic Baltic Sea estuary : Impact on sedimentary phosphorus burial
  • 2018
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 15:22, s. 6979-6996
  • Tidskriftsartikel (refereegranskat)abstract
    • Estuarine sediments are key sites for removal of phosphorus (P) from rivers and the open sea. Vivianite, an Fe(II)-P mineral, can act as a major sink for P in Fe-rich coastal sediments. In this study, we investigate the burial of P in the Öre Estuary in the northern Baltic Sea. We find much higher rates of P burial at our five study sites (up to ĝ1/4 0.145 molĝ€†mĝ'2ĝ€†yrĝ'1) when compared to more southern coastal areas in the Baltic Sea with similar rates of sedimentation. Detailed study of the sediment P forms at our site with the highest rate of sedimentation reveals a major role for P associated with Fe and the presence of vivianite crystals below the sulfate methane transition zone. By applying a reactive transport model to sediment and porewater profiles for this site, we show that vivianite may account for up to ĝ1/4 40 % of total P burial. With the model, we demonstrate that vivianite formation is promoted in sediments with a low bottom water salinity and high rates of sedimentation and Fe oxide input. While high rates of organic matter input are also required, there is an optimum rate above which vivianite formation declines. Distinct enrichments in sediment Fe and sulfur at depth in the sediment are attributed to short periods of enhanced input of riverine Fe and organic matter. These periods of enhanced input are linked to variations in rainfall on land and follow dry periods. Most of the P associated with the Fe in the sediment is likely imported from the adjacent eutrophic Baltic Proper. Our work demonstrates that variations in land-to-sea transfer of Fe may act as a key control on burial of P in coastal sediments. Ongoing climate change is expected to lead to a decrease in bottom water salinity and contribute to continued high inputs of Fe oxides from land, further promoting P burial as vivianite in the coastal zone of the northern Baltic Sea. This may enhance the role of this oligotrophic area as a sink for P imported from eutrophic parts of the Baltic Sea.
  •  
21.
  • Lenz, Conny, et al. (författare)
  • Hypoxia-driven variations in iron and manganese shuttling in the Baltic Sea over the past 8 kyr
  • 2015
  • Ingår i: Geochemistry Geophysics Geosystems. - 1525-2027. ; 16:10, s. 3754-3766
  • Tidskriftsartikel (refereegranskat)abstract
    • The Baltic Sea has experienced three major intervals of bottom water hypoxia following the intrusion of seawater circa 8 kyr ago. These intervals occurred during the Holocene Thermal Maximum (HTM), Medieval Climate Anomaly (MCA), and during recent decades. Here we show that sequestration of both Fe and Mn in Baltic Sea sediments generally increases with water depth, and we attribute this to shelf-to-basin transfer (shuttling) of Fe and Mn. Burial of Mn in slope and basin sediments was enhanced following the lake-brackish/marine transition at the beginning of the hypoxic interval during the HTM. During hypoxic intervals, shelf-to-basin transfer of Fe was generally enhanced but that of Mn was reduced. However, intensification of hypoxia within hypoxic intervals led to decreased burial of both Mn and Fe in deep basin sediments. This implies a nonlinearity in shelf Fe release upon expanding hypoxia with initial enhanced Fe release relative to oxic conditions followed by increased retention in shelf sediments, likely in the form of iron sulfide minerals. For Mn, extended hypoxia leads to more limited sequestration as Mn carbonate in deep basin sediments, presumably because of more rapid reduction of Mn oxides formed after inflows and subsequent escape of dissolved Mn to the overlying water. Our Fe records suggest that modern Baltic Sea hypoxia is more widespread than in the past. Furthermore, hypoxia-driven variations in shelf-to-basin transfer of Fe may have impacted the dynamics of P and sulfide in the Baltic Sea thus providing potential feedbacks on the further development of hypoxia.
  •  
22.
  • Lenz, Conny, et al. (författare)
  • Redox-dependent changes in manganese speciation in Baltic Sea sediments from the Holocene Thermal Maximum: An EXAFS, XANES and LA-ICP-MS study
  • 2014
  • Ingår i: Chemical Geology. - : Elsevier BV. - 0009-2541. ; 370, s. 49-57
  • Tidskriftsartikel (refereegranskat)abstract
    • Manganese (Mn) enrichments in sediments of the deep basins of the Baltic Sea are believed to consist of Ca-Mn-carbonates that form from Mn oxides following periodic inflows of oxygen-rich North Sea waters. However, a range of Mn-bearing mineral phases, that besides Mn-carbonates (e. g. Ca-rhodochrosite), can include Mn-sulfides are known to be present in marine sediments, with formation mechanisms that are sensitive to redox conditions. In this study, we use high resolution synchrotron EXAFS and XANES combined with LA-ICP-MS and micro-XRF, to investigate the nature of the Mn enrichments in sediments from the Holocene Thermal Maximum (approx. 8000-4000 cal. yr BP) at a site in the northern Gotland Basin. Analyses were performed on epoxy-embedded sediment sequences. We specifically address the role of changes in redox conditions in bottom waters, as inferred from sediment molybdenum(Mo) contents, for Mn sequestration. We find that an up-core increase in Mo, indicating a transition into more anoxic and sulfidic (euxinic) bottom water conditions, is accompanied by a decline in total sediment Mn contents. While Mn-carbonates dominate the Mn mineral fraction in the low-Mo interval, in the more sulfidic, high Mo interval, Mn is associated with framboidal pyrite. Mn/Fe ratios in the sulfidic interval vary between the investigated sequences but reach values of up to 7.7 mol%. This exceeds ratios previously reported for sedimentary pyrite and EXAFS spectra indicate that sulfide bound Mn is predominately tetrahedrally coordinated when Mn/Fe ratios are high. This suggests that Mn is incorporated in other Fe-S phases such as mackinawite besides pyrite. There is also evidence for the presence of a low concentration of Mn associated with detrital aluminosilicates throughout the investigated intervals. Our results suggest that increased bottom water euxinia inhibited the formation of Mn-carbonate at this site during the Holocene Thermal Maximum, possibly due to a more rapid reduction of Mn oxides in more sulfidic bottom waters. (C) 2014 Elsevier B.V. All rights reserved.
  •  
23.
  • Limburg, Karin E., et al. (författare)
  • Tracking Baltic hypoxia and cod migration over millennia with natural tags
  • 2011
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 108:22, s. E177-E182
  • Tidskriftsartikel (refereegranskat)abstract
    • Growing hypoxic and anoxic areas in coastal environments reduce fish habitat, but the interactions and impact on fish in these areas are poorly understood. Using natural tag properties of otoliths, we found significant correlations between the extent of Baltic Sea hypoxia and Mn/Ca ratios in regions of cod (Gadus morhua) otoliths corresponding to year 1 of life; this is associated with elevated bottom water dissolved manganese that increases with hypoxia. Elevated Mn/Ca ratios were also found in other years of life but with less frequency. We propose that cod exhibiting enhanced Mn/Ca ratios were exposed to dissolved manganese from hypoxia-induced redox dynamics in nursery areas. Neolithic (4500 B. P.) cod otoliths (n = 12) had lowlevels of Mn/Ca ratios, consistent with low hypoxia, but a single otolith dated to the younger Iron Age had a distinct growth band with an elevated Mn/Ca ratio. Sr/Ca patterns reflecting changes in environmental salinity and temperature were similar in both modern and Stone Age otoliths, indicating consistent migration habits across time, and Ba/Sr ratios in modern cod otoliths indicate increasing use of a more saline habitat with age. Using elemental ratios, numerous existing archival collections of otoliths could provide the means to reconstruct hypoxia exposure histories and major patterns of fish movement near dead zones globally.
  •  
24.
  • Ning, Wenxin, et al. (författare)
  • Evolving coastal character of a Baltic Sea inlet during the Holocene shoreline regression : impact on coastal zone hypoxia
  • 2016
  • Ingår i: Journal of Paleolimnology. - : Springer Science and Business Media LLC. - 0921-2728 .- 1573-0417. ; 55:4, s. 319-338
  • Tidskriftsartikel (refereegranskat)abstract
    • Although bottom water hypoxia (O2 −1) is presently widespread in the Baltic Sea coastal zone, there is a lack of insight into past changes in bottom water oxygen in these areas on timescales of millennia, and the possible driving factors. Here, we present a sediment-based environmental reconstruction of surface water productivity, salinity and bottom water oxygen for the past 5400 years at Gåsfjärden, a coastal site in SE Sweden. As proxies, we use dinoflagellate cysts, benthic foraminifera, organic carbon (Corg), biogenic silica (BSi), Corg/Ntot, Corg/Ptot, Ti/Al, K/Al and grain size distribution. The chronology of the sediment sequence is well constrained, based on 210Pb, 137Cs and AMS 14C dates. Between 3400 and 2100 BCE, isostatic conditions favored enhanced deep water exchange between Gåsfjärden and the open Baltic Sea. At that time, Gåsfjärden was characterized by relatively high productivity and salinity, as well as frequently occurring hypoxic-anoxic bottom water, despite the relatively large connection with the Baltic Sea. The most severe interval of oxygen depletion is recorded between 2400 and 2100 BCE, and appears to coincide with a similar hypoxic event in the Gotland Basin in the open Baltic Sea. As regional climate became wetter and colder between 2100 BCE and 700 BCE, salinity declined and bottom water oxygen conditions improved. Throughout the record, grain size, Ti/Al and K/Al data indicate an evolution towards a more enclosed coastal system, as suggested by reconstructions of the post-glacial shoreline regression. Gåsfjärden shifted to close to modern conditions after 700 BCE, and was characterized by less hypoxia and lower salinity compared with 3400–700 BCE. The timing of the shift corresponds with the Sub-Boreal/Sub-Atlantic transition in Europe. Human-induced erosion in the catchment is observed as early as 600 CE, and is particularly prominent since regional copper mining activity increased around 1700 CE. A sharp increase in sediment Corg concentration is recorded since the 1950s, indicating significant anthropogenic impact on biogeochemical cycles in the coastal zone, as observed elsewhere in the Baltic Sea.
  •  
25.
  • Paul, K. Mareike, et al. (författare)
  • Sedimentary molybdenum and uranium : Improving proxies for deoxygenation in coastal depositional environments
  • 2023
  • Ingår i: Chemical Geology. - : Elsevier BV. - 0009-2541. ; 615
  • Tidskriftsartikel (refereegranskat)abstract
    • Sedimentary molybdenum (Mo) and uranium (U) enrichments are widely used to reconstruct changes in bottom water oxygen conditions in aquatic environments. Until now, most studies using Mo and U have focused on restricted suboxic-euxinic basins and continental margin oxygen minimum zones (OMZs), leaving mildly reducing and oxic (but eutrophic) coastal depositional environments vastly understudied. Currently, it is unknown: (1) to what extent Mo and U enrichment factors (Mo- and U-EFs) can accurately reconstruct oxygen conditions in coastal sites experiencing mild deoxygenation, and (2) to what degree secondary (depositional environmental) factors impact Mo- and U-EFs. Here we investigate 18 coastal sites with varying bottom water redox conditions, which we define by means of five “redox bins”, ranging from persistently oxic to persistently euxinic, from a variety of depositional environments. Our results demonstrate that Mo- and U-EF-based redox proxies and sedimentary Mo and U contents can be used to differentiate bottom water oxygen concentration among a range of modern coastal depositional environments. This is underpinned by the contrasting EFs of Mo and U along the redox gradient, which shows a substantial difference of Mo-EFs between redox bins 3–5 (ir/regularly suboxic – ir/regularly dysoxic – persistently oxic) and of U-EFs between redox bins 1–2 (persistently euxinic – ir/regularly euxinic). Surprisingly, we observe comparatively low redox proxy potential for U in environments of mild deoxygenation (redox bins 3–5). Further, we found that secondary factors can bias Mo-and U-EFs to such an extent that EFs do not reliably reflect bottom water redox conditions. We investigate the impact of limited Mo sedimentary sequestration in sulfidic depositional environments (i.e., the “basin reservoir effect”, equilibrium with FeMoS4), Fe/Mn-(oxy)(hydr)oxide “shuttling”, oxidative dissolution, the sulfate methane transition zone in the sediment, sedimentation rate, and the local Al background on Mo- and U-EFs.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 30
Typ av publikation
tidskriftsartikel (27)
forskningsöversikt (2)
annan publikation (1)
Typ av innehåll
refereegranskat (28)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Slomp, Caroline P. (29)
Gustafsson, Bo G. (11)
Conley, Daniel J. (10)
Jilbert, Tom (10)
Carstensen, Jacob (6)
Conley, Daniel (5)
visa fler...
Humborg, Christoph (5)
Voss, Maren (5)
Norkko, Alf (3)
Asmala, Eero (3)
Filipsson, Helena L. (2)
Björck, Svante (2)
Stadmark, Johanna (2)
Destouni, Georgia (2)
Meier, H. E. Markus (2)
Quintana Krupinski, ... (2)
Wulff, Fredrik (2)
Gustafsson, Erik (2)
Bonsdorff, Erik (2)
Sun, Xiaole (2)
Sobek, Anna (1)
Nyberg, Johan (1)
Kritzberg, Emma (1)
Hall, Per, 1954 (1)
Jürgens, Klaus (1)
Fontorbe, Guillaume (1)
Ghosh, Anupam (1)
Norkko, Alf, 1967 (1)
Walther, Yvonne (1)
Andrén, Thomas (1)
Nordberg, Kjell, 195 ... (1)
Bartosova, Alena (1)
Norkko, Joanna (1)
Rosenberg, Rutger, 1 ... (1)
Kulinski, Karol (1)
Lougheed, Bryan C., ... (1)
Rosenberg, Rutger (1)
Nordberg, Kjell (1)
Limburg, Karin E. (1)
Rehder, Gregor (1)
Olson, Carina (1)
Sofiev, Mikhail (1)
Yokoyama, Yusuke (1)
Rabalais, Nancy N. (1)
Khan, Mansoor (1)
Paul, K. Mareike (1)
Robertson, Elizabeth ... (1)
Malkin, Sairah Y. (1)
Schramm, Andreas (1)
Hagens, Mathilde (1)
visa färre...
Lärosäte
Lunds universitet (17)
Stockholms universitet (15)
Göteborgs universitet (4)
Uppsala universitet (2)
Umeå universitet (1)
Södertörns högskola (1)
Språk
Engelska (30)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (27)
Teknik (1)
Humaniora (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy