SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sonmez Ceylan) "

Sökning: WFRF:(Sonmez Ceylan)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gawel, Danuta, et al. (författare)
  • A validated single-cell-based strategy to identify diagnostic and therapeutic targets in complex diseases
  • 2019
  • Ingår i: Genome Medicine. - : Springer Science and Business Media LLC. - 1756-994X. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Genomic medicine has paved the way for identifying biomarkers and therapeutically actionable targets for complex diseases, but is complicated by the involvement of thousands of variably expressed genes across multiple cell types. Single-cell RNA-sequencing study (scRNA-seq) allows the characterization of such complex changes in whole organs. Methods: The study is based on applying network tools to organize and analyze scRNA-seq data from a mouse model of arthritis and human rheumatoid arthritis, in order to find diagnostic biomarkers and therapeutic targets. Diagnostic validation studies were performed using expression profiling data and potential protein biomarkers from prospective clinical studies of 13 diseases. A candidate drug was examined by a treatment study of a mouse model of arthritis, using phenotypic, immunohistochemical, and cellular analyses as read-outs. Results: We performed the first systematic analysis of pathways, potential biomarkers, and drug targets in scRNA-seq data from a complex disease, starting with inflamed joints and lymph nodes from a mouse model of arthritis. We found the involvement of hundreds of pathways, biomarkers, and drug targets that differed greatly between cell types. Analyses of scRNA-seq and GWAS data from human rheumatoid arthritis (RA) supported a similar dispersion of pathogenic mechanisms in different cell types. Thus, systems-level approaches to prioritize biomarkers and drugs are needed. Here, we present a prioritization strategy that is based on constructing network models of disease-associated cell types and interactions using scRNA-seq data from our mouse model of arthritis, as well as human RA, which we term multicellular disease models (MCDMs). We find that the network centrality of MCDM cell types correlates with the enrichment of genes harboring genetic variants associated with RA and thus could potentially be used to prioritize cell types and genes for diagnostics and therapeutics. We validated this hypothesis in a large-scale study of patients with 13 different autoimmune, allergic, infectious, malignant, endocrine, metabolic, and cardiovascular diseases, as well as a therapeutic study of the mouse arthritis model. Conclusions: Overall, our results support that our strategy has the potential to help prioritize diagnostic and therapeutic targets in human disease.
  •  
2.
  •  
3.
  • Sonmez, Ceylan, 1984-, et al. (författare)
  • DNA-PK controls Apollo's access to leading-end telomeres
  • 2024
  • Ingår i: Nucleic Acids Research. - : OXFORD UNIV PRESS. - 0305-1048 .- 1362-4962. ; 52:8, s. 4313-4327
  • Tidskriftsartikel (refereegranskat)abstract
    • The complex formed by Ku70/80 and DNA-PKcs (DNA-PK) promotes the synapsis and the joining of double strand breaks (DSBs) during canonical non-homologous end joining (c-NHEJ). In c-NHEJ during V(D)J recombination, DNA-PK promotes the processing of the ends and the opening of the DNA hairpins by recruiting and/or activating the nuclease Artemis/DCLRE1C/SNM1C. Paradoxically, DNA-PK is also required to prevent the fusions of newly replicated leading-end telomeres. Here, we describe the role for DNA-PK in controlling Apollo/DCLRE1B/SNM1B, the nuclease that resects leading-end telomeres. We show that the telomeric function of Apollo requires DNA-PKcs’s kinase activity and the binding of Apollo to DNA-PK. Furthermore, AlphaFold-Multimer predicts that Apollo’s nuclease domain has extensive additional interactions with DNA-PKcs, and comparison to the cryo-EM structure of Artemis bound to DNA-PK phosphorylated on the ABCDE/Thr2609 cluster suggests that DNA-PK can similarly grant Apollo access to the DNA end. In agreement, the telomeric function of DNA-PK requires the ABCDE/Thr2609 cluster. These data reveal that resection of leading-end telomeres is regulated by DNA-PK through its binding to Apollo and its (auto)phosphorylation-dependent positioning of Apollo at the DNA end, analogous but not identical to DNA-PK dependent regulation of Artemis at hairpins.
  •  
4.
  • Turkez, Hasan, et al. (författare)
  • Molecular Genetics and Cytotoxic Responses to Titanium Diboride and Zinc Borate Nanoparticles on Cultured Human Primary Alveolar Epithelial Cells
  • 2022
  • Ingår i: Materials. - : MDPI. - 1996-1944. ; 15:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Titanium diboride (TiB2) and zinc borate (Zn3BO6) have been utilized in wide spectrum industrial areas because of their favorable properties such as a high melting point, good wear resistance, high hardness and thermal conductivity. On the other hand, the biomedical potentials of TiB2 and Zn3BO6 are still unknown because there is no comprehensive analysis that uncovers their biocompatibility features. Thus, the toxicogenomic properties of TiB2 and Zn3BO6 nanoparticles (NPs) were investigated on human primary alveolar epithelial cell cultures (HPAEpiC) by using different cell viability assays and microarray analyses. Protein-Protein Interaction Networks Functional Enrichment Analysis (STRING) was used to associate differentially expressed gene probes. According to the results, up to 10 mg/L concentration of TiB2 and Zn3BO6 NPs application did not stimulate a cytotoxic effect on the HPAEpiC cell cultures. Microarray analysis revealed that TiB2 NPs exposure enhances cellular adhesion molecules, proteases and carrier protein expression. Furthermore, Zn3BO6 NPs caused differential gene expressions in the cell cycle, cell division and extracellular matrix regulators. Finally, STRING analyses put forth that inflammation, cell regeneration and tissue repair-related gene interactions were affected by TiB2 NPs application. Zn3BO6 NPs exposure significantly altered inflammation, lipid metabolism and infection response activator-related gene interactions. These investigations illustrated that TiB2 and Zn3BO6 NPs exposure may affect different aspects of cellular machineries such as immunogenic responses, tissue regeneration and cell survival. Thus, these types of cellular mechanisms should be taken into account before the use of the related NPs in further biomedical applications.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy