SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Solomon Keith R.) "

Sökning: WFRF:(Solomon Keith R.)

  • Resultat 1-14 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Niemi, MEK, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
2.
  • 2019
  • Tidskriftsartikel (refereegranskat)
  •  
3.
  • Andrady, Anthony, et al. (författare)
  • Environmental effects of ozone depletion and its interactions with climate change: Progress report, 2016
  • 2017
  • Ingår i: Photochemical and Photobiological Sciences. - : Springer Science and Business Media LLC. - 1474-9092 .- 1474-905X. ; 16:2, s. 107-145
  • Tidskriftsartikel (refereegranskat)abstract
    • The Parties to the Montreal Protocol are informed by three Panels of experts. One of these is the Environmental Effects Assessment Panel (EEAP), which deals with two focal issues. The first focus is the effects of UV radiation on human health, animals, plants, biogeochemistry, air quality, and materials. The second focus is on interactions between UV radiation and global climate change and how these may affect humans and the environment. When considering the effects of climate change, it has become clear that processes resulting in changes in stratospheric ozone are more complex than previously believed. As a result of this, human health and environmental issues will be longer-lasting and more regionally variable. Like the other Panels, the EEAPproduces a detailed report every four years; the most recent was published as a series of seven papers in 2015 (Photochem. Photobiol. Sci., 2015, 14, 1–184). In the years in between, the EEAP produces less detailed and shorter Progress Reports of the relevant scientific findings. The most recent of these was for 2015 (Photochem. Photobiol. Sci., 2016, 15, 141–147). The present Progress Report for 2016 assesses some of the highlights and new insights with regard to the interactive nature of the direct and indirect effects of UV radiation, atmospheric processes, and climate change. The more detailed Quadrennial Assessment will bemade available in 2018.
  •  
4.
  • Barnes, Paul W., et al. (författare)
  • Ozone depletion, ultraviolet radiation, climate change and prospects for a sustainable future
  • 2019
  • Ingår i: Nature Sustainability. - : Springer Science and Business Media LLC. - 2398-9629. ; 2:7, s. 569-579
  • Forskningsöversikt (refereegranskat)abstract
    • © 2019, Springer Nature Limited. Changes in stratospheric ozone and climate over the past 40-plus years have altered the solar ultraviolet (UV) radiation conditions at the Earth’s surface. Ozone depletion has also contributed to climate change across the Southern Hemisphere. These changes are interacting in complex ways to affect human health, food and water security, and ecosystem services. Many adverse effects of high UV exposure have been avoided thanks to the Montreal Protocol with its Amendments and Adjustments, which have effectively controlled the production and use of ozone-depleting substances. This international treaty has also played an important role in mitigating climate change. Climate change is modifying UV exposure and affecting how people and ecosystems respond to UV; these effects will become more pronounced in the future. The interactions between stratospheric ozone, climate and UV radiation will therefore shift over time; however, the Montreal Protocol will continue to have far-reaching benefits for human well-being and environmental sustainability.
  •  
5.
  •  
6.
  • Andrady, Anthony, et al. (författare)
  • Environmental effects of ozone depletion and its interactions with climate
  • 2009
  • Ingår i: Photochemical and Photobiological Sciences. - 1474-9092. ; 8:1, s. 13-22
  • Forskningsöversikt (refereegranskat)abstract
    • After the enthusiastic celebration of the 20th Anniversary of the Montreal Protocol on Substances that Deplete the Ozone Layer in 2007, the work for the protection of the ozone layer continues. The Environmental Effects Assessment Panel is one of the three expert panels within theMontreal Protocol. This “EEAP” deals with the increase of the UV irradiance on the Earth’s surface and its effects on human health, animals, plants, biogeochemistry, air quality and materials. For the past few years, interactions of ozone depletion with climate change have also been considered. It has become clear that the environmental problems will be long-lasting. In spite of the fact that the worldwide production of ozone depleting chemicals has already been reduced by 95%, the environmental disturbances are expected to persist for about the next half a century, even if the protective work is actively continued, and completed. The latest full report was published in Photochem. Photobiol. Sci., 2007, 6, 201–332, and the last progress report in Photochem. Photobiol. Sci., 2008, 7, 15–27. The next full report on environmental effects is scheduled for the year 2010. The present progress report 2008 is one of the short interim reports, appearing annually.
  •  
7.
  •  
8.
  • Andrady, Anthony, et al. (författare)
  • Environmental effects of ozone depletion and its interaction with climate change: Progress report 2007
  • 2008
  • Ingår i: Photochemical and Photobiological Sciences. - : Springer Science and Business Media LLC. - 1474-9092 .- 1474-905X. ; 7:1, s. 15-27
  • Forskningsöversikt (refereegranskat)abstract
    • This year theMontreal Protocol celebrates its 20th Anniversary. In September 1987, 24 countries signed the ‘Montreal Protocol on Substances that Deplete the Ozone Layer’. Today 191 countries have signed and have met strict commitments on phasing out of ozone depleting substances with the result that a 95% reduction of these substances has been achieved. The Montreal Protocol has also contributed to slowing the rate of global climate change, since most of the ozone depleting substances are also effective greenhouse gases. Even though much has been achieved, the future of the stratospheric ozone layer relies on full compliance of the Montreal Protocol by all countries for the remaining substances, including methyl bromide, as well as strict monitoring of potential risks from the production of substitute chemicals. Also the ozone depleting substances existing in banks and equipment need special attention to prevent their release to the stratosphere. Since many of the ozone depleting substances already in the atmosphere are long-lived, recovery cannot be immediate and present projections estimate a return to pre-1980 levels by 2050 to 2075. It has also been predicted that the interactions of the effects of the ozone layer and that of other climate change factors will become increasingly important.
  •  
9.
  • Jansen, Marcel A. K., et al. (författare)
  • Environmental plastics in the context of UV radiation, climate change, and the Montreal Protocol
  • 2024
  • Ingår i: Global Change Biology. - : John Wiley & Sons. - 1354-1013 .- 1365-2486. ; 30:4
  • Tidskriftsartikel (refereegranskat)abstract
    • There are close links between solar UV radiation, climate change, and plastic pollution. UV-driven weathering is a key process leading to the degradation of plastics in the environment but also the formation of potentially harmful plastic fragments such as micro- and nanoplastic particles. Estimates of the environmental persistence of plastic pollution, and the formation of fragments, will need to take in account plastic dispersal around the globe, as well as projected UV radiation levels and climate change factors.image
  •  
10.
  • Jansen, Marcel A. K., et al. (författare)
  • Plastics in the environment in the context of UV radiation, climate change and the Montreal Protocol : UNEP Environmental Effects Assessment Panel, Update 2023
  • 2024
  • Ingår i: Photochemical and Photobiological Sciences. - : Springer Nature. - 1474-905X .- 1474-9092. ; 23, s. 629-650
  • Tidskriftsartikel (refereegranskat)abstract
    • This Assessment Update by the Environmental Effects Assessment Panel (EEAP) of the United Nations Environment Programme (UNEP) considers the interactive effects of solar UV radiation, global warming, and other weathering factors on plastics. The Assessment illustrates the significance of solar UV radiation in decreasing the durability of plastic materials, degradation of plastic debris, formation of micro- and nanoplastic particles and accompanying leaching of potential toxic compounds. Micro- and nanoplastics have been found in all ecosystems, the atmosphere, and in humans. While the potential biological risks are not yet well-established, the widespread and increasing occurrence of plastic pollution is reason for continuing research and monitoring. Plastic debris persists after its intended life in soils, water bodies and the atmosphere as well as in living organisms. To counteract accumulation of plastics in the environment, the lifetime of novel plastics or plastic alternatives should better match the functional life of products, with eventual breakdown releasing harmless substances to the environment.
  •  
11.
  • Gantner, Nikolaus, et al. (författare)
  • MERCURY CONCENTRATIONS IN LANDLOCKED ARCTIC CHAR (SALVELINUS ALPINUS) FROM THE CANADIAN ARCTIC. PART I : INSIGHTS FROM TROPHIC RELATIONSHIPS IN 18 LAKES
  • 2010
  • Ingår i: Environmental Toxicology and Chemistry. - : Wiley. - 0730-7268 .- 1552-8618. ; 29:3, s. 621-632
  • Tidskriftsartikel (refereegranskat)abstract
    • Concentrations of mercury (Hg) have increased slowly in landlocked Arctic char over a 10- to 15-year period in the Arctic. Fluxes of Hg to sediments also show increases in most Arctic lakes. Correlation of Hg with trophic level (TL) was used to investigate and compare biomagnification of Hg in food webs from lakes in the Canadian Arctic sampled from 2002 to 2007. Concentrations of Hg (total Hg and methylmercury [MeHg]) in food webs were compared across longitudinal and latitudinal gradients in relation to delta C-13 and delta N-15 in periphyton, zooplankton, benthic invertebrates, and Arctic char of varying size-classes. Trophic magnification factors (TMFs) were calculated for the food web in each lake and related to available physical and chemical characteristics of the lakes. The relative content of MeHg increased with trophic level from 4.3 to 12.2% in periphyton, 41 to 79% in zooplankton, 59 to 72% in insects, and 74 to 100% in juvenile and adult char. The delta C-13 signatures of adult char indicated coupling with benthic invertebrates. Cannibalism among char lengthened the food chain. Biomagnification was confirmed in all 18 lakes, with TMFs ranging from 3.5 +/- 1.1 to 64.3 +/- 0.8. Results indicate that TMFs and food chain length (FCL) are key factors in explaining interlake variability in biomagnification of [Hg] among different lakes. Environ. Toxicol. Chem. 2010; 29: 621-632. (C) 2009 SETAC
  •  
12.
  • Gantner, Nikolaus, et al. (författare)
  • MERCURY CONCENTRATIONS IN LANDLOCKED ARCTIC CHAR (SALVELINUS ALPINUS) FROM THE CANADIAN ARCTIC. PART II : INFLUENCE OF LAKE BIOTIC AND ABIOTIC CHARACTERISTICS ON GEOGRAPHIC TRENDS IN 27 POPULATIONS
  • 2010
  • Ingår i: Environmental Toxicology and Chemistry. - : Wiley. - 0730-7268 .- 1552-8618. ; 29:3, s. 633-643
  • Tidskriftsartikel (refereegranskat)abstract
    • Among-lake variation in mercury (Hg) concentrations in landlocked Arctic char was examined in 27 char populations from remote lakes across the Canadian Arctic. A total of 520 landlocked Arctic char were collected from 27 lakes, as well as sediments and surface water from a subset of lakes in 1999, 2002, and 2005 to 2007. Size, length, age, and trophic position (delta N-15) of individual char were determined and relationships with total Hg (THg) concentrations investigated, to identify a common covariate for adjustment using analysis of covariance (ANCOVA). A subset of 216 char from 24 populations was used for spatial comparison, after length-adjustment. The influence of trophic position and food web length and abiotic characteristics such as location, geomorphology, lake area, catchment area, catchment-to-lake area ratio of the lakes on adjusted THg concentrations in char muscle tissue were then evaluated. Arctic char from Amituk Lake (Cornwallis Island) had the highest Hg concentrations (1.31 mu g/g wet wt), while Tessisoak Lake (Labrador, 0.07 mu g/g wet wt) had the lowest. Concentrations of THg were positively correlated with size, delta N-15, and age, respectively, in 88, 71, and 58% of 24 char populations. Length and delta N-15 were correlated in 67% of 24 char populations. Food chain length did not explain the differences in length-adjusted THg concentrations in char. No relationships between adjusted THg concentrations in char and latitude or longitude were found, however, THg concentrations in char showed a positive correlation with catchment-to-lake area ratio. Furthermore, we conclude that inputs from the surrounding environment may influence THg concentrations, and will ultimately affect THg concentrations in char as a result of predicted climate-driven changes that may occur in Arctic lake watersheds. Environ. Toxicol. Chem. 2010; 29: 633-643.
  •  
13.
  • Houde, Magali, et al. (författare)
  • POLYBROMINATED DIPHENYL ETHERS AND THEIR HYDROXYLATED ANALOGS IN PLASMA OF BOTTLENOSE DOLPHINS (TURSIOPS TRUNCATUS) FROM THE UNITED STATES EAST COAST.
  • 2009
  • Ingår i: Environmental Toxicology and Chemistry. - : Wiley. - 0730-7268 .- 1552-8618. ; 28:10, s. 2061-2068
  • Tidskriftsartikel (refereegranskat)abstract
    • Polybrominated diphenyl ethers (PBDEs) and hydroxylated-PBDEs (OH-PBDE) were determined in plasma of free-ranging bottlenose dolphins (Tursiops truncatus) from Charleston (CHS), South Carolina, and the Indian River Lagoon (IRL), Florida, US. Significantly lower sum (Sigma) of PBDE concentrations (sum of 12 congeners) were found in animals from the IRL [arithmetic mean: 5.454.63 ng/g wet weight (ww)] compared to CHS (3040 ng/g ww). BDE-47 was the predominant PBDE in dolphins from the IRL (50% of the SigmaPBDEs) and CHS (58%). SigmaPBDE concentrations in plasma of dolphins were negatively correlated with age at both locations. Fifteen and sixteen individual OH-PBDE congeners could be quantified in plasma of dolphins from IRL and CHS, respectively. Similar to SigmaPBDE, mean SigmaOH-PBDE concentrations were significantly higher in plasma of dolphins at CHS (1150708 pg/g ww) compared to IRL (624393 pg/g ww). The predominant congener at both locations was 6-OH-PBDE 47 (IRL: 384319 pg/g ww; CHS: 541344 pg/g ww) representing 61.5% of total SigmaOH-PBDE at IRL and 47.0% at CHS. Concentrations of SigmaOH-PBDEs were weakly negatively correlated with age in dolphins from both locations (P<0.05; IRL, R2=0.048; CHS, R2=0.021). In addition to the OH-PBDE congeners identified with technical standards, eight and four unidentified OH-PBDEs were detected and quantified respectively in animals from CHS (sum of unidentified OH-PBDEs=1.350.90 pg/g ww) and IRL (0.730.40 pg/g ww). Our results suggest that, unlike OH-PCBs, OH-PBDEs in bottlenose dolphins are minor products in plasma relative to SigmaPBDEs and a significant proportion may be a consequence of the dietary uptake of naturally produced methoxylated- and OH-PBDEs.
  •  
14.
  • Sundberg, Christian, et al. (författare)
  • Two different PDGF beta-receptor cohorts in human pericytes mediate distinct biological endpoints
  • 2009
  • Ingår i: American Journal of Pathology. - : Elsevier BV. - 0002-9440 .- 1525-2191. ; 175:1, s. 171-189
  • Tidskriftsartikel (refereegranskat)abstract
    • How activation of a specific growth factor receptor selectively results in either cell proliferation or cytoskeletal reorganization is of central importance to the field of pathophysiology. In this study, we report on a novel mechanism that explains how this process is accomplished. Our current investigation demonstrates that soluble platelet derived growth factor- (PDGF)-BB activates a cohort of PDGF-beta receptors primarily confined to the lipid raft component of the cell membrane, specifically caveolae. In contrast, cell-bound PDGF-BB delivered via cell-cell contact results in activation and the subsequent up-regulation of a cohort of PDGF beta-receptors primarily confined to the non-lipid raft component of the cell membrane. Individual activation of these two receptor cohorts results in distinct biological endpoints, cytoskeletal reorganization or cell proliferation. Mechanistically, our evidence suggests that PDGF-BB-bearing cells preferentially stimulate the non-lipid raft receptor cohort through interleukin 1beta-mediated inhibition of the lipid raft cohort of receptors, leaving the non-raft receptor cohort operational and preferentially stimulated. In human skin injected with PDGF-BB and in tissue reparative processes PDGF beta-receptors colocalize with the caveolae/lipid raft marker caveolin-1. In contrast, in human skin injected with PDGF-BB-bearing tumor cells and in colorectal adenocarcinoma, activated PDGF beta-receptors do not colocalize with caveolin-1. Thus, growth factor receptors are segregated into specific cell membrane compartments that are preferentially activated through different mechanisms of ligand delivery, resulting in distinct biological endpoints.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-14 av 14
Typ av publikation
tidskriftsartikel (8)
forskningsöversikt (5)
Typ av innehåll
refereegranskat (13)
Författare/redaktör
Solomon, Keith R. (11)
Aucamp, Pieter J. (7)
Zepp, Richard G. (7)
Bais, Alkiviadis F. (6)
Bornman, Janet F. (6)
Sulzberger, Barbara (6)
visa fler...
Ballaré, Carlos L. (5)
de Gruijl, Frank R. (5)
Häder, Donat-P. (5)
Longstreth, Janice (5)
Norval, Mary (5)
Wilson, Stephen R. (5)
Worrest, Robert C. (5)
Wängberg, Sten-Åke, ... (4)
Hylander, Samuel (4)
Andrady, Anthony (4)
Björn, Lars Olof (4)
Erickson, David J. (4)
Ilyas, Mohammad (4)
McKenzie, Richard L. (4)
Redhwi, Halim Hamid (4)
Takizawa, Yukio (4)
Barnes, Paul W. (4)
Madronich, Sasha (4)
Pandey, Krishna K. (4)
Robinson, Sharon A. (4)
Rose, Kevin C. (4)
Caldwell, Martyn M. (3)
Cullen, Anthony P. (3)
Kulandaivelu, G. (3)
Kumar, H.D (3)
Smith, Raymond C. (3)
Tang, Xiaoyan (3)
Teramura, Alan H. (3)
van der Leun, Jan C. (3)
Paul, Nigel (3)
Lucas, Robyn M. (3)
Andrady, Anthony L. (3)
Neale, Patrick J. (3)
Bernhard, Germar H. (3)
Neale, Rachel E. (3)
Jansen, Marcel A.K. (3)
Robson, T. Matthew (3)
Petropavlovskikh, Ir ... (2)
Power, Michael (2)
Meili, Markus (2)
Borg, Hans (2)
Cory, Rose M. (2)
Flint, Stephan D. (2)
Williamson, Craig E. (2)
visa färre...
Lärosäte
Göteborgs universitet (5)
Stockholms universitet (5)
Lunds universitet (5)
Linnéuniversitetet (4)
Uppsala universitet (2)
Umeå universitet (1)
visa fler...
Högskolan i Halmstad (1)
Chalmers tekniska högskola (1)
Karolinska Institutet (1)
visa färre...
Språk
Engelska (14)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (10)
Medicin och hälsovetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy