SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Song JY) "

Sökning: WFRF:(Song JY)

  • Resultat 1-25 av 36
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Niemi, MEK, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  • 2021
  • swepub:Mat__t
  •  
9.
  • Campbell, PJ, et al. (författare)
  • Pan-cancer analysis of whole genomes
  • 2020
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 578:7793, s. 82-
  • Tidskriftsartikel (refereegranskat)abstract
    • Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale1–3. Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4–5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter4; identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation5,6; analyses timings and patterns of tumour evolution7; describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity8,9; and evaluates a range of more-specialized features of cancer genomes8,10–18.
  •  
10.
  •  
11.
  •  
12.
  • Kang, JS, et al. (författare)
  • Risk prediction for malignant intraductal papillary mucinous neoplasm of the pancreas: logistic regression versus machine learning
  • 2020
  • Ingår i: Scientific reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 10:1, s. 20140-
  • Tidskriftsartikel (refereegranskat)abstract
    • Most models for predicting malignant pancreatic intraductal papillary mucinous neoplasms were developed based on logistic regression (LR) analysis. Our study aimed to develop risk prediction models using machine learning (ML) and LR techniques and compare their performances. This was a multinational, multi-institutional, retrospective study. Clinical variables including age, sex, main duct diameter, cyst size, mural nodule, and tumour location were factors considered for model development (MD). After the division into a MD set and a test set (2:1), the best ML and LR models were developed by training with the MD set using a tenfold cross validation. The test area under the receiver operating curves (AUCs) of the two models were calculated using an independent test set. A total of 3,708 patients were included. The stacked ensemble algorithm in the ML model and variable combinations containing all variables in the LR model were the most chosen during 200 repetitions. After 200 repetitions, the mean AUCs of the ML and LR models were comparable (0.725 vs. 0.725). The performances of the ML and LR models were comparable. The LR model was more practical than ML counterpart, because of its convenience in clinical use and simple interpretability.
  •  
13.
  •  
14.
  •  
15.
  • 2021
  • swepub:Mat__t
  •  
16.
  •  
17.
  •  
18.
  • Choi, YL, et al. (författare)
  • A novel fusion of TPR and ALK in lung adenocarcinoma
  • 2014
  • Ingår i: Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer. - 1556-1380. ; 9:4, s. 563-566
  • Tidskriftsartikel (refereegranskat)
  •  
19.
  •  
20.
  • He, YQ, et al. (författare)
  • A polygenic risk score for nasopharyngeal carcinoma shows potential for risk stratification and personalized screening
  • 2022
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 13:1, s. 1966-
  • Tidskriftsartikel (refereegranskat)abstract
    • Polygenic risk scores (PRS) have the potential to identify individuals at risk of diseases, optimizing treatment, and predicting survival outcomes. Here, we construct and validate a genome-wide association study (GWAS) derived PRS for nasopharyngeal carcinoma (NPC), using a multi-center study of six populations (6 059 NPC cases and 7 582 controls), and evaluate its utility in a nested case-control study. We show that the PRS enables effective identification of NPC high-risk individuals (AUC = 0.65) and improves the risk prediction with the PRS incremental deciles in each population (Ptrend ranging from 2.79 × 10−7 to 4.79 × 10−44). By incorporating the PRS into EBV-serology-based NPC screening, the test’s positive predictive value (PPV) is increased from an average of 4.84% to 8.38% and 11.91% in the top 10% and 5% PRS, respectively. In summary, the GWAS-derived PRS, together with the EBV test, significantly improves NPC risk stratification and informs personalized screening.
  •  
21.
  •  
22.
  •  
23.
  •  
24.
  •  
25.
  • Lin, J, et al. (författare)
  • Oncolytic Parapoxvirus induces Gasdermin E-mediated pyroptosis and activates antitumor immunity
  • 2023
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 14:1, s. 224-
  • Tidskriftsartikel (refereegranskat)abstract
    • The advantage of oncolytic viruses (OV) in cancer therapy is their dual effect of directly killing tumours while prompting anti-tumour immune response. Oncolytic parapoxvirus ovis (ORFV) and other OVs are thought to induce apoptosis, but apoptosis, being the immunogenically inert compared to other types of cell death, does not explain the highly inflamed microenvironment in OV-challenged tumors. Here we show that ORFV and its recombinant therapeutic derivatives are able to trigger tumor cell pyroptosis via Gasdermin E (GSDME). This effect is especially prominent in GSDME-low tumor cells, in which ORFV-challenge pre-stabilizes GSDME by decreasing its ubiquitination and subsequently initiates pyroptosis. Consistently, GSDME depletion reduces the proportion of intratumoral cytotoxic T lymphocytes, pyroptotic cell death and the success of tumor ORFV virotherapy. In vivo, the OV preferentially accumulates in the tumour upon systemic delivery and elicits pyroptotic tumor killing. Consequentially, ORFV sensitizes immunologically ‘cold’ tumors to checkpoint blockade. This study thus highlights the critical role of GSDME-mediated pyroptosis in oncolytic ORFV-based antitumor immunity and identifies combinatorial cancer therapy strategies.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 36

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy