SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Smadja Carole) "

Sökning: WFRF:(Smadja Carole)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Richards, Stephen, et al. (författare)
  • Genome Sequence of the Pea Aphid Acyrthosiphon pisum
  • 2010
  • Ingår i: PLoS biology. - : Public Library of Science (PLoS). - 1544-9173 .- 1545-7885. ; 8:2, s. e1000313-
  • Tidskriftsartikel (refereegranskat)abstract
    • Aphids are important agricultural pests and also biological models for studies of insect-plant interactions, symbiosis, virus vectoring, and the developmental causes of extreme phenotypic plasticity. Here we present the 464 Mb draft genome assembly of the pea aphid Acyrthosiphon pisum. This first published whole genome sequence of a basal hemimetabolous insect provides an outgroup to the multiple published genomes of holometabolous insects. Pea aphids are host-plant specialists, they can reproduce both sexually and asexually, and they have coevolved with an obligate bacterial symbiont. Here we highlight findings from whole genome analysis that may be related to these unusual biological features. These findings include discovery of extensive gene duplication in more than 2000 gene families as well as loss of evolutionarily conserved genes. Gene family expansions relative to other published genomes include genes involved in chromatin modification, miRNA synthesis, and sugar transport. Gene losses include genes central to the IMD immune pathway, selenoprotein utilization, purine salvage, and the entire urea cycle. The pea aphid genome reveals that only a limited number of genes have been acquired from bacteria; thus the reduced gene count of Buchnera does not reflect gene transfer to the host genome. The inventory of metabolic genes in the pea aphid genome suggests that there is extensive metabolite exchange between the aphid and Buchnera, including sharing of amino acid biosynthesis between the aphid and Buchnera. The pea aphid genome provides a foundation for post-genomic studies of fundamental biological questions and applied agricultural problems.
  •  
2.
  • Butlin, Roger, 1955, et al. (författare)
  • Coupling, reinforcement, and speciation
  • 2018
  • Ingår i: American Naturalist. - : University of Chicago Press. - 0003-0147 .- 1537-5323. ; 191, s. 155-172
  • Tidskriftsartikel (refereegranskat)abstract
    • © 2017 by The University of Chicago. During the process of speciation, populations may diverge for traits and at their underlying loci that contribute barriers to gene flow. These barrier traits and barrier loci underlie individual barrier effects, by which we mean the contribution that a barrier locus or trait—or some combination of barrier loci or traits—makes to overall isolation. The evolution of strong reproductive isolation typically requires the origin of multiple barrier effects. Critically, it also requires the coincidence of barrier effects; for example, two barrier effects, one due to assortative mating and the other due to hybrid inviability, create a stronger overall barrier to gene flow if they coincide than if they distinguish independent pairs of populations. Here, we define “coupling” as any process that generates coincidence of barrier effects, resulting in a stronger overall barrier to gene flow. We argue that speciation research, both empirical and theoretical, needs to consider both the origin of barrier effects and the ways in which they are coupled. Coincidence of barrier effects can occur either as a by-product of selection on individual barrier effects or of population processes, or as an adaptive response to indirect selection. Adaptive coupling may be accompanied by further evolution that enhances individual barrier effects. Reinforcement, classically viewed as the evolution of prezygotic barriers to gene flow in response to costs of hybridization, is an example of this type of process. However, we argue for an extended view of reinforcement that includes coupling processes involving enhancement of any type of additional barrier effect as a result of an existing barrier. This view of coupling and reinforcement may help to guide development of both theoretical and empirical research on the process of speciation.
  •  
3.
  • Loire, Etienne, et al. (författare)
  • Do changes in gene expression contribute to sexual isolation and reinforcement in the house mouse?
  • 2017
  • Ingår i: Molecular Ecology. - : Wiley. - 0962-1083 .- 1365-294X. ; 26:19, s. 5189-5202
  • Tidskriftsartikel (refereegranskat)abstract
    • Expression divergence, rather than sequence divergence, has been shown to be important in speciation, particularly in the early stages of divergence of traits involved in reproductive isolation. In the two European subspecies of house mice, Mus musculus musculus and Mus musculus domesticus, earlier studies have demonstrated olfactory‐based assortative mate preference in populations close to their hybrid zone. It has been suggested that this behaviour evolved following the recent secondary contact between the two taxa (~3,000 years ago) in response to selection against hybridization. To test for a role of changes in gene expression in the observed behavioural shift, we conducted a RNA sequencing experiment on mouse vomeronasal organs. Key candidate genes for pheromone‐based subspecies recognition, the vomeronasal receptors, are expressed in these organs. Overall patterns of gene expression varied significantly between samples from the two subspecies, with a large number of differentially expressed genes between the two taxa. In contrast, only ~200 genes were found repeatedly differentially expressed between populations within M. m. musculus that did or did not display assortative mate preferences (close to or more distant from the hybrid zone, respectively), with an overrepresentation of genes belonging to vomeronasal receptor family 2. These receptors are known to play a key role in recognition of chemical cues that handle information about genetic identity. Interestingly, four of five of these differentially expressed receptors belong to the same phylogenetic cluster, suggesting specialization of a group of closely related receptors in the recognition of odorant signals that may allow subspecies recognition and assortative mating.
  •  
4.
  • Smadja, Carole M, et al. (författare)
  • Large-scale candidate gene scan reveals the role of chemoreceptor genes in host plant specialisation and speciation in the pea aphid
  • 2012
  • Ingår i: Evolution. - : Wiley. - 1558-5646 .- 0014-3820. ; 66:9, s. 2723-2738
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding the drivers of speciation is critical to interpreting patterns of biodiversity. The identification of the genetic changes underlying adaptation and reproductive isolation is necessary to link barriers to gene flow to the causal origins of divergence. Here, we present a novel approach to the genetics of speciation, which should complement the commonly used approaches of quantitative trait locus mapping and genome-wide scans for selection. We present a large-scale candidate gene approach by means of sequence capture, applied to identifying the genetic changes underlying reproductive isolation in the pea aphid, a model system for the study of ecological speciation. Targeted resequencing enabled us to scale up the candidate gene approach, specifically testing for the role of chemosensory gene families in host plant specialization. Screening for the signature of divergence under selection at 172 candidate and noncandidate loci, we revealed a handful of loci that show high levels of differentiation among host races, which almost all correspond to odorant and gustatory receptor genes. This study offers the first indication that some chemoreceptor genes, often tightly linked together in the genome, could play a key role in local adaptation and reproductive isolation in the pea aphid and potentially other phytophagous insects. Our approach opens a new route toward the functional genomics of ecological speciation.
  •  
5.
  • Stapley, Jessica, et al. (författare)
  • Adaptation genomics : the next generation
  • 2010
  • Ingår i: Trends in Ecology & Evolution. - : Elsevier BV. - 0169-5347 .- 1872-8383. ; 25:12, s. 705-712
  • Forskningsöversikt (refereegranskat)abstract
    • Understanding the genetics of how organisms adapt to changing environments is a fundamental topic in modern evolutionary ecology. The field is currently progressing rapidly because of advances in genomics technologies, especially DNA sequencing. The aim of this review is to first briefly summarise how next generation sequencing (NGS) has transformed our ability to identify the genes underpinning adaptation. We then demonstrate how the application of these genomic tools to ecological model species means that we can start addressing some of the questions that( have puzzled ecological geneticists for decades such as: How many genes are involved in adaptation? What types of genetic: variation are responsible for adaptation? Does adaptation utilise pre-existing genetic variation or does it require new mutations to arise following an environmental change?
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy