SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sorriso Valvo L.) "

Sökning: WFRF:(Sorriso Valvo L.)

  • Resultat 1-25 av 31
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Zouganelis, I., et al. (författare)
  • The Solar Orbiter Science Activity Plan : Translating solar and heliospheric physics questions into action
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP SCIENCES S A. - 0004-6361 .- 1432-0746. ; 642
  • Tidskriftsartikel (refereegranskat)abstract
    • Solar Orbiter is the first space mission observing the solar plasma both in situ and remotely, from a close distance, in and out of the ecliptic. The ultimate goal is to understand how the Sun produces and controls the heliosphere, filling the Solar System and driving the planetary environments. With six remote-sensing and four in-situ instrument suites, the coordination and planning of the operations are essential to address the following four top-level science questions: (1) What drives the solar wind and where does the coronal magnetic field originate?; (2) How do solar transients drive heliospheric variability?; (3) How do solar eruptions produce energetic particle radiation that fills the heliosphere?; (4) How does the solar dynamo work and drive connections between the Sun and the heliosphere? Maximising the mission's science return requires considering the characteristics of each orbit, including the relative position of the spacecraft to Earth (affecting downlink rates), trajectory events (such as gravitational assist manoeuvres), and the phase of the solar activity cycle. Furthermore, since each orbit's science telemetry will be downloaded over the course of the following orbit, science operations must be planned at mission level, rather than at the level of individual orbits. It is important to explore the way in which those science questions are translated into an actual plan of observations that fits into the mission, thus ensuring that no opportunities are missed. First, the overarching goals are broken down into specific, answerable questions along with the required observations and the so-called Science Activity Plan (SAP) is developed to achieve this. The SAP groups objectives that require similar observations into Solar Orbiter Observing Plans, resulting in a strategic, top-level view of the optimal opportunities for science observations during the mission lifetime. This allows for all four mission goals to be addressed. In this paper, we introduce Solar Orbiter's SAP through a series of examples and the strategy being followed.
  •  
2.
  • Telloni, D., et al. (författare)
  • Study of two interacting interplanetary coronal mass ejections encountered by Solar Orbiter during its first perihelion passage Observations and modeling
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 656
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Solar Orbiter, the new-generation mission dedicated to solar and heliospheric exploration, was successfully launched on February 10, 2020, 04:03 UTC from Cape Canaveral. During its first perihelion passage in June 2020, two successive interplanetary coronal mass ejections (ICMEs), propagating along the heliospheric current sheet (HCS), impacted the spacecraft.Aims. This paper addresses the investigation of the ICMEs encountered by Solar Orbiter on June 7-8, 2020, from both an observational and a modeling perspective. The aim is to provide a full description of those events, their mutual interaction, and their coupling with the ambient solar wind and the HCS.Methods. Data acquired by the MAG magnetometer, the Energetic Particle Detector suite, and the Radio and Plasma Waves instrument are used to provide information on the ICMEs' magnetic topology configuration, their magnetic connectivity to the Sun, and insights into the heliospheric plasma environment where they travel, respectively. On the modeling side, the Heliospheric Upwind eXtrapolation model, the 3D COronal Rope Ejection technique, and the EUropean Heliospheric FORecasting Information Asset (EUHFORIA) tool are used to complement Solar Orbiter observations of the ambient solar wind and ICMEs, and to simulate the evolution and interaction of the ejecta in the inner heliosphere, respectively.Results. Both data analysis and numerical simulations indicate that the passage of two distinct, dynamically and magnetically interacting (via magnetic reconnection processes) ICMEs at Solar Orbiter is a possible scenario, supported by the numerous similarities between EUHFORIA time series at Solar Orbiter and Solar Orbiter data.Conclusions. The combination of in situ measurements and numerical simulations (together with remote sensing observations of the corona and inner heliosphere) will significantly lead to a deeper understanding of the physical processes occurring during the CME-CME interaction.
  •  
3.
  • Retinò, A., et al. (författare)
  • Particle energization in space plasmas : towards a multi-point, multi-scale plasma observatory
  • 2021
  • Ingår i: Experimental astronomy. - : Springer Nature. - 0922-6435 .- 1572-9508.
  • Tidskriftsartikel (refereegranskat)abstract
    • This White Paper outlines the importance of addressing the fundamental science theme “How are charged particles energized in space plasmas” through a future ESA mission. The White Paper presents five compelling science questions related to particle energization by shocks, reconnection, waves and turbulence, jets and their combinations. Answering these questions requires resolving scale coupling, nonlinearity, and nonstationarity, which cannot be done with existing multi-point observations. In situ measurements from a multi-point, multi-scale L-class Plasma Observatory consisting of at least seven spacecraft covering fluid, ion, and electron scales are needed. The Plasma Observatory will enable a paradigm shift in our comprehension of particle energization and space plasma physics in general, with a very important impact on solar and astrophysical plasmas. It will be the next logical step following Cluster, THEMIS, and MMS for the very large and active European space plasmas community. Being one of the cornerstone missions of the future ESA Voyage 2050 science programme, it would further strengthen the European scientific and technical leadership in this important field.
  •  
4.
  • Telloni, D., et al. (författare)
  • First polar observations of the fast solar wind with the Metis - Solar Orbiter coronagraph : Role of 2D turbulence energy dissipation in the wind acceleration
  • 2023
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 670
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The fast solar wind is known to emanate from polar coronal holes.Aims. This Letter reports the first estimate of the expansion rate of polar coronal flows performed by the Metis coronagraph on board Solar Orbiter.Methods. By exploiting simultaneous measurements in polarized white light and ultraviolet intensity of the neutral hydrogen Lyman-α line, it was possible to extend observations of the outflow velocity of the main component of the solar wind from polar coronal holes out to 5.5 R⊙, the limit of diagnostic applicability and observational capabilities.Results. We complement the results obtained with analogous polar observations performed with the UltraViolet Coronagraph Spectrometer on board the SOlar and Heliospheric Observatory during the previous full solar activity cycle, and find them to be satisfactorily reproduced by a magnetohydrodynamic turbulence model.Conclusions. This suggests that the dissipation of 2D turbulence energy is a viable mechanism for coronal plasma heating and the subsequent acceleration of the fast solar wind.
  •  
5.
  • Allen, R. C., et al. (författare)
  • Energetic ions in the Venusian system : Insights from the first Solar Orbiter flyby
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 656
  • Tidskriftsartikel (refereegranskat)abstract
    • The Solar Orbiter flyby of Venus on 27 December 2020 allowed for an opportunity to measure the suprathermal to energetic ions in the Venusian system over a large range of radial distances to better understand the acceleration processes within the system and provide a characterization of galactic cosmic rays near the planet. Bursty suprathermal ion enhancements (up to similar to 10 keV) were observed as far as similar to 50R(V) downtail. These enhancements are likely related to a combination of acceleration mechanisms in regions of strong turbulence, current sheet crossings, and boundary layer crossings, with a possible instance of ion heating due to ion cyclotron waves within the Venusian tail. Upstream of the planet, suprathermal ions are observed that might be related to pick-up acceleration of photoionized exospheric populations as far as 5R(V) upstream in the solar wind as has been observed before by missions such as Pioneer Venus Orbiter and Venus Express. Near the closest approach of Solar Orbiter, the Galactic cosmic ray (GCR) count rate was observed to decrease by approximately 5 percent, which is consistent with the amount of sky obscured by the planet, suggesting a negligible abundance of GCR albedo particles at over 2 R-V. Along with modulation of the GCR population very close to Venus, the Solar Orbiter observations show that the Venusian system, even far from the planet, can be an effective accelerator of ions up to similar to 30 keV. This paper is part of a series of the first papers from the Solar Orbiter Venus flyby.
  •  
6.
  • Perri, S., et al. (författare)
  • On the deviation from Maxwellian of the ion velocity distribution functions in the turbulent magnetosheath
  • 2020
  • Ingår i: Journal of Plasma Physics. - : CAMBRIDGE UNIV PRESS. - 0022-3778 .- 1469-7807. ; 86:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The deviation from thermodynamic equilibrium of the ion velocity distribution functions (VDFs), as measured by the Magnetospheric Multiscale (MMS) mission in the Earth's turbulent magnetosheath, is quantitatively investigated. Making use of the unprecedented high-resolution MMS ion data, and together with Vlasov-Maxwell simulations, this analysis aims at investigating the relationship between deviation from Maxwellian equilibrium and typical plasma parameters. Correlations of the non-Maxwellian features with plasma quantities such as electric fields, ion temperature, current density and ion vorticity are found to be similar in magnetosheath data and numerical experiments, with a poor correlation between distortions of ion VDFs and current density, evidence that questions the occurrence of VDF departure from Maxwellian at the current density peaks. Moreover, strong correlation has been observed with the magnitude of the electric field in the turbulent magnetosheath, while a certain degree of correlation has been found in the numerical simulations and during a magnetopause crossing by MMS. This work could help shed light on the influence of electrostatic waves on the distortion of the ion VDFs in space turbulent plasmas.
  •  
7.
  • Pezzi, O., et al. (författare)
  • Dissipation measures in weakly collisional plasmas
  • 2021
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press. - 0035-8711 .- 1365-2966. ; 505:4, s. 4857-4873
  • Tidskriftsartikel (refereegranskat)abstract
    • The physical foundations of the dissipation of energy and the associated heating in weakly collisional plasmas are poorly understood. Here, we compare and contrast several measures that have been used to characterize energy dissipation and kinetic-scale conversion in plasmas by means of a suite of kinetic numerical simulations describing both magnetic reconnection and decaying plasma turbulence. We adopt three different numerical codes that can also include interparticle collisions: the fully kinetic particle-in-cell VPIC, the fully kinetic continuum Gkeyll, and the Eulerian Hybrid Vlasov-Maxwell (HVM) code. We differentiate between (i) four energy-based parameters, whose definition is related to energy transfer in a fluid description of a plasma, and (ii) four distribution function-based parameters, requiring knowledge of the particle velocity distribution function. There is an overall agreement between the dissipation measures obtained in the PIC and continuum reconnection simulations, with slight differences due to the presence/absence of secondary islands in the two simulations. There are also many qualitative similarities between the signatures in the reconnection simulations and the self-consistent current sheets that form in turbulence, although the latter exhibits significant variations compared to the reconnection results. All the parameters confirm that dissipation occurs close to regions of intense magnetic stresses, thus exhibiting local correlation. The distribution function-based measures show a broader width compared to energy-based proxies, suggesting that energy transfer is co-localized at coherent structures, but can affect the particle distribution function in wider regions. The effect of interparticle collisions on these parameters is finally discussed.
  •  
8.
  • Vaivads, Andris, et al. (författare)
  • Turbulence Heating ObserveR - satellite mission proposal
  • 2016
  • Ingår i: JOURNAL OF PLASMA PHYSICS. - 0022-3778. ; 82
  • Tidskriftsartikel (refereegranskat)abstract
    • The Universe is permeated by hot, turbulent, magnetized plasmas. Turbulent plasma is a major constituent of active galactic nuclei, supernova remnants, the intergalactic and interstellar medium, the solar corona, the solar wind and the Earth's magnetosphere, just to mention a few examples. Energy dissipation of turbulent fluctuations plays a key role in plasma heating and energization, yet we still do not understand the underlying physical mechanisms involved. THOR is a mission designed to answer the questions of how turbulent plasma is heated and particles accelerated, how the dissipated energy is partitioned and how dissipation operates in different regimes of turbulence. THOR is a single-spacecraft mission with an orbit tuned to maximize data return from regions in near-Earth space - magnetosheath, shock, foreshock and pristine solar wind - featuring different kinds of turbulence. Here we summarize the THOR proposal submitted on 15 January 2015 to the 'Call for a Medium-size mission opportunity in ESAs Science Programme for a launch in 2025 (M4)'. THOR has been selected by European Space Agency (ESA) for the study phase.
  •  
9.
  • D'Amicis, R., et al. (författare)
  • First Solar Orbiter observation of the Alfvenic slow wind and identification of its solar source
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 656
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Turbulence dominated by large-amplitude, nonlinear Alfven-like fluctuations mainly propagating away from the Sun is ubiquitous in high-speed solar wind streams. Recent studies have demontrated that slow wind streams may also show strong Alfvenic signatures, especially in the inner heliosphere.Aims. The present study focuses on the characterisation of an Alfvenic slow solar wind interval observed by Solar Orbiter between 14 and 18 July 2020 at a heliocentric distance of 0.64 AU.Methods. Our analysis is based on plasma moments and magnetic field measurements from the Solar Wind Analyser (SWA) and Magnetometer (MAG) instruments, respectively. We compared the behaviour of different parameters to characterise the stream in terms of the Alfvenic content and magnetic properties. We also performed a spectral analysis to highlight spectral features and waves signature using power spectral density and magnetic helicity spectrograms, respectively. Moreover, we reconstruct the Solar Orbiter magnetic connectivity to the solar sources both via a ballistic and a potential field source surface (PFSS) model.Results. The Alfvenic slow wind stream described in this paper resembles, in many respects, a fast wind stream. Indeed, at large scales, the time series of the speed profile shows a compression region, a main portion of the stream, and a rarefaction region, characterised by different features. Moreover, before the rarefaction region, we pinpoint several structures at different scales recalling the spaghetti-like flux-tube texture of the interplanetary magnetic field. Finally, we identify the connections between Solar Orbiter in situ measurements, tracing them down to coronal streamer and pseudostreamer configurations.Conclusions. The characterisation of the Alfvenic slow wind stream observed by Solar Orbiter and the identification of its solar source are extremely important aspects for improving the understanding of future observations of the same solar wind regime, especially as solar activity is increasing toward a maximum, where a higher incidence of this solar wind regime is expected.
  •  
10.
  • Hernández, Carlos S., et al. (författare)
  • Impact of Switchbacks on Turbulent Cascade and Energy Transfer Rate in the Inner Heliosphere
  • 2021
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8205 .- 2041-8213. ; 922:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent Parker Solar Probe (PSP) observations of inner heliospheric plasma have shown an abundant presence of Alfvénic polarity reversal of the magnetic field, known as "switchbacks." While their origin is still debated, their role in driving the solar wind turbulence has been suggested through analysis of the spectral properties of magnetic fluctuations. Here, we provide a complementary assessment of their role in the turbulent cascade. The validation of the third-order linear scaling of velocity and magnetic fluctuations in intervals characterized by a high occurrence of switchbacks suggests that, irrespective of their local or remote origin, these structures are actively embedded in the turbulent cascade, at least at the radial distances sampled by PSP during its first perihelion. The stronger positive energy transfer rate observed in periods with a predominance of switchbacks indicates that they act as a mechanism injecting additional energy in the turbulence cascade.
  •  
11.
  • Sorriso-Valvo, Luca, et al. (författare)
  • Sign Singularity of the Local Energy Transfer in Space Plasma Turbulence
  • 2019
  • Ingår i: Frontiers in Physics. - : FRONTIERS MEDIA SA. - 2296-424X. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • In weakly collisional space plasmas, the turbulent cascade provides most of the energy that is dissipated at small scales by various kinetic processes. Understanding the characteristics of such dissipative mechanisms requires the accurate knowledge of the fluctuations that make energy available for conversion at small scales, as different dissipation processes are triggered by fluctuations of a different nature. The scaling properties of different energy channels are estimated here using a proxy of the local energy transfer, based on the third-order moment scaling law for magnetohydrodynamic turbulence. In particular, the sign-singularity analysis was used to explore the scaling properties of the alternating positive-negative energy fluxes, thus providing information on the structure and topology of such fluxes for each of the different type of fluctuations. The results show the highly complex geometrical nature of the flux, and that the local contributions associated with energy and cross-helicity non-linear transfer have similar scaling properties. Consequently, the fractal properties of current and vorticity structures are similar to those of the Alfvenic fluctuations.
  •  
12.
  • Telloni, Daniele, et al. (författare)
  • Exploring the Solar Wind from Its Source on the Corona into the Inner Heliosphere during the First Solar Orbiter-Parker Solar Probe Quadrature
  • 2021
  • Ingår i: Astrophysical Journal Letters. - : Institute of Physics Publishing (IOPP). - 2041-8205 .- 2041-8213. ; 920:1
  • Tidskriftsartikel (refereegranskat)abstract
    • This Letter addresses the first Solar Orbiter (SO)-Parker Solar Probe (PSP) quadrature, occurring on 2021 January 18 to investigate the evolution of solar wind from the extended corona to the inner heliosphere. Assuming ballistic propagation, the same plasma volume observed remotely in the corona at altitudes between 3.5 and 6.3 solar radii above the solar limb with the Metis coronagraph on SO can be tracked to PSP, orbiting at 0.1 au, thus allowing the local properties of the solar wind to be linked to the coronal source region from where it originated. Thanks to the close approach of PSP to the Sun and the simultaneous Metis observation of the solar corona, the flow-aligned magnetic field and the bulk kinetic energy flux density can be empirically inferred along the coronal current sheet with an unprecedented accuracy, allowing in particular estimation of the Alfven radius at 8.7 solar radii during the time of this event. This is thus the very first study of the same solar wind plasma as it expands from the sub-Alfvenic solar corona to just above the Alfven surface.
  •  
13.
  • Telloni, Daniele, et al. (författare)
  • Linking Small-scale Solar Wind Properties with Large-scale Coronal Source Regions through Joint Parker Solar Probe-Metis/Solar Orbiter Observations
  • 2022
  • Ingår i: Astrophysical Journal. - : IOP Publishing Ltd. - 0004-637X .- 1538-4357. ; 935:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The solar wind measured in situ by Parker Solar Probe in the very inner heliosphere is studied in combination with the remote-sensing observation of the coronal source region provided by the METIS coronagraph aboard Solar Orbiter. The coronal outflows observed near the ecliptic by Metis on 2021 January 17 at 16:30 UT, between 3.5 and 6.3 R (circle dot) above the eastern solar limb, can be associated with the streams sampled by PSP at 0.11 and 0.26 au from the Sun, in two time intervals almost 5 days apart. The two plasma flows come from two distinct source regions, characterized by different magnetic field polarity and intensity at the coronal base. It follows that both the global and local properties of the two streams are different. Specifically, the solar wind emanating from the stronger magnetic field region has a lower bulk flux density, as expected, and is in a state of well-developed Alfvenic turbulence, with low intermittency. This is interpreted in terms of slab turbulence in the context of nearly incompressible magnetohydrodynamics. Conversely, the highly intermittent and poorly developed turbulent behavior of the solar wind from the weaker magnetic field region is presumably due to large magnetic deflections most likely attributed to the presence of switchbacks of interchange reconnection origin.
  •  
14.
  • Vasconez, Christian L., et al. (författare)
  • Local and global properties of energy transfer in models of plasma turbulence
  • 2021
  • Ingår i: Journal of Plasma Physics. - : Cambridge University Press. - 0022-3778 .- 1469-7807. ; 87:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The nature of the turbulent energy transfer rate is studied using direct numerical simulations of weakly collisional space plasmas. This is done comparing results obtained from hybrid Vlasov-Maxwell simulations of collisionless plasmas, Hall magnetohydrodynamics and Landau fluid models reproducing low-frequency kinetic effects, such as the Landau damping. In this turbulent scenario, estimates of the local and global scaling properties of different energy channels are obtained using a proxy of the local energy transfer. This approach provides information on the structure of energy fluxes, under the assumption that the turbulent cascade transfers most of the energy that is then dissipated at small scales by various kinetic processes in these kinds of plasmas.
  •  
15.
  • Carbone, F., et al. (författare)
  • Statistical study of electron density turbulence and ion-cyclotron waves in the inner heliosphere : Solar Orbiter observations
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 656
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The recently released spacecraft potential measured by the RPW instrument on board Solar Orbiter has been used to estimate the solar wind electron density in the inner heliosphere. Aims. The measurement of the solar wind's electron density, taken in June 2020, has been analysed to obtain a thorough characterization of the turbulence and intermittency properties of the fluctuations. Magnetic field data have been used to describe the presence of ion-scale waves. Methods. To study and quantify the properties of turbulence, we extracted selected intervals. We used empirical mode decomposition to obtain the generalized marginal Hilbert spectrum, equivalent to the structure functions analysis, which additionally reduced issues typical of non-stationary, short time series. The presence of waves was quantitatively determined by introducing a parameter describing the time-dependent, frequency-filtered wave power. Results. A well-defined inertial range with power-law scalng was found almost everywhere in the sample studied. However, the Kolmogorov scaling and the typical intermittency effects are only present in fraction of the samples. Other intervals have shallower spectra and more irregular intermittency, which are not described by models of turbulence. These are observed predominantly during intervals of enhanced ion frequency wave activity. Comparisons with compressible magnetic field intermittency (from the MAG instrument) and with an estimate of the solar wind velocity (using electric and magnetic field) are also provided to give general context and help determine the cause of these anomalous fluctuations.
  •  
16.
  • Carbone, Francesco, et al. (författare)
  • Transition to turbulence in a five-mode Galerkin truncation of two-dimensional magnetohydrodynamics
  • 2021
  • Ingår i: Physical review. E. - : American Physical Society. - 2470-0045 .- 2470-0053. ; 104:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The chaotic dynamics of a low-order Galerkin truncation of the two-dimensional magnetohydrodynamic system, which reproduces the dynamics of fluctuations described by nearly incompressible magnetohydrodynamic in the plane perpendicular to a background magnetic field, is investigated by increasing the external forcing terms. Although this is the case closest to two-dimensional hydrodynamics, which shares some aspects with the classical Feigenbaum scenario of transition to chaos, the presence of magnetic fluctuations yields a very complex interesting route to chaos, characterized by the splitting into multiharmonic structures of the field amplitudes, and a mixing of phase-locking and free phase precession acting intermittently. When the background magnetic field lies in the plane, the system supports the presence of Alfven waves thus lowering the nonlinear interactions. Interestingly enough, the dynamics critically depends on the angle between the direction of the magnetic field and the reference system of the wave vectors. Above a certain critical angle, independently from the external forcing, a breakdown of the phase locking appears, accompanied with a suppression of the chaotic dynamics, replaced by a simple periodic motion.
  •  
17.
  • Chasapis, A., et al. (författare)
  • Thin Current Sheets and Associated Electron Heating in Turbulent Space Plasma
  • 2015
  • Ingår i: Astrophysical Journal Letters. - : Institute of Physics Publishing (IOPP). - 2041-8205 .- 2041-8213. ; 804:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Intermittent structures, such as thin current sheets, are abundant in turbulent plasmas. Numerical simulations indicate that such current sheets are important sites of energy dissipation and particle heating occurring at kinetic scales. However, direct evidence of dissipation and associated heating within current sheets is scarce. Here, we show a new statistical study of local electron heating within proton-scale current sheets by using high-resolution spacecraft data. Current sheets are detected using the Partial Variance of Increments (PVI) method which identifies regions of strong intermittency. We find that strong electron heating occurs in high PVI (>3) current sheets while no significant heating occurs in low PVI cases (<3), indicating that the former are dominant for energy dissipation. Current sheets corresponding to very high PVI (>5) show the strongest heating and most of the time are consistent with ongoing magnetic reconnection. This suggests that reconnection is important for electron heating and dissipation at kinetic scales in turbulent plasmas.
  •  
18.
  • Hadid, L. Z., et al. (författare)
  • Solar Orbiter's first Venus flyby : Observations from the Radio and Plasma Wave instrument
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 656
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. On December 27, 2020, Solar Orbiter completed its first gravity assist manoeuvre of Venus (VGAM1). While this flyby was performed to provide the spacecraft with sufficient velocity to get closer to the Sun and observe its poles from progressively higher inclinations, the Radio and Plasma Wave (RPW) consortium, along with other operational in situ instruments, had the opportunity to perform high cadence measurements and study the plasma properties in the induced magnetosphere of Venus.Aims. In this paper, we review the main observations of the RPW instrument during VGAM1. They include the identification of a number of magnetospheric plasma wave modes, measurements of the electron number densities computed using the quasi-thermal noise spectroscopy technique and inferred from the probe-to-spacecraft potential, the observation of dust impact signatures, kinetic solitary structures, and localized structures at the bow shock, in addition to the validation of the wave normal analysis on-board from the Low Frequency Receiver.Methods. We used the data products provided by the different subsystems of RPW to study Venus' induced magnetosphere.Results. The results include the observations of various electromagnetic and electrostatic wave modes in the induced magnetosphere of Venus: strong emissions of similar to 100 Hz whistler waves are observed in addition to electrostatic ion acoustic waves, solitary structures and Langmuir waves in the magnetosheath of Venus. Moreover, based on the different levels of the wave amplitudes and the large-scale variations of the electron number densities, we could identify different regions and boundary layers at Venus.Conclusions. The RPW instrument provided unprecedented AC magnetic and electric field measurements in Venus' induced magnetosphere for continuous frequency ranges and with high time resolution. These data allow for the conclusive identification of various plasma waves at higher frequencies than previously observed and a detailed investigation regarding the structure of the induced magnetosphere of Venus. Furthermore, noting that prior studies were mainly focused on the magnetosheath region and could only reach 10-12 Venus radii (R-V) down the tail, the particular orbit geometry of Solar Orbiter's VGAM1, allowed the first investigation of the nature of the plasma waves continuously from the bow shock to the magnetosheath, extending to similar to 70R(V) in the far distant tail region.
  •  
19.
  • Louarn, P., et al. (författare)
  • Multiscale views of an Alfvenic slow solar wind : 3D velocity distribution functions observed by the Proton-Alpha Sensor of Solar Orbiter
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 656
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The Alfvenic slow solar wind is of particular interest, as it is often characterized by intense magnetic turbulence, complex proton 3D velocity distribution functions (VDF), and an ensuing richness of kinetic and dynamic processes.Aims. We take advantage of the fast time cadence of measurements taken by the Proton-Alpha Sensor (PAS) on board Solar Orbiter to analyze the kinetic properties of the proton population, the variability of their VDFs, and the possible link with propagating magnetic structures. We also study the magnetic (B) and velocity (V) correlation that characterizes this type of wind down to the ion gyroperiod.Methods. We analyzed the VDFs measured by PAS, a novelty that take advantages of the capability of 3D measurements at a 4 Hz cadence. In addition, we considered MAG observations.Results. We first show that there is a remarkable correlation between the B and V components observed down to timescales approaching the ion gyrofrequency. This concerns a wide variety of fluctuations, such as waves, isolated peaks, and discontinuities. The great variability of the proton VDFs is also documented. The juxtaposition of a core and a field-aligned beam is the norm but the relative density of the beam, drift speed, and temperatures can considerably change on scales as short as as a few seconds. The characteristics of the core are comparatively more stable. These variations in the beam characteristics mostly explain the variations in the total parallel temperature and, therefore, in the total anisotropy of the proton VDFs. Two magnetic structures that are associated with significant changes in the shape of VDFs, one corresponding to relaxation of total anisotropy and the other to its strong increase, are analyzed here. Our statistical analysis shows a clear link between total anisotropy (and, thus, beam characteristics) and the direction of B with respect to the Parker spiral. In the present case, flux tubes aligned with Parker spiral contain an average proton VDF with a much more developed beam (thus, with larger total anisotropy) than those that are inclined, perpendicular, or even reverse with regard to the outward direction.Conclusions. These observations document the variability of the proton VDF shape in relation to the propagation of magnetic structures. This is a key area of interest for understanding of the effect of turbulence on solar wind dynamics.
  •  
20.
  • Perri, S., et al. (författare)
  • Magnetic turbulence in space plasmas : Scale-dependent effects of anisotropy
  • 2009
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 114, s. A02102-
  • Tidskriftsartikel (refereegranskat)abstract
    • The presence of a background magnetic field induces anisotropy in magnetic turbulence. Understanding properties of anisotropy is important to characterize turbulence power spectrum. This paper presents a case study of anisotropy by using a minimum variance analysis, in three different regions of the heliosphere, namely in the solar wind, and in the Earth's foreshock and magnetosheath behind a quasiparallel bow shock. A strong anisotropy is found in all cases, with very interesting cross-scale effects at the ion cyclotron frequency. In particular, (1) the eigenvalues of the variance matrix have a strong intermittent behavior, with very high localized fluctuations below the ion cyclotron scale. As a consequence the probability distribution functions are almost Gaussian5 above the ion cyclotron scale and become power laws at smaller scales; (2) the minimum variance direction is almost parallel to the background magnetic field at scales larger than the ion cyclotron scale in the solar wind and in the foreshock, while their probability density functions become broader at smaller scales. In the magnetosheath the minimum variance direction exhibits a tendency to become nearly perpendicular to the large-scale magnetic field below the ion cyclotron scale.
  •  
21.
  • Quijia, Paulina, et al. (författare)
  • Comparing turbulence in a Kelvin-Helmholtz instability region across the terrestrial magnetopause
  • 2021
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press. - 0035-8711 .- 1365-2966. ; 503:4, s. 4815-4827
  • Tidskriftsartikel (refereegranskat)abstract
    • The properties of turbulence observed within the plasma originating from the magnetosheath and the magnetospheric boundary layer, which have been entrained within vortices driven by the Kelvin-Helmholtz Instability (KHI), are compared. The goal of such a study is to determine similarities and differences between the two different regions. In particular, we study spectra, intermittency and the third-order moment scaling, as well as the distribution of a local energy transfer rate proxy. The analysis is performed using the Magnetospheric Multiscale data from a single satellite that crosses longitudinally the KHI. Two sets of regions, one set containing predominantly magnetosheath plasma and the other containing predominantly magnetospheric plasma, are analysed separately, thus allowing us to explore turbulence properties in two portions of very different plasma samples. Results show that the dynamics in the two regions is different, with the boundary layer plasma presenting a shallower spectra and larger energy transfer rate, indicating an early stage of turbulence. In both regions, the effect of the KHI is evidenced.
  •  
22.
  • Sorriso-Valvo, L., et al. (författare)
  • On the scaling properties of anisotropy of interplanetary magnetic turbulent fluctuations
  • 2010
  • Ingår i: Europhysics letters. - : IOP Publishing. - 0295-5075 .- 1286-4854. ; 90:5, s. 59001-
  • Tidskriftsartikel (refereegranskat)abstract
    • The anisotropic character of interplanetary magnetic-field turbulence has been studied through the analysis of Cluster data. The full tensor of the mixed second-order structure functions has been used to quatitatively measure the degree of anisotropy and its effect on small-scale turbulence. Three different regions of the near-Earth space have been studied, namely the solar wind, the Earth's foreshock and magnetosheath. While in the undisturbed solar wind the observed strong anisotropy is mainly due to the large-scale magnetic field, near the magnetosphere other sources of anisotropy influence the magnetic-field properties.
  •  
23.
  • Sorriso-Valvo, Luca, et al. (författare)
  • Turbulence-Driven Ion Beams in the Magnetospheric Kelvin-Helmholtz Instability
  • 2019
  • Ingår i: Physical Review Letters. - : AMER PHYSICAL SOC. - 0031-9007 .- 1079-7114. ; 122:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The description of the local turbulent energy transfer and the high-resolution ion distributions measured by the Magnetospheric Multiscale mission together provide a formidable tool to explore the cross-scale connection between the fluid-scale energy cascade and plasma processes at subion scales. When the small-scale energy transfer is dominated by Alfvenic, correlated velocity, and magnetic field fluctuations, beams of accelerated particles are more likely observed. Here, for the first time, we report observations suggesting the nonlinear wave-particle interaction as one possible mechanism for the energy dissipation in space plasmas.
  •  
24.
  • Telloni, Daniele, et al. (författare)
  • Evolution of Solar Wind Turbulence from 0.1 to 1 au during the First Parker Solar Probe-Solar Orbiter Radial Alignment
  • 2021
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8205 .- 2041-8213. ; 912:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The first radial alignment between Parker Solar Probe and Solar Orbiter spacecraft is used to investigate the evolution of solar wind turbulence in the inner heliosphere. Assuming ballistic propagation, two 1.5 hr intervals are tentatively identified as providing measurements of the same plasma parcels traveling from 0.1 to 1 au. Using magnetic field measurements from both spacecraft, the properties of turbulence in the two intervals are assessed. Magnetic spectral density, flatness, and high-order moment scaling laws are calculated. The Hilbert-Huang transform is additionally used to mitigate short sample and poor stationarity effects. Results show that the plasma evolves from a highly Alfvenic, less-developed turbulence state near the Sun, to fully developed and intermittent turbulence at 1 au. These observations provide strong evidence for the radial evolution of solar wind turbulence.
  •  
25.
  • Telloni, Daniele, et al. (författare)
  • Observation and Modeling of the Solar Wind Turbulence Evolution in the Sub-Mercury Inner Heliosphere
  • 2022
  • Ingår i: Astrophysical Journal Letters. - : Institute of Physics Publishing (IOPP). - 2041-8205 .- 2041-8213. ; 938:2
  • Tidskriftsartikel (refereegranskat)abstract
    • This letter exploits the radial alignment between the Parker Solar Probe and BepiColombo in late 2022 February, when both spacecraft were within Mercury's orbit. This allows the study of the turbulent evolution, namely, the change in spectral and intermittency properties, of the same plasma parcel during its expansion from 0.11 to 0.33 au, a still unexplored region. The observational analysis of the solar wind turbulent features at the two different evolution stages is complemented by a theoretical description based on the turbulence transport model equations for nearly incompressible magnetohydrodynamics. The results provide strong evidence that the solar wind turbulence already undergoes significant evolution at distances less than 0.3 au from the Sun, which can be satisfactorily explained as due to evolving slab fluctuations. This work represents a step forward in understanding the processes that control the transition from weak to strong turbulence in the solar wind and in properly modeling the heliosphere.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 31

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy